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Noise-induced chaos-order transitions

Fritz Gassmann
Paul Scherrer Institute, General Energy Research, CH-5232 Villigen, Switzerland
(Received 12 September 1996

Numerical simulations of the Lorenzian water wheel have been used to investigate the influence of stochastic
noise on the lifetimes of chaotic transients. Whereas, in one region of parameter space no noise dependency
could be detected, a shortening of the lifetimes of more than four decades was found in another region. This
large effect was produced by a significant modification of the attraction basin of a quasistable stationary state
rather than by affecting the chaotic orbits before the chaos-order transitions occurred. This novel phenomenon
of noise-induced chaos-order transitions is not related to stochastic resonance or other noise-induced effects.
[S1063-651X97)06902-X]

PACS numbds): 05.40:+j, 05.45+b

Complex systems often show ordered stationary or periing rise to ordered behavior. Also, with a Duffing oscillator,
odic states after a shorter or longer chaotic transient whehut in a postcrisis situation, Franaszek and FronZ@hin-
initialized at random. As stochastic environmental or internalestigated the effect of small noise on the chaos-chaos tran-
noise is always present in natural systems, the combined esitions (“multitransient chaos’} between two asymmetric
fect of chaos and stochastic noise determining the timevells. The times the trajectory spends in one of the two
needed for a system to “find” an ordered state is of interestregions were found to be strongly noise dependent. Fedche-

Up to now, much work has been devoted to the investinia et al. [8] observed with analog electronic and computer
gation of noise-induced transitions from a given stationarysimulations the emergence of chaotic behavior when periodic
state over a barrier to another stationary state. Special atteattractors in the Lorenz model were disturbed by noise, a
tion was given to equilibrium systems governed by an energyhenomenon termed noise-induced chaos.
potential depending only on one or several space coordinates |n contrast to all the above-mentioned investigations, we
where a surrounding medium supplies the energy to crosgre interested here in noise dependency of transitions from
this barrier, and, at the same time, exerts a drag on the Ssyghaos to orderedsteady, stationary, or periodistates for

tem removing energy. Kramef$] modeled this process by a qqtcrisis situations. Franaszg#] showed for the logistic

Langevin equation in his pioneering paper in 1940 and Cref‘nap and the Feon map that chaotic evolution may be elon-

ated a branch of theoretical physics still giving new results

. . . ated by a maximum of about 20% when small-amplitude
[2]. Analytical expressions for the transition rate can be use&oise is added and shortened with noise of larger amplitude.

to describe chemical reaction rates, the noise amplitude b(?:-
ing defined by temperature. : : )
9 y P gen allowing trajectories to escape toe, regarded as an

More recently, theoretical and experimental studies deal X . Blackb hoJ q
with noise-induced escape from basins of different types ofitracting point. However, Blackburn, Grbech-Jensen, an

attractors of dissipative, nonlinear dynamical systems faPMith [10] found no noise dependency for a mathematical
from equilibrium in contrast to the above-mentioned escap&€ndulum with its point of suspension subjected to a har-
from a minimum in the potentia| energy. For Josephson juncmonlc Vertl.Ca.I dlSpIacem.ent, either in Slmylatlolns or prerl—
tions[3] and for the logistic maf4], the mean escape time Mentally with an electronic analog. Numerical simulations of
was found to decrease with increasing noise amplitude ac@ parametrically damped pendulum also gave the same null
cording to an Arrhenius law based on a minimum escapéffect. The authorg10] explain this absence of noise depen-
energy. Especially for noise-free chaotic systems in a postdency with “the specific type of superposition that exists for
crisis situation, Sommerer, Ott, and Greb¢§] derived a the attractor basins and the strange attractor remnant,” lead-
scaling law for the characteristic times applicable to thredng to basins of attraction for the three investigated periodic
types of crises resulting in attractor destruction, attractor enstates “composed chiefly of points randomly peppered over
largement or attractor merging. Further, they generalized thithe (6,d0/dt) plane, together with some rather faint struc-
scaling law to precrisis situations where the addition of noisdural features”(8 is the angular coordinakte

causes the same type of behavior as shown by the noise-free After Grebogi, Ott, and York¢11], higher-dimensional
systems in the postcrisis situation. This phenomenon ofystems tend to show more persistent chaotic transients over
noise-induced crisis and the applicability of the general scala more extended range of parameter space, indicated by
ing law was demonstrated with a magnetoelastic ribf@n larger values of the respective critical exponents. So, also
displaying noise-induced intermittent bursattractor en- noise dependency of transient lifetimes might be better ob-
largement and with simulations of a Duffing oscillator or- servable in systems with considerably higher dimensions as
biting intermittently between two symmetric well§] (at- those mentioned above. However, recent investigations by
tractor merging Interestingly, no physical examples seem toLai [12] on noise dependency of chaos lifetime for a diffu-
be reported for the third type of crisigttractor destruction sively coupled logistic map lattice revealed only a negligible
leading to transient chapgsvhere chaos abruptly ceases giv- effect for this 20-dimensional spatiotemporal system. Based

or the logistic map, a growth parameter of 4.0001 was cho-
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on these results, he concludes that “the presence of noise 8o, the stationary statésonstant angular velocitys) can be
not advantageous in attempts to reduce the transient lifesbtained by distributing the water content of the buckets con-
time.” tinuously over the wheel’s rim:

We describe here results based on numerical simulations
of a Lorenzian water wheel with 12 buckets and thus 14
phase-space dimensions. Originally, this system was de-
signed by W.V. R. Malkus at MIT13] as a mechanic analog
of the rather abstract Lorenz equatidrig!] and helped to
convince the scientific community that deterministic chaos is
a reality in physical systems. We will show that noise effects
in this spatiotemporal system strongly depend on the system
parameters. At a first poinrA in parameter space, we will
confirm the above-cited null effect. At another pdithow-
ever, we will demonstrate for the first time a noise-induced
reduction of the transient lifetime exceeding four decades.

The model system investigated here was inspired by an
impressive techno-scientific masterpiece exhibited at the
Technorama[15] in Winterthur (Switzerland. This water
wheel was used for testing the numerical model based on the
following equations approximately describing the real sys-
tem:
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e J=1 is the relative part of the rim with nonempty buckets or
n-1 the fraction of time a single bucket contains water. Three
> wisine+ (2mi/n)] types of stable stationary solutions exist depending on the
o= =0 _ 2+0§ (1) maximum water content,,s during the filling process: the
e T trivial solution with v,,,s=0, the intermediate solution to be
discussed in more detail with<Ov,,s<1, and two overflow
6 1 0<p<1 solutionsF1 andF2 with vps=1. In the framework of the
M T theory of dissipative systems established by Prigoiré,

the two limits are termed “thermodynamic branch” and
The system consists ofi (here n=12) buckets spaced *“flux branch,” respectively. Stable flux solutions lie outside
equally around the rim of a wheel rotating around a horizonthe parameter range considered in this stUely: exists for
tal axis. The top bucket fills when passing under the faucet,=nr, andF2 exists in a small portion of parameter space
(8=1 if bucketi is positioned below the faucet an%=0  at 7;<877*/(nr,)~3.66. To investigate stability of the inter-
elsewherg that delivers water at a steady rate. The bucketsnediate solution, we use the continuous model together with
leak steadily and a friction proportional to angular veloeity the following wave ansatz for the filling densitf¢’ t):
dissipates energy. One arbitrarily chosen bucket defines the

angular positione and v; is the water content in bucket @’

normalized to (0=empty, =full). Key parameters of the ( ) Vimaxs| 1~ 203

system are the time constantg, =, and r, signifying the v(e't)= ; _ <

time for an empty bucket to be fillefwithout drain, the ;8 Sl?{:;wi ¢)h e'=2md

time for a full one to get emptywithout inflow), and the 4 i

friction time constant, respectively. The latter is setto 1.8 s

throughout this work. A last parameter/is the maximum w(t)=ws—e Ds sinfawg). 3
angular acceleration exerted from a single full bucgt- Vmaxs

tion set to zerpand disappears when time is normalized-to

As 7is set to 1 s for this study, Eq1) can be regarded as a The independent variablg’ is the angular position of a point _
dimensionless normalized form. Because of the direct re/on the rim measured from the top of the wheel. The ampli-
evance for the mechanic system in Winterthur, we prefer tdudee of the top filling density»(0t) is assumed to be small

give the results with physical units.

enough to allow terms proportional #3 to be neglected. The

Noise is coupled to the system as an additive torque nois&ystem will begin to oscillate at a critical frequenay
according to Blackburn, Gribech-Jensen, and Smftt0]. «  9iving the fastest growing. Inserting Eq.(3) into the con-
stands for the amplitude of noise agdire numbers from a tinuous form(integral instead of supnof Eq. (1) yields the

pseudorandom generator with homogeneous distribution oflynamical evolution fok:

the interval[ —1,1] as used by Franasz¢8]. A new random
number is used for every time stépt set to 0.2 s if not
stated otherwise. Several numerical simplifications not af-
fecting our main results were used to save computer time.
Analytical treatment of our model system is rather lim-
ited, though some approximations are possible and useful.

. 1
P sin(awst)zs[ —awofamgt)— P sin(awsgt)
2

1
- f(a,z‘},t)] (4)
T2
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noise. The results of 100100 randomly initialized tran-
sients of at most 200 000 time steps each are shown. De-
tected ordered states were the stationary states according to
Eq. (2), all symmetrically oscillating pendulum states with
different amplitudes, periodic rolling states with variable an-
gular velocity but without changes of sign and other periodic
states with periods shorter than 80 s. The latter were defined
by the maxima of the autocorrelation af exceeding 0.97.
Inspection of a number of these states revealed a rich variety
of symmetrical and asymmetrical periodic orbits together
with a minority of irregular rather than periodic orbits. If
none of the above-mentioned ordered states were detected
after 200 000 time steps, the asymptotic state at the respec-
1.4 tive parameter values is either chaotic or has a period longer
¥ = 7,/(n7,) than 80 s or the chaotic transient exceeds 40 000 s. In spite
, of the approximate character of the stability analysis and the
_FIG. 1. Solution types on thé-r, plane forn,=1.8 santh=12  q4e| simplifications, the stability limits for the stationary
without noise. Detected states are stationdight _graw, rolllng_ solutions according to Eq3)—(6) give good estimates for
(gray), pendulum(dark gray, and other states with short period . 50 g The critical valuad=1 for the stable flux solution

(white). The area with no detected short-periodic stélbésck) con- . .
tains chaos, states with long period and chaotic supertransients. Tr'1:el cannot be found by 'the described method because there is
vertical lines are stability limits according to Eq8)—(6). A andB fio overlap of the N haOt'.C attractor and the stableattractor
are the two points to be investigated here:Aatno noise depen- belov_v "9”1-?2- Simulations show, howe_v_er, that stable .
dency was found and &, very large noise dependency was found. solutions exist also for.{1§}<1.22. In.addltlon, the theoreti-
cal values forw, according to Eq(2) differ by less than 12%

from the simulated values in the whole portion of parameter

fisina’+f,cosa’

f(a,d,t)= . space shown in Fig. 1.
1— sin(2md) Point A(9=0.75, =40 9 is located in the region with
270 transient chaos decaying predominantly to the stationary
state, but to a lesser extent also to pendulum states with
a'=awdt different amplitudes. Randomly initialized simulatiofws in
the rangd —2, 2 s'], all 13 other variables in the maximum
1-coq(a+1)27w9} 1-coq(a—1)279} possible rangewith different additive torque noise ampli-
fi(a,9)= 2(a+1) 2(a—1) tudes were performed. The exponential distribution of the
duration of the chaotic transients reported by several authors
sinf(a+1)279}  sin{(a—1)279} [9-11] according to
@)= 2(a—1)
N(t) — Noe—t (In2)/T (7)

The growth rate for averaged over half a periodaw can
be shown to be equal to the instantaneous growth rate at timgbuld be confirmed. Herd; is the time needed for half of the
t; defined byawt; =7/2. For this time, point Eq(4) reads  N,=10" transients simulated for each noise level to find a
stationary statdtransitions to other detected periodic states
o= £ [(—1+f(a,9)}, were correctly taken into accoyntt could be shown with a
T2 consistency test based on the number of transitions in differ-
ent time intervals that the deviations from EJ) can be
1/2 [ 1-cog(a—1)279] explained by statistical fluctuations for all but two points

f(a,d)= 1-sin279) 279 a—1 represented in Fig. 2. These two points with poor consistency

represent about 20% of the ensemble of points for noise am-
1-cog(a+1)279] ]

plitudes below 41073 s72 In contrast, their statistical fre-
at+1 quency should be below 4%. The occurrence of ordered
states with long periods>80 9 would give erroneous re-
The critical frequencyawg and the respective exponentire  sults with exaggerated chaos lifetimes and might be a reason

©)

given by for the observed poor consistency. Figure 2 shows a mean
transient half lifetimeT =432+=39 h for the calculated “su-
N= i a—1+f(a,9)) 6) pertransients”(a term introduced by Ldi12] for very long
T2 4 e transient$ being independent of noise with amplitudes cov-

ering a range of more than three decades. This result is con-
Numerical evaluation gives stable intermediate stationary scsistent with the above-mentioned null effect reported by
lutions (A<<0) in the ranged=~[0.43, 0.64 with critical Blackburn, Gfmbech-Jensen, and Smith0]. The increase
a~1.7. of T for large noise amplitudes is due to orbits escaping from
Figure 1 shows an overview of the types of behaviorthe stationary states less than 800 s after capture. Such back-
found with the discrete model according to Ef) without  transitions from order to chaos can be described in principle
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FIG. 2. Time needed for half of fGhaotic transients to find a 0.01 0.10 1.00

stationary state for different noise amplitudeat pointA (9=0.75, 078 - ¥
7,=40 9. Error bars indicate- twice the standard deviation; circles
indicate points with poor consistendgee tex; the asterisk indi- FIG. 3. Average transition times from chaos to a stationary state
cates noiseless transients. for different 9 and for zero noise. Each dot was obtained by an

averaging of 16 transients starting at randomly chosen points in
by a combination of the Arrhenius law and the dissipation-phase space. Circles indicate very poor consistefsee texk
fluctuation theorenic?~ (temperaturg giving [3] points at upper figure boundary denote absence of transitions to
stationary states; error bars indicatetwice the standard deviation;
(8) straight line corresponds to E() with critical exponenty~3.9;
peaks result from transitions to pendulum states.

whereT’ is the average time for escape from the basin of a
guasistable periodic attractor caused by noise of amplitude The situation is reminiscent of a labyrinth not destroyed by
and AE is the minimum escape ener{#|. an additional door to the outside, but only made a little easier
In the vicinity of pointA, a scaling law as described by to escape from. The peaks in Fig. 3 arise from narrow
Grebogi, Ott, and York¢11] for low-dimensional maps and tongues of concurring pendulum states as shown in Fig. 1,
by Blackburn, Smith, and Edmundsh7] for a parametri- reducing transition probabilities to the stationary states. Fur-
cally damped pendulum, could be found also for the noisether, some points show very poor consistencies with(Eg.
free Lorenzian water wheel. The mean half lifetifieof ~ Only less than 1 in 10points having such low consistencies
transients from chaos to one of the two stationary states desould be explained by statistical fluctuations. Inspection of

T NeAE/lTZ

pends upon the system parametevia probabilities for transitions to the stationary states in differ-
ent time intervals revealed maxima for some intervals and
T~|9—9 7, 9 often a decay to low values for long times. Undetected long

periodic orbits might offer an explanation for this strange
where 9, denotes a critical value of, and y is the critical  effect.
exponent. Figure 3 shows Ed9) being satisfied over PointB (9=0.58, 7=10 9 is located in a region of pa-
roughly one decade d#—9.| and over four decades df, rameter space with complicated structure, where different
suggesting a critical exponent=3.9. These results support short periodic stable orbits coexist with the stationary states
the conjecture stated by Grebogi, Ott, and Yofk#&] thaty  and chaotic supertransients. A scaling law for the noise-free
tends to be larger for more-dimensional systems, being 0.5ystem according to E¢9) could not be found due to erratic
for one-dimensional maps with a quadratic maximum, andehavior of T(39). Repetition of calculations leading to Fig.
1,...,2 for two-dimensional maps. For the three- 1, but this time with high additive torque noise, showed a
dimensional parametrically damped pendulum, Blackburndramatically changed region around pdihtindicating noise
Smith, and Edmundsofi7] found y~1. What they pointed dependency. Analogously to Fig. 2, Fig. 4 was calculated
out for the pendulum, namely that transient chaos does nathowing very important noise dependency of transition times
arise out of a boundary crisis, seems to be true also for thtfom chaos to the stationary states. Three noise regimes with
Lorenzian water wheel. Rather, the stable attractors for thdifferent behavior of our model system were found, the most
stationary states are born 8¢ near the chaotic attractor and surprising being regimé; where transition times are re-
their basins partly overlap with it. However, we find it con- duced by more than three decades. All calculations gave dis-
fusing to speak about a “destroyed,” “remnant,” or tributions of transition times consistent with E(/) after
“ghost” strange attractof17] after the birth of the stable discarding the first 30 s. Deleting a small time interval after
attractor atd, . Rather, the dynamical structure called “cha- initialization was necessary to eliminate transients that
otic or strange attractor” changes smoothly and continuouslyeached the stationary state quicklypically within less
over a certain range in parameter space containing the critthan 10 $, without any indication of chaos, an observation
cal valued, . There, basins of quasistable attractors begin tanade also by Blackburn, Smith, and Edmund§bd] with
grow and overlap with increasing portions of the chaoticthe parametrically damped pendulum. For the 24 points with
attractor, thus reducing chaos lifetime according to ®). 0<0.6 s, an average of 41125 transients out of 10 000
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FIG. 5. Average over 1367 transients from chaos to the station-
ary state with positive angular velocity=1.05 s* in the presence
of noise with amplitudes=0.5 s 2. Transition roughly begins at
relative timeTg~—12 s and ends 8iz~—4 s. T indicates the last
zero crossing before capture into the stationary state; numbers 1-4
refer to Fig. 6.

FIG. 4. Time needed for half of fGhaotic transients to find a
stationary state for different noise amplitudeat pointB (=0.58,
71=10 9. Error bars indicatet twice the standard deviation; noise
regimes with different behavior are numbegg-B;.

(i.e., 4.11% were affected. The basins for the stationary
states withw~=+1.05 s occupy, therefore, 4.11% of phase-
space voluméfor w confined to the range-2 s 1) homoge-
neously filled with initial conditions. The probability for one
single randomly chosen variable to lie within these large
basins is 79.6% on the avera(je., 0.796%=0.041).

Regime B with very small noise(a<10’5 s ) displays

s 1. This regularity allowed a superposition of many transi-
tions (using the well defined last zero crossing polit for
adjustmeritglvmg an average transition as shown in Fig. 5.
Before transitions begin dig~—12 s, the different chaotic
and noisy transients average to almost zero. After the above-

noise-induced chaos as observed, for example, by FedcherX mentioned characteristic swing, a typical damped oscillation

firound the stationary state follows that belongs to the stable
et al.[8] with the Lorenz system based on analog and digita

. : . . . . attractor and is not part of the transition taking place in only
simulations. Without noise or with very weak noise, ran-_ out 8 s. To investioate svstem behavior Hear a two-
domly initialized transients get trapped relatively quickly dimensior{al lanell ?Nas d):afined in the 14-3rmensional
(typically within less than 10 hby different ordered states hase space F::ontainiﬁlgg and two arbitrarilv chosen svm-
with very long periods of the order of 18. Several of these P P y y

metrical points on the chaotic attractor. By choosing appro-
complicated periodic orbits could be detected using a two-
riate coordinates, the origin &f coincides withTg . Figure
dimensional plane in phase space to be discussed below. Ofie

cIearIy shows the fractal nature of the attraction basin for
transient with period 2583.0 s was found that almost resiste e stationary states on this plane. The time interval of 100 s
a noise amplitude of I s 2 (eight full periods were com- y plane.

pleted before the orbit turned chaotic; see Fig.WWe con- chosen for acceptance of a starting point to lie within the

sider these very long periodic orbits not as mere artifacts
only (they surely cannot be observed with real water wheels
because they depend on the integration time Atefhat has 1.5 [
to be understood as an additional system parameiat as
properties of the model system being perhaps of more gen-
eral importance.

Regime B with small noise(10 °<o<2x1072 s7?) is >
characterized by irregular and so far unexplained variations 3]
of transition times by a factor of three and might be worth =

being investigated in more detail. Sensitivity studies with § 0.5
(@]

reduced time steps showed important increases of transition
times. WithAt=0.1 s, roughly constant values around 4000
h were calculated and witht=0.03 s, no transitions to the
stationary states could be found in this low-noise region. The 0.0
integration time step has thus to be regarded as an additional e L
system parameter also in this region. 0.0 05 1.0 15
Regime B with large noise(0>>0.02 s?) has been most Coordinate x
carefully investigated in this study. To our knowledge, such

dramatic shortening of chaotic transients by noise is reported F|G. 6. Part of the attraction basin for the two stationary states
here for the first time. Inspection of many transitions fromon planell without noise as found by scanningdfwith 500x500
chaos to one of the two symmetric stationary states withpoints. The origin corresponds to poifig in Fig. 5; positive num-
noise amplituder=0.5 s 2 showed very clearly defined and bers indicate approximate starting points as indicated in Fig. 5;
abrupt phase changes always preceded by a characteristiegative numbers refer to the symmetric stationary state writh
“swing into the other direction” to a maximum ofw|~2  -1.05s™.
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FIG. 7. Points of the chaotic attractor with distances smaller F|G. 8. Probability of transitions to a stationary state within less
than d=0.05 from planell for noise amplitudes=0.03 S A than 40 s in the presence of torque noise with amplitid@.5 s 2.
periodic orbit stable with very small noise only<10"°s™) and  |solines for probability 0.3 roughly indicate the attraction basin
period 2583.0 s is indicated by poimts-D. The metrics chosen for  wjthout noise as shown in Fig. 6. Probabilities are based on 1000
IT and also for calculating distances @=(9%,9“.9"%,...9"9 transients calculated in each point of ax2%6 grid.
=(1/27,1/4,1...,1). The numbers indicate average recurrence
times (in secondp with standard deviations for the three regions smaller than the observed three orders of magnitude. This
around the three points chosen to defiihe discrepancy could be eliminated by calculating a generalized

basin for the stable attractors in the presence of noise. Figure
basin of one of the two stable attractors, revealed not to b8 shows transition probabilities of 3—10 % in the three cha-
critical for two reasons. First, transition times for trappedotic attractor regions shown in Fig. 7. By taking into account
trajectories starting on the portion Bf shown are below 4 s recurrence times of; =950+940, 65G-700, and 656660 s
as indicated in Fig. 6. Second, the lifetime of chaotic tran-for the three cloud¢from left to righ with noise amplitude
sients is well above 100 s as soon as a trajectory starting om=0.5 s 2 and probabilitiegp; =0.03, 0.1, and 0.05, respec-
IT is on the chaotic attractor. The attraction basin is thudively, an upper limit of T can be estimated by
astonishingly well defined as pointed out already by Black- 3
burn, Smith, and Edmundsofl7] for the parametrically T In2 -3 P 10
damped pendulum. Remarkably, the originlbfchosen as ' p_i:1 _| (10
the average beginning point of transitions does not belong to
the attraction basin, implying that the average transiengiving a correct order of <0.73 h(the simulatedr is 0.38
shown in Fig. 5 does not exigbeing a mere product of the h, see Fig. # Equation(10) gives an upper bound foF
averaging process because of other possible transients to the stable attractor not

To determine points of the chaotic attractor nearediifo “touching” II. Further, Eq(10) gives an explanation for the
a somewhat arbitrary threshold distartt@as to be defined. validity of the exponential transient length distribution ac-
The value ofd=0.05 according to the metrigg indicated in  cording to Eq.(7) in the presence of large noise; the constant
Fig. 7 resulted from a trial and error procedure and can béransition probability per time unit leading to E() is equal
supported by the following reasoning: the dominant proces$o the quotient of transition probabilities smoothly distrib-
for determining distances between successive points in phasged in phase space and recurrence times for trajectories on
space isAv;/At~—1/7; for 11 buckets giving steps of at the chaotic attractor to such probabilistic entry points to the
least 1#2x0.2/10~0.07. So, many points would get lost stable attractors.
with d<0.07. Comparison of Figs. 6 and 7 shows a very For lower noise levels, the validity of Eq7) seems to
small overlapping zone near coordinat@s38/1.3, which  rely on a different physical process, namely, an overlapping
can explain the observed time that it takes for half of theof parts of the chaotic attractor with the basin of the stable
chaotic transients to find the stationary state. Assuming thaittractors. In this situation, the transition probability might
one of the 2504 points of the respective cloud in Fig. 7 withbe defined by a geometrical fraction of overlap region and a
an average recurrence time of 580 s is located in the basin slitably defined characteristic volume in phase space circum-
the stable attractorg,~In(2)x2504x580 s=280 h. This is  scribing the chaotic attractor, as proposed also vaguely by
of the order of the observed 400 h. Blackburn, Smith, and Edmunds$m7]. The random-walk-

Surprisingly, the three clouds of points in Fig. 7 werelike behavior of trajectories on the chaotic attractdue to
almost unaffected by noise, merely slightly smeared out witlthe “butterfly effect”) would then produce the constant tran-
large noise amplitudes. The increased overlap between thation probability per unit of time. For a rathexompact
chaotic attractor and the basin of the stable attractors accorgtructureof the basin of the stable attractor similar to the one
ing to Fig. 6 produced by this noise effect could explain ashown in Fig. 6, a small noise dependency could arise from
reduction of chaos lifetime by a small factor only, by far a slightly smeared out chaotic attractor, leading to increased
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or decreased transition times as observed in re@dmd-or a  ticular, originally discovered and developed by Benzi,
highly dispersed attraction basias described by Blackburn Sutera, and othefd 8,19, has attracted increasing attention
et al. [10,17], however, small displacements of chaotic tra-in theoretical studies and applicatiof20,21]. However,
jectories due to noise cannot affect the probability of encounsome recently discovered noise effects are clearly not related
tering parts of the basin. The situation could be illustrated byto any kind of frequency matching@.g., noise-induced sta-
a rather strange variant of golf with a big number of invisible bilization [22]) but are sometimes nevertheless called SR by
holes distributed regularly over the area. The probability oftheir authors(e.g., noise-induced threshold crossirigs],
winning would not be affected by a storm or by a playernoise-induced oscillatiori24]). All these noise effects differ
being blind or drunk. Also, high noise amplitudes convertingsubstantially from the noise-catalyzed spontaneous emer-
the attraction basin into a smooth probability field might notgence of ordered structures out of chaos that are described
affect transient lifetimes for systems with a dispersed attrachere. Further, its mechanism is not a noise-induced escape
tion basin and so lead to the above-cited null effd€i. from a chaotic attractor and, therefore, might not be de-
The reported noise-induced shortening of chaotic transcribed with the above-mentioned general scaling [&jv
sients by roughly three decades could be increased by depplicable to noisy pre-crisis situations. Rather, noise trans-
creasing the integration time stég from 0.2 s to 0.1 and forms the basin of a stable order-attractor with fractal bound-
0.03 s. The sharp minimum d&f fell below 0.35 h to 0.16 aries into a generalized smooth probabilistic basin filling
and 0.12 h, respectively. Combined with the above statethrge portions of phase space that overlaps significantly with
increased transition times for small noise amplitu@tegime  the (practically unaffectedchaotic attractor. We conjecture,
B,) when time steps are reduced, the noise effect appears tberefore, that the noise effect might not be described by a
exceed four decades. As reduced time steps tend to increaseise-induced probability of escape from the chaotic attrac-
the effect of noise-induced shortening of chaotic transientstor as in Ref.[5], but rather by a noise-inducedapping
we expect the phenomenon presented here to be a physigaiobability of the stable order attractor. Finally, the effect
reality that will be encountered also with differefine- described here is, at least for our model system, independent
chanic, electronic, chemical, perhaps biologiaalal-world  of the way noise is coupled to the system. Instead of a cou-
systems. pling to the variablew as torque noise, coupling to the pa-
At very large noise amplitude@r>0.5 s, a sharp in- rameterz, simulating a noisy water supply gives qualita-
crease of mean transition times to the stationary states arisésely the same results.
from noise-induced transitions from the quasistable states The general characterization of systems and locations in
back to the chaotic attractdi.e., noise-induced chad8)), parameter space showing the large noise effect reported here
and can be describg@] in principle by an Arrhenius relation is at the moment an open question. Potential fields of interest
according to Eq(8), as stated above. might be biological evolution theory, cognition physiology,
The noise-induced chaos-order transitions described heeconomy, ecology, climate dynamics, and other research ar-
do not seem to be variants of other noise phenomena discoeas dealing with complex multistable systems subjected to
ered over the last decade. Stochastic resong®Bein par-  high noise levels.
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