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Anomalous relaxation in regular and fractal lattices
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Relaxation phenomena on disordered structures are studied by using a random walk model. The model is
able to describe essential features of the relaxation process in terms of a one-body picture with geometrical
restrictions on the particles’ motion. Two cases are considered: relaxation on regular lattices with disordered
variables taken from a power-law distributi¢these variables have different updating rilesid on a fractal
lattice which is a percolation cluster near criticality. Quantities such as the relaxation function, particle density,
and complex susceptibility are evaluated. Different types of relaxation mechanisms are found as a function of
frequency for regular and fractal lattices. Also for a regular lattice, we see an interesting dependence of the
relaxation quantities as a function of a disorder parameter which describes the decay of the power-law distri-
bution from which variables are drawn. The model is able to reproduce the relaxation behavior commonly
observed in experiments and typically fitted to empirical |aM#1063-651X97)08202-0

PACS numbdss): 05.40:+j, 61.20.Ja, 47.53:n

[. INTRODUCTION process as its value was frozen on the &jigenched cager
change its value with time as the transport process goes on

Relaxation phenomena occurring in many physical sys{annealed cageThese variables are drawn from a power-law
tems such as supercooled liquids, viscoelastic solids, and dgistribution of the form/u|£“~ 1. The second type of struc-
electric and magnetic relaxation in spin glasses and porougire is a fractal structure, a percolation cluster at criticality.
media[1—5] cannot be described by the classical exponential Quantities related to the relaxation process such as the
form in the time domain or a Debye function in the fre- felaxation function, particle density, and complex suscepti-
quency domain. They are usually expressed in terms of morility are calculated. For the case of regular lattices, an in-
complicated mathematical forms such as stretched exponeffresting behavior is observed as a function of the disorder
tials, power laws, Cole-Cole forms, ef6~10]. Even though Parameteg. Also, for the two types of structures, we find in
these systems are relatively well known, the microscopidhe frequency domain two different relaxation mechanisms
mechanisms for the occurrence of relaxation on them is nothich are also seen in experiments. These are observed as a
well established. These relaxation processes are calle¥retched exponential form of the relaxation function in the
anomalous. time domain, and the Cole-Cole form of the imaginary part

In general, relaxation processes are a consequence 8f the complex susceptibility in the frequency domain. Thus
many_body effects W|th|n a Single System and interactionéhis Simp|e m0de| iS able to reproduce baSiC features Of the
with its surroundings. However, some of their features carfélaxation process and allows one to quantify the effect of
be described in terms of a one-body picture by app|yingd|ffergnt types_ of dlsord_er on such response func_tlons. For
geometrical restrictions to the motion of the particles relaxthe microscopic mechanisms of anomalous relaxation we are
ing in that medium, i.e., the motion of a particle affected byable to |dent|fy. conditions for the occurrence of different
many-body effects is approximated by its motion in a re-types of relaxations.
stricted geometry11-13. Here we explore the “limits” of
this approach b_y using a sir_nple model based on the transport Il. MODEL AND SIMULATIONS
of random particles on a disordered structure. The effect of
disorder is to trap temporarily the diffusing particles, thus A particle released on a disordered structure cannot move
representing the geometrical restriction to their motion. Thidreely since spatial irregularities of the structure will set re-
same approach has been used in the literature to study relastrictions on its motion. Frequently, the particle gets trapped
ation phenomena in other systefiid—13. temporarily in poorly connected regions, thus its diffusion is

We present a simple model to explain anomalous relaxeffectively reduced. In this section we present a simple
ation in disordered structures. The model is based on thmodel to simulate the relaxation of a localized “signal” on a
properties of random walkers diffusing on a lattice, and isdisordered structure. Here the “signal” is represented by a
able to describe essential features of the relaxation procedsunch of particles initially localized at a given site of a lat-
Two types of disordered structures are considered, one withice, and then allowed to diffuse on the structure. Two dif-
“potential” disorder, in which a regular lattice with a ran- ferent disordered structures are considered. One is a regular
dom variable attached to each site is used. The random vaiiattice with random variablegswhich mimic disorder at-
able “behaves” like a temporary trap for the motion of the tached to each site. This way of introducing disorder is called
random walker, and it may have the same value for the entirépotential disorder.” The second case is a fractal lattice, a
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FIG. 1. Relaxation functioir (k,t) for regular lattices ird=1,2 with quenched@) and annealed disordeAj for x=0.5. Also shown
is F(k,t) for a lattice without disorderR). All curves are fork=117/250.

percolation cluster near criticality. Disorder in this case isrepeated for times up to?2and averages are taken over 20
structural. different cluster realizations. For any realization of the per-
colation cluster, samples of about*l@articles were consid-
ered.

For the two types of disorder, a record of the particle’s
We consider regular lattices ai=1 and 2. The first step positionr (t) is kept as a function of time

iS to aSSign a I’andom Val’iable to eaCh Iattice Site. Th|S Vari' W|th the data Obtained from the Simulations we Calcu|ate
able is taken from a distribution with a power-law form seyeral quantities related to the relaxation process as follows.

|u|é#7%, with O<p<1. Each variable is in the range be- (1) Relaxation functiorF (k,t), which is the characteristic
tween O<¢<1. The parameteu is called here the disorder function of the random variablé(t)—F(O) ie
e y Iy

exponent. Starting at a given site on the lattice, normally th
origin, a walker is released. A random number is drawn from F(k t):<ei£.[r‘(t)fr‘<o>]>
a uniform distribution and compared with the value of the ’ ’

disorder variable attached to its site. If this number iswherek is the wave vector number chosenlés(l,l) for

smaller, the particle can move to any of its neighbors withy,e 1 dimensional2D) lattice, and the angular brackets
the same probability. Since the disorder variables are relgganote sample averaging

tively small, most of the time the particles will not move. (2) Non-Gaussian parametéNGP) Xygp, Which is a

Thus the particle is temporarily trapped at its lattice site. Thi%onvenient parameter that describes how the distribution de-

distribution and the motion rules for the particles induce &, 1os from a Gaussian. i dimensions it is defined by
divergent waiting time distribution. '

A. Potential disorder

We consider two cases according to the updating rules of ([F(t)—F(O)]“)
the disordered variables, one in which the variables are fro- XncP= - -
zen on the lattice while the particles move around, called the [(d+2/2)J{{[r(t)—r(0)])}

“quenched case,” and the other is one where the variables

are updated each time the particles attempt to m@re (3) Complex susceptibility

nealed. "
A sampling over many disorder configurations is done, X(k'w):1+iwf e'“'F(k,t)dt.
typically for 1¢* realizations. The simulation is run for times 0

up to 2°° units, in systems with sizes big enough to avoid _ , _
situations where the particles reach the boundaries. For all The results are compared with the corresponding quanti-
cases we measure the position of the particles as a functic{f?s associated to the same process on a nondisordered struc-
of time. ure.

B. Structural disorder [lI. RELAXATION RESULTS.

. T REGULAR AND FRACTAL LATTICES
A percolating cluster near criticality is generated on a

square lattice of dimensions 48@00. A random site on this Figure 1 shows a plot of the relaxation functibfk,t) for
structure is chosen and a walker is released from it. At eacHifferent wave number values and latticeslis 1 and 2. For
unit of time the particle attempts to move to any of its neigh-comparison, the curve for the case without disorder is also
bors with equal probability. The motion occurs only if the shown. All curves are for fixet=117/250. It is clear that
selected neighbor site belongs to the cluster. The process tise decay is faster on the nondisordered lattice.
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FIG. 2. Relaxation functiofr(k,t) for regular lattices with annealed and quenched disorddr=2. Curves are for different values of
disorder exponent as indicated in figure. On the left is shown the plot for the annealed variables; the corresponding curve for quenched
variables is shown on the right. All curves are for 117/250.

We study the effect of disorder on the relaxation functionvalue of u, and qualitatively the same behavior for lattices in
by varying the value of parametgr. In Fig. 2 we plot the one and two dimensions.
decay ofF(k,t) for severalu values and the same wave  We have also calculated the relaxation timeand found
number valuek. For the quenched case, the relaxation isa power-law relation between this quantity and the wave
slower for small values of this parameter. Asincreases, number value, i.es~k™?. For the quenched case, exponent
disorder is weaker, making the relaxation faster. For the “an-y is a function of parameter. When . decreasesy in-
nealed” case, in which the disorder variables are Update reases. For the annealed Caeez for any u value regard_
each time the particles attempt to move, there is almost Nxss of the value of spatial dimensionality. This is similar to
sensitivity to theu value. The decay is faster for the an- the case without disorder. Table | summarizes the values of
nealed case for anly value and disorder strength. these exponents for lattices in one and two dimensions.

The relaxation data for a fixed value and several wave  The mean square displacement behaves asymptotically as
number valuesthe k direction is not changedare shown in  (r?(t))~t?, with @ a disorder dependent exponent for the
Fig. 3 where it is observed that the relaxation is faster foquenched case, whereas for the annealed variables we get
largerk. The same qualitative behavior is observed for lat-essentially the same results as for the nondisordered struc-
tices in one and two dimensions. Thus we find the followingture. The value ofd decreases ag decreases. This depen-
tendencies for the two types of disorder variables in reguladence of@ with the disorder parametgr has been reported
lattices: faster decay for fixed when increasing the wave previously[14]. For the annealed cast=1 as in regular
number value, faster decay for fixe@ when increasing the diffusion (only a renormalized diffusion constanfThe data
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FIG. 3. Typical behavior of (k,t) for lattices ind=1 and 2 with quenched disorder far=0.2. Different curves are for various wave
number valuek=n/250. From right to lefn=1,3,5,8,11,19,25,33.
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TABLE |. Relaxation exponenty for regular lattices id=1 TABLE Il. Exponent 6 associated to scaling of mean square
and 2. Subindex iny exponent refers to type of disorder variable: displacement, i.e{r?(t))~t%, for regular lattices with quenched
Q (quenchey A (annealedl (6g) and annealedd,) disorder variables il=1 and 2.

” d=1 d=2 i d=1 d=2
Y0 YA YQ YA e Oa o) O

0.4 3.45-0.02 2.06:0.02 4.96:0.02  2.06-0.02 0.2 0.34-0.02 1.06:0.01  0.2%0.02 1.06-0.01
0.5 2.970.02 2.00:0.02 3.9720.02 2.06:0.02 0.4 0.58-0.02 1.06:0.01 0.4x0.02 1.06:0.01
0.6 2.69-0.02  2.00-0.02  3.34:0.02  2.06:0.02 0.6 0.75-0.02 1.06:0.01 0.6k0.02 1.06-0.01
0.7 2.44-0.02  2.00:0.02  2.84-0.02  2.06:0.02 0.8 0.89-0.02 1.06:0.01 0.8@:0.02  1.06-0.01
0.8 2.28:0.02 2.06:0.02  2.5%0.02 2.06:0.02

proximations carried out to evaluate the integral in the defi-

for various disorder values appear in Table Il. It is interestingnition of y. Around the maximum, the curves have the Cole-
to note that the product of the exponemtsy/2)=1. This  Cole form (x(w)=[1+ (—iw/wmna)*] L,0<a<1) and for
result (justifiable by straightforward dimensional analysis small and high frequencies linear regimes are observed in a
seems to be valid for lattices oh=1 and 2, and for any type log-log plot(see Fig. 6. The slopes of the lines are different,
of disorder, and does not depend on the disorder parametsuggesting different relaxation mechanisms as a function of
. For quenched disorder we were able to fit the numericafrequency. This linear behavior is associated to stretched ex-
data to empirical relationsy=(1+w)/u for d=1 and ponential relaxation since the slopes of the lines are smaller
vy=2/u for d=2 with an error less than 3% and 5% for than one.
d=1 and 2, respectively. For the transport on the substrate with structural disorder,

The probability density shows deviations from the Gausswe observed a similar decay of the relaxation function as a
ian form as described by the values of NGP for the quenchetunction of the wave number value. The relaxation time
case. For a nondisordered lattice the probability density is also shows a power-law dependence wkth 7~k™?” with
Gaussian, hence the NGP is zero. On the other hand, whep=3.06+0.09. The mean square displacement also scales
the strength of disorder increas@sy reducing thew value  with time as(r?(t))~t% with #=0.72+0.02. Again, the
the NGP increases monotonically, shifting its value fromproduct of the exponentg(y/2)=1.10+0.06.
zero. This behavior is almost independent of time. For the The NGP also deviates from its value for a Gaussian dis-
annealed case the distribution is Gaussian and the NGP tgbution. This parameter increases from zero for short times
zero after a short transient period. Figure 4 shows the timand remains almost constant uptte=10°; beyond this time
evolution of the NGP for lattices im=2 with quenched we started to notice finite size effects.
disorder, and for annealed variables data are shown in Fig. 5. The imaginary part of the complex susceptibility has

Regarding the complex susceptibility, we have computedjualitatively a similar form to the one observed for regular
its imaginary part for the two types of disorder variables. Aslattices(see Fig. 6. Around the maximumy”(k,w) has the
a function of frequency we find curveg’(k,») which are  Cole-Cole form whereas for low and high frequencies a simi-
increasing monotonically up to a maximum at a particularlar linear regime with different slopes is observed. These two
frequency wnax beyond that value, the curves decreasdinear regimes are associated to stretched exponential relax-
monotonically. The data are slightly scattered due to the apation.
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FIG. 4. Non-Gaussian parameter(NGP) for lattices in d=1 and 2 with quenched disorder for
u=0.4 (d); 0.6 (O); 0.8 (A); 1.0 (+). The curve with K) is for a nondisordered lattice.
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FIG. 5. Non-Gaussian paramete(NGP) for lattices in d=1 and 2 with annealed disorder variables for
©=0.4 (); 0.6 (O); 0.8 (A); 1.0 (+). The curve with ) is for a regular lattice without disorder.

IV. DISCUSSION AND CONCLUSIONS (2) Power-law dependence of the relaxation time with the
wave number valuer~k™?. Exponenty depends on the

We have found that anomalous relaxation could be mod-

eled by diffusive effects in a restricted geometry. Thus astrength of disorder for quenched variables on regular lattices

one-body picture is able to reproduce features observed iynereas for the aqnegled_cageemawg fixed to 2. Without
experiments and previously fitted to empirical laws. Anoma-disorder, this relation is given by~k™*, also a power law
lous behavior is observed in regular disordered lattices anBUt With a fixed exponent. We have quantified the relation
fractal lattices. Even though our simulations were done foPetween exponentsy and u and found that for
lattices in one and two dimensions, similar results are exd=1, y=(1+u)/pn and ford=2, y=2/u [15].
pected for higher dimensions since it is known that the criti- (3) Universal values of product of exponeriéy/2)=1
cal dimension for the anomalous diffusion on those systempd describes the scaling in time of the mean square displace-
is d.=2 [14]. We can summarize the main results as follows.ment(r?(t))~t?]. This relation holds for potential and struc-
(1) The relaxation function in the time domain for a fixed tural disorder, and is independent of spatial dimensionality.
wave vector magnitude depends strongly on the value of thEor systems without disorder, this relation is obtained by
disorder parameteu for quenched variables, whereas for the straightforward dimensional analysis using the expressions
annealed case the results are clearly described by the CUFFQQEr’t):[1/(27T)d]f|:(k,t)e—ik~rd|‘() (d stands for spatial di-

relaxation theory. . - .
y mension and(r?(t))=fr2P(r,t)dr. Here, it is shown that
the relation also holds for relaxation on disordered structures.

107"/ Our findings are also consistent with numerical data previ-
Dnn“” o ously reported in Ref[11] for relaxation on fractal struc-
1072 2 R L tures; in this sense, they reconfirm the theory.
. Y AAA o (4) Non-Gaussian behavior of the probability density
3 FL e tm P(r,t) demonstrated by using a parameter that measures de-
’s: 10 7] a0 °oo fa viations of this function from a Gaussian. For regular lattices
S o o&e ° % o with annealed variables the distribution was found to be as-
“>< 10 O e o & ymptotically Gaussian.
. & & %> 4% (5) With respect to the imaginary part of the complex
o0t o &b susceptibility we observed different relaxation mechanisms
10°{ © L O o & g in the frequency domain: A stretched exponential relaxation
o f o o %&b for low and high frequencies, whereas for the intermediate
10%] “o % “a range we observe in all cases a Cole-Cole form, associated
& . — with a symmetric maximum for a given frequen@yyay,
10" 10% 10° 10% 102 1 which depends on the dimensionality and type of disorder.
®
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