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Anomalous relaxation in regular and fractal lattices
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Relaxation phenomena on disordered structures are studied by using a random walk model. The model is
able to describe essential features of the relaxation process in terms of a one-body picture with geometrical
restrictions on the particles’ motion. Two cases are considered: relaxation on regular lattices with disordered
variables taken from a power-law distribution~these variables have different updating rules!, and on a fractal
lattice which is a percolation cluster near criticality. Quantities such as the relaxation function, particle density,
and complex susceptibility are evaluated. Different types of relaxation mechanisms are found as a function of
frequency for regular and fractal lattices. Also for a regular lattice, we see an interesting dependence of the
relaxation quantities as a function of a disorder parameter which describes the decay of the power-law distri-
bution from which variables are drawn. The model is able to reproduce the relaxation behavior commonly
observed in experiments and typically fitted to empirical laws.@S1063-651X~97!08202-0#

PACS number~s!: 05.40.1j, 61.20.Ja, 47.53.1n
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I. INTRODUCTION

Relaxation phenomena occurring in many physical s
tems such as supercooled liquids, viscoelastic solids, and
electric and magnetic relaxation in spin glasses and po
media@1–5# cannot be described by the classical exponen
form in the time domain or a Debye function in the fr
quency domain. They are usually expressed in terms of m
complicated mathematical forms such as stretched expo
tials, power laws, Cole-Cole forms, etc.@6–10#. Even though
these systems are relatively well known, the microsco
mechanisms for the occurrence of relaxation on them is
well established. These relaxation processes are ca
anomalous.

In general, relaxation processes are a consequenc
many-body effects within a single system and interactio
with its surroundings. However, some of their features c
be described in terms of a one-body picture by apply
geometrical restrictions to the motion of the particles rel
ing in that medium, i.e., the motion of a particle affected
many-body effects is approximated by its motion in a
stricted geometry@11–13#. Here we explore the ‘‘limits’’ of
this approach by using a simple model based on the trans
of random particles on a disordered structure. The effec
disorder is to trap temporarily the diffusing particles, th
representing the geometrical restriction to their motion. T
same approach has been used in the literature to study r
ation phenomena in other systems@11–13#.

We present a simple model to explain anomalous re
ation in disordered structures. The model is based on
properties of random walkers diffusing on a lattice, and
able to describe essential features of the relaxation proc
Two types of disordered structures are considered, one
‘‘potential’’ disorder, in which a regular lattice with a ran
dom variable attached to each site is used. The random
able ‘‘behaves’’ like a temporary trap for the motion of th
random walker, and it may have the same value for the en
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process as its value was frozen on the site~quenched case! or
change its value with time as the transport process goe
~annealed case!. These variables are drawn from a power-la
distribution of the formumujm21. The second type of struc
ture is a fractal structure, a percolation cluster at criticali

Quantities related to the relaxation process such as
relaxation function, particle density, and complex susce
bility are calculated. For the case of regular lattices, an
teresting behavior is observed as a function of the disor
parameterm. Also, for the two types of structures, we find i
the frequency domain two different relaxation mechanis
which are also seen in experiments. These are observed
stretched exponential form of the relaxation function in t
time domain, and the Cole-Cole form of the imaginary p
of the complex susceptibility in the frequency domain. Th
this simple model is able to reproduce basic features of
relaxation process and allows one to quantify the effect
different types of disorder on such response functions.
the microscopic mechanisms of anomalous relaxation we
able to identify conditions for the occurrence of differe
types of relaxations.

II. MODEL AND SIMULATIONS

A particle released on a disordered structure cannot m
freely since spatial irregularities of the structure will set r
strictions on its motion. Frequently, the particle gets trapp
temporarily in poorly connected regions, thus its diffusion
effectively reduced. In this section we present a sim
model to simulate the relaxation of a localized ‘‘signal’’ on
disordered structure. Here the ‘‘signal’’ is represented b
bunch of particles initially localized at a given site of a la
tice, and then allowed to diffuse on the structure. Two d
ferent disordered structures are considered. One is a reg
lattice with random variables~which mimic disorder! at-
tached to each site. This way of introducing disorder is cal
‘‘potential disorder.’’ The second case is a fractal lattice
2222 © 1997 The American Physical Society
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FIG. 1. Relaxation functionF(k,t) for regular lattices ind51,2 with quenched (Q) and annealed disorder (A) for m50.5. Also shown
is F(k,t) for a lattice without disorder (R). All curves are fork511p/250.
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percolation cluster near criticality. Disorder in this case
structural.

A. Potential disorder

We consider regular lattices ind51 and 2. The first step
is to assign a random variable to each lattice site. This v
able is taken from a distribution with a power-law for
umujm21, with 0<m<1. Each variable is in the range be
tween 0<j<1. The parameterm is called here the disorde
exponent. Starting at a given site on the lattice, normally
origin, a walker is released. A random number is drawn fr
a uniform distribution and compared with the value of t
disorder variable attached to its site. If this number
smaller, the particle can move to any of its neighbors w
the same probability. Since the disorder variables are r
tively small, most of the time the particles will not mov
Thus the particle is temporarily trapped at its lattice site. T
distribution and the motion rules for the particles induce
divergent waiting time distribution.

We consider two cases according to the updating rule
the disordered variables, one in which the variables are
zen on the lattice while the particles move around, called
‘‘quenched case,’’ and the other is one where the variab
are updated each time the particles attempt to move~an-
nealed!.

A sampling over many disorder configurations is don
typically for 104 realizations. The simulation is run for time
up to 220 units, in systems with sizes big enough to avo
situations where the particles reach the boundaries. Fo
cases we measure the position of the particles as a func
of time.

B. Structural disorder

A percolating cluster near criticality is generated on
square lattice of dimensions 4003400. A random site on this
structure is chosen and a walker is released from it. At e
unit of time the particle attempts to move to any of its neig
bors with equal probability. The motion occurs only if th
selected neighbor site belongs to the cluster. The proce
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repeated for times up to 220 and averages are taken over 2
different cluster realizations. For any realization of the p
colation cluster, samples of about 104 particles were consid-
ered.

For the two types of disorder, a record of the particle
position rW(t) is kept as a function of timet.

With the data obtained from the simulations we calcul
several quantities related to the relaxation process as follo

~1! Relaxation functionF(k,t), which is the characteristic
function of the random variablerW(t)2rW(0), i.e.,

F~k,t !5^eik
W
•[ rW~ t !2rW~0!]&,

wherek is the wave vector number chosen askW5(1,1) for
the two-dimensional~2D! lattice, and the angular bracke
denote sample averaging.

~2! Non-Gaussian parameter~NGP! XNGP, which is a
convenient parameter that describes how the distribution
viates from a Gaussian. Ind dimensions it is defined by

XNGP[
^@rW~ t !2rW~0!#4&

@~d12/2!#$^@rW~ t !2rW~0!#2&%2
21.

~3! Complex susceptibility

x~k,v!511 ivE
0

`

eivtF~k,t !dt.

The results are compared with the corresponding qua
ties associated to the same process on a nondisordered
ture.

III. RELAXATION RESULTS.
REGULAR AND FRACTAL LATTICES

Figure 1 shows a plot of the relaxation functionF(k,t) for
different wave number values and lattices ind51 and 2. For
comparison, the curve for the case without disorder is a
shown. All curves are for fixedk511p/250. It is clear that
the decay is faster on the nondisordered lattice.
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FIG. 2. Relaxation functionF(k,t) for regular lattices with annealed and quenched disorder ind52. Curves are for different values o
disorder exponentm as indicated in figure. On the left is shown the plot for the annealed variables; the corresponding curve for qu
variables is shown on the right. All curves are fork511p/250.
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We study the effect of disorder on the relaxation functi
by varying the value of parameterm. In Fig. 2 we plot the
decay ofF(k,t) for severalm values and the same wav
number valuek. For the quenched case, the relaxation
slower for small values of this parameter. Asm increases,
disorder is weaker, making the relaxation faster. For the ‘‘
nealed’’ case, in which the disorder variables are upda
each time the particles attempt to move, there is almos
sensitivity to them value. The decay is faster for the a
nealed case for anyk value and disorder strength.

The relaxation data for a fixedm value and several wav
number values~thekW direction is not changed! are shown in
Fig. 3 where it is observed that the relaxation is faster
larger k. The same qualitative behavior is observed for l
tices in one and two dimensions. Thus we find the followi
tendencies for the two types of disorder variables in regu
lattices: faster decay for fixedm when increasing the wav
number valuek, faster decay for fixedk when increasing the
s
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r

value ofm, and qualitatively the same behavior for lattices
one and two dimensions.

We have also calculated the relaxation timet, and found
a power-law relation between this quantity and the wa
number value, i.e.,t;k2g. For the quenched case, expone
g is a function of parameterm. Whenm decreases,g in-
creases. For the annealed caseg52 for anym value regard-
less of the value of spatial dimensionality. This is similar
the case without disorder. Table I summarizes the value
these exponents for lattices in one and two dimensions.

The mean square displacement behaves asymptotical
^r 2(t)&;tu, with u a disorder dependent exponent for t
quenched case, whereas for the annealed variables we
essentially the same results as for the nondisordered s
ture. The value ofu decreases asm decreases. This depen
dence ofu with the disorder parameterm has been reported
previously @14#. For the annealed caseu51 as in regular
diffusion ~only a renormalized diffusion constant!. The data
e
FIG. 3. Typical behavior ofF(k,t) for lattices ind51 and 2 with quenched disorder form50.2. Different curves are for various wav
number valuesk5np/250. From right to leftn51,3,5,8,11,19,25,33.
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for various disorder values appear in Table II. It is interest
to note that the product of the exponentsu(g/2)51. This
result ~justifiable by straightforward dimensional analys!
seems to be valid for lattices ind51 and 2, and for any type
of disorder, and does not depend on the disorder param
m. For quenched disorder we were able to fit the numer
data to empirical relationsg5(11m)/m for d51 and
g52/m for d52 with an error less than 3% and 5% fo
d51 and 2, respectively.

The probability density shows deviations from the Gau
ian form as described by the values of NGP for the quenc
case. For a nondisordered lattice the probability density
Gaussian, hence the NGP is zero. On the other hand, w
the strength of disorder increases~by reducing them value!
the NGP increases monotonically, shifting its value fro
zero. This behavior is almost independent of time. For
annealed case the distribution is Gaussian and the NG
zero after a short transient period. Figure 4 shows the t
evolution of the NGP for lattices ind52 with quenched
disorder, and for annealed variables data are shown in Fi

Regarding the complex susceptibility, we have compu
its imaginary part for the two types of disorder variables.
a function of frequency we find curvesx9(k,v) which are
increasing monotonically up to a maximum at a particu
frequencyvmax; beyond that value, the curves decrea
monotonically. The data are slightly scattered due to the

TABLE I. Relaxation exponentsg for regular lattices ind51
and 2. Subindex ing exponent refers to type of disorder variabl
Q ~quenched!, A ~annealed!.

m d51 d52

gQ gA gQ gA

0.4 3.4560.02 2.0060.02 4.9660.02 2.0060.02
0.5 2.9760.02 2.0060.02 3.9760.02 2.0060.02
0.6 2.6960.02 2.0060.02 3.3460.02 2.0060.02
0.7 2.4460.02 2.0060.02 2.8460.02 2.0060.02
0.8 2.2860.02 2.0060.02 2.5160.02 2.0060.02
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proximations carried out to evaluate the integral in the d
nition of x. Around the maximum, the curves have the Co
Cole form „x(v)5@11(2 iv/vmax)

a#21,0<a<1… and for
small and high frequencies linear regimes are observed
log-log plot~see Fig. 6!. The slopes of the lines are differen
suggesting different relaxation mechanisms as a function
frequency. This linear behavior is associated to stretched
ponential relaxation since the slopes of the lines are sma
than one.

For the transport on the substrate with structural disord
we observed a similar decay of the relaxation function a
function of the wave number value. The relaxation timet
also shows a power-law dependence withk, t;k2g with
g53.0660.09. The mean square displacement also sc
with time as ^r 2(t)&;tu, with u50.7260.02. Again, the
product of the exponentsu(g/2)51.1060.06.

The NGP also deviates from its value for a Gaussian d
tribution. This parameter increases from zero for short tim
and remains almost constant up totc'105; beyond this time
we started to notice finite size effects.

The imaginary part of the complex susceptibility h
qualitatively a similar form to the one observed for regu
lattices~see Fig. 6!. Around the maximum,x9(k,v) has the
Cole-Cole form whereas for low and high frequencies a si
lar linear regime with different slopes is observed. These t
linear regimes are associated to stretched exponential re
ation.

TABLE II. Exponent u associated to scaling of mean squa
displacement, i.e.,̂r 2(t)&;tu, for regular lattices with quenched
(uQ) and annealed (uA) disorder variables ind51 and 2.

m d51 d52

uQ uA uQ uA

0.2 0.3460.02 1.0060.01 0.2160.02 1.0060.01
0.4 0.5860.02 1.0060.01 0.4160.02 1.0060.01
0.6 0.7560.02 1.0060.01 0.6160.02 1.0060.01
0.8 0.8960.02 1.0060.01 0.8060.02 1.0060.01
r
FIG. 4. Non-Gaussian parameter ~NGP! for lattices in d51 and 2 with quenched disorder fo
m50.4 (h); 0.6 (s); 0.8 (n); 1.0 (1). The curve with (3) is for a nondisordered lattice.
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FIG. 5. Non-Gaussian parameter~NGP! for lattices in d51 and 2 with annealed disorder variables f
m50.4 (h); 0.6 (s); 0.8 (n); 1.0 (1). The curve with (3) is for a regular lattice without disorder.
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IV. DISCUSSION AND CONCLUSIONS

We have found that anomalous relaxation could be m
eled by diffusive effects in a restricted geometry. Thus
one-body picture is able to reproduce features observe
experiments and previously fitted to empirical laws. Anom
lous behavior is observed in regular disordered lattices
fractal lattices. Even though our simulations were done
lattices in one and two dimensions, similar results are
pected for higher dimensions since it is known that the cr
cal dimension for the anomalous diffusion on those syste
is dc52 @14#. We can summarize the main results as follow

~1! The relaxation function in the time domain for a fixe
wave vector magnitude depends strongly on the value of
disorder parameterm for quenched variables, whereas for t
annealed case the results are clearly described by the cu
relaxation theory.

FIG. 6. Imaginary part of complex susceptibilityx9(k,v) as a
function of frequency for two-dimensional lattices with quench
disorder, m50.8, k53p/250 (h); annealed disorder,m50.5,
k53p/250 (s), and percolation cluster at criticality fo
k53p/125 (n).
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~2! Power-law dependence of the relaxation time with t
wave number valuet;k2g. Exponentg depends on the
strength of disorder for quenched variables on regular latt
whereas for the annealed caseg remains fixed to 2. Without
disorder, this relation is given byt;k22, also a power law
but with a fixed exponent. We have quantified the relat
between exponentsg and m and found that for
d51, g5(11m)/m and ford52, g52/m @15#.

~3! Universal values of product of exponentsu(g/2)51
@u describes the scaling in time of the mean square displa
ment^r 2(t)&;tu#. This relation holds for potential and struc
tural disorder, and is independent of spatial dimensiona
For systems without disorder, this relation is obtained
straightforward dimensional analysis using the expressi

P(r ,t)5@1/(2p)d#*F(k,t)e2 ikW•rWdkW (d stands for spatial di-

mension! and ^r 2(t)&5*r 2P(r ,t)drW. Here, it is shown that
the relation also holds for relaxation on disordered structu
Our findings are also consistent with numerical data pre
ously reported in Ref.@11# for relaxation on fractal struc-
tures; in this sense, they reconfirm the theory.

~4! Non-Gaussian behavior of the probability dens
P(r ,t) demonstrated by using a parameter that measures
viations of this function from a Gaussian. For regular lattic
with annealed variables the distribution was found to be
ymptotically Gaussian.

~5! With respect to the imaginary part of the comple
susceptibility we observed different relaxation mechanis
in the frequency domain: A stretched exponential relaxat
for low and high frequencies, whereas for the intermedi
range we observe in all cases a Cole-Cole form, associ
with a symmetric maximum for a given frequencyvmax,
which depends on the dimensionality and type of disorde
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