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Noise-induced chaos-order transitions

Fritz Gassmann
Paul Scherrer Institute, General Energy Research, CH-5232 Villigen, Switzerland

~Received 12 September 1996!

Numerical simulations of the Lorenzian water wheel have been used to investigate the influence of stochastic
noise on the lifetimes of chaotic transients. Whereas, in one region of parameter space no noise dependency
could be detected, a shortening of the lifetimes of more than four decades was found in another region. This
large effect was produced by a significant modification of the attraction basin of a quasistable stationary state
rather than by affecting the chaotic orbits before the chaos-order transitions occurred. This novel phenomenon
of noise-induced chaos-order transitions is not related to stochastic resonance or other noise-induced effects.
@S1063-651X~97!06902-X#

PACS number~s!: 05.40.1j, 05.45.1b
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Complex systems often show ordered stationary or p
odic states after a shorter or longer chaotic transient w
initialized at random. As stochastic environmental or inter
noise is always present in natural systems, the combined
fect of chaos and stochastic noise determining the t
needed for a system to ‘‘find’’ an ordered state is of intere

Up to now, much work has been devoted to the inve
gation of noise-induced transitions from a given station
state over a barrier to another stationary state. Special a
tion was given to equilibrium systems governed by an ene
potential depending only on one or several space coordin
where a surrounding medium supplies the energy to c
this barrier, and, at the same time, exerts a drag on the
tem removing energy. Kramers@1# modeled this process by
Langevin equation in his pioneering paper in 1940 and c
ated a branch of theoretical physics still giving new resu
@2#. Analytical expressions for the transition rate can be u
to describe chemical reaction rates, the noise amplitude
ing defined by temperature.

More recently, theoretical and experimental studies d
with noise-induced escape from basins of different types
attractors of dissipative, nonlinear dynamical systems
from equilibrium in contrast to the above-mentioned esc
from a minimum in the potential energy. For Josephson ju
tions @3# and for the logistic map@4#, the mean escape tim
was found to decrease with increasing noise amplitude
cording to an Arrhenius law based on a minimum esc
energy. Especially for noise-free chaotic systems in a p
crisis situation, Sommerer, Ott, and Grebogi@5# derived a
scaling law for the characteristic times applicable to th
types of crises resulting in attractor destruction, attractor
largement or attractor merging. Further, they generalized
scaling law to precrisis situations where the addition of no
causes the same type of behavior as shown by the noise
systems in the postcrisis situation. This phenomenon
noise-induced crisis and the applicability of the general s
ing law was demonstrated with a magnetoelastic ribbon@6#
displaying noise-induced intermittent bursts~attractor en-
largement! and with simulations of a Duffing oscillator or
biting intermittently between two symmetric wells@5# ~at-
tractor merging!. Interestingly, no physical examples seem
be reported for the third type of crisis~attractor destruction
leading to transient chaos!, where chaos abruptly ceases gi
551063-651X/97/55~3!/2215~7!/$10.00
i-
n
l
ef-
e
t.
i-
y
n-
y
es
ss
s-

-
s
d
e-

lt
f
r
e
-

c-
e
t-

e
n-
is
e
ree
of
l-

ing rise to ordered behavior. Also, with a Duffing oscillato
but in a postcrisis situation, Franaszek and Fronzoni@7# in-
vestigated the effect of small noise on the chaos-chaos t
sitions ~‘‘multitransient chaos’’! between two asymmetric
wells. The times the trajectory spends in one of the t
regions were found to be strongly noise dependent. Fed
nia et al. @8# observed with analog electronic and compu
simulations the emergence of chaotic behavior when perio
attractors in the Lorenz model were disturbed by noise
phenomenon termed noise-induced chaos.

In contrast to all the above-mentioned investigations,
are interested here in noise dependency of transitions f
chaos to ordered~steady, stationary, or periodic! states for
postcrisis situations. Franaszek@9# showed for the logistic
map and the He´non map that chaotic evolution may be elo
gated by a maximum of about 20% when small-amplitu
noise is added and shortened with noise of larger amplitu
For the logistic map, a growth parameter of 4.0001 was c
sen allowing trajectories to escape to2`, regarded as an
attracting point. However, Blackburn, Gro”nbech-Jensen, an
Smith @10# found no noise dependency for a mathemati
pendulum with its point of suspension subjected to a h
monic vertical displacement, either in simulations or expe
mentally with an electronic analog. Numerical simulations
a parametrically damped pendulum also gave the same
effect. The authors@10# explain this absence of noise depe
dency with ‘‘the specific type of superposition that exists f
the attractor basins and the strange attractor remnant,’’ le
ing to basins of attraction for the three investigated perio
states ‘‘composed chiefly of points randomly peppered o
the ~u,du/dt! plane, together with some rather faint stru
tural features’’~u is the angular coordinate!.

After Grebogi, Ott, and Yorke@11#, higher-dimensional
systems tend to show more persistent chaotic transients
a more extended range of parameter space, indicated
larger values of the respective critical exponents. So, a
noise dependency of transient lifetimes might be better
servable in systems with considerably higher dimensions
those mentioned above. However, recent investigations
Lai @12# on noise dependency of chaos lifetime for a diff
sively coupled logistic map lattice revealed only a negligib
effect for this 20-dimensional spatiotemporal system. Ba
2215 © 1997 The American Physical Society
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2216 55FRITZ GASSMANN
on these results, he concludes that ‘‘the presence of noi
not advantageous in attempts to reduce the transient
time.’’

We describe here results based on numerical simulat
of a Lorenzian water wheel with 12 buckets and thus
phase-space dimensions. Originally, this system was
signed by W.V. R. Malkus at MIT@13# as a mechanic analo
of the rather abstract Lorenz equations@14# and helped to
convince the scientific community that deterministic chao
a reality in physical systems. We will show that noise effe
in this spatiotemporal system strongly depend on the sys
parameters. At a first pointA in parameter space, we wi
confirm the above-cited null effect. At another pointB, how-
ever, we will demonstrate for the first time a noise-induc
reduction of the transient lifetime exceeding four decade

The model system investigated here was inspired by
impressive techno-scientific masterpiece exhibited at
Technorama@15# in Winterthur ~Switzerland!. This water
wheel was used for testing the numerical model based on
following equations approximately describing the real s
tem:

ẇ5v

v̇5

(
i50

n21

n isin@w1~2p i /n!#

t2
2

v

t2
1sj ~1!

ṅ i5
d i
t0

2
1

t1
, 0<n i<1

The system consists ofn ~here n512! buckets spaced
equally around the rim of a wheel rotating around a horiz
tal axis. The top bucket fills when passing under the fau
~di51 if bucket i is positioned below the faucet anddi50
elsewhere! that delivers water at a steady rate. The buck
leak steadily and a friction proportional to angular velocityv
dissipates energy. One arbitrarily chosen bucket defines
angular positionw and n i is the water content in bucketi
normalized to 1~05empty, 15full !. Key parameters of the
system are the time constantst0, t1, and t2 signifying the
time for an empty bucket to be filled~without drain!, the
time for a full one to get empty~without inflow!, and the
friction time constant, respectively. The latter is set to 1.
throughout this work. A last parameter 1/t2 is the maximum
angular acceleration exerted from a single full bucket~fric-
tion set to zero! and disappears when time is normalized tot.
As t is set to 1 s for this study, Eq.~1! can be regarded as
dimensionless normalized form. Because of the direct
evance for the mechanic system in Winterthur, we prefe
give the results with physical units.

Noise is coupled to the system as an additive torque no
according to Blackburn, Gro”nbech-Jensen, and Smith@10#. s
stands for the amplitude of noise andj are numbers from a
pseudorandom generator with homogeneous distribution
the interval@21,1# as used by Franaszek@9#. A new random
number is used for every time stepDt set to 0.2 s if not
stated otherwise. Several numerical simplifications not
fecting our main results were used to save computer tim

Analytical treatment of our model system is rather lim
ited, though some approximations are possible and us
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So, the stationary states~constant angular velocityvs! can be
obtained by distributing the water content of the buckets c
tinuously over the wheel’s rim:

vs56Q~q!A t2n

t2t1

Q~q![S 2pq2sin~2pq!

2p D 1/2,
q5

t1
nt0

,1, nmax,s5
2p

n

1

vst0
,1,

~2!

qF151, nmax,s51,
t1
nt0

>1,

qF25
vst1
2p

,1, nmax,s51,

qT50, nmax,s50, t1<t0 .

q<1 is the relative part of the rim with nonempty buckets
the fraction of time a single bucket contains water. Thr
types of stable stationary solutions exist depending on
maximum water contentnmax,s during the filling process: the
trivial solution withnmax,s50, the intermediate solution to b
discussed in more detail with 0,nmax,s,1, and two overflow
solutionsF1 andF2 with nmax,s51. In the framework of the
theory of dissipative systems established by Prigogine@16#,
the two limits are termed ‘‘thermodynamic branch’’ an
‘‘flux branch,’’ respectively. Stable flux solutions lie outsid
the parameter range considered in this study:F1 exists for
t1>nt0 andF2 exists in a small portion of parameter spa
at t1,8p2t2/~nt2!'3.66. To investigate stability of the inter
mediate solution, we use the continuous model together w
the following wave ansatz for the filling densityn~w8,t!:

n~w8,t !5H nmax,sS 12
w8

2pq D
1« sin$a~vst2w8!%, w8<2pq
0, w8.2pq

v~ t !5vs2«
vs

nmax,s
sin~avst !. ~3!

The independent variablew8 is the angular position of a poin
on the rim measured from the top of the wheel. The am
tude« of the top filling densityn~0,t! is assumed to be sma
enough to allow terms proportional to«2 to be neglected. The
system will begin to oscillate at a critical frequencyavs
giving the fastest growing«. Inserting Eq.~3! into the con-
tinuous form~integral instead of sum! of Eq. ~1! yields the
dynamical evolution for«:

«̇ sin~avst !5«H 2avscos~avst !2
1

t2
sin~avst !

2
1

t2
f ~a,q,t !J ~4!
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55 2217NOISE-INDUCED CHAOS-ORDER TRANSITIONS
f ~a,q,t ![
f 1sin a81 f 2cosa8

12
sin~2pq!

2pq

a8[avst

f 1~a,q![
12cos$~a11!2pq%

2~a11!
2
12cos$~a21!2pq%

2~a21!

f 2~a,q![
sin$~a11!2pq%

2~a11!
2
sin$~a21!2pq%

2~a21!
.

The growth rate for« averaged over half a periodp/avs can
be shown to be equal to the instantaneous growth rate at
t1 defined byavst15p/2. For this time, point Eq.~4! reads

«̇5
«

t2
$211 f ~a,q!%,

f ~a,q![
1/2

12sin~2pq!/2pq H 12cos@~a21!2pq#

a21

2
12cos@~a11!2pq#

a11 J . ~5!

The critical frequencyavs and the respective exponentl are
given by

l5
1

t2
max
a

$211 f ~a,q!%. ~6!

Numerical evaluation gives stable intermediate stationary
lutions ~l,0! in the rangeq'@0.43, 0.64# with critical
a'1.7.

Figure 1 shows an overview of the types of behav
found with the discrete model according to Eq.~1! without

FIG. 1. Solution types on theq-t1 plane fort251.8 s andn512
without noise. Detected states are stationary~light gray!, rolling
~gray!, pendulum~dark gray!, and other states with short perio
~white!. The area with no detected short-periodic states~black! con-
tains chaos, states with long period and chaotic supertransients
vertical lines are stability limits according to Eqs.~2!–~6!. A andB
are the two points to be investigated here: atA, no noise depen-
dency was found and atB, very large noise dependency was foun
e

o-

r

noise. The results of 1003100 randomly initialized tran-
sients of at most 200 000 time steps each are shown.
tected ordered states were the stationary states accordin
Eq. ~2!, all symmetrically oscillating pendulum states wi
different amplitudes, periodic rolling states with variable a
gular velocity but without changes of sign and other perio
states with periods shorter than 80 s. The latter were defi
by the maxima of the autocorrelation ofv exceeding 0.97.
Inspection of a number of these states revealed a rich va
of symmetrical and asymmetrical periodic orbits togeth
with a minority of irregular rather than periodic orbits.
none of the above-mentioned ordered states were dete
after 200 000 time steps, the asymptotic state at the res
tive parameter values is either chaotic or has a period lon
than 80 s or the chaotic transient exceeds 40 000 s. In s
of the approximate character of the stability analysis and
model simplifications, the stability limits for the stationa
solutions according to Eqs.~3!–~6! give good estimates fo
t1>20 s. The critical valueq51 for the stable flux solution
F1 cannot be found by the described method because the
no overlap of the chaotic attractor and the stableF1 attractor
below q'1.22. Simulations show, however, that stableF1
solutions exist also for 1,q,1.22. In addition, the theoreti
cal values forvs according to Eq.~2! differ by less than 12%
from the simulated values in the whole portion of parame
space shown in Fig. 1.

Point A~q50.75, t1540 s! is located in the region with
transient chaos decaying predominantly to the station
state, but to a lesser extent also to pendulum states
different amplitudes. Randomly initialized simulations~v in
the range@22, 2 s-1#, all 13 other variables in the maximum
possible range! with different additive torque noise ampli
tudes were performed. The exponential distribution of
duration of the chaotic transients reported by several auth
@9–11# according to

N~ t !5N0e
2t ~ ln 2!/T ~7!

could be confirmed. Here,T is the time needed for half of the
N05104 transients simulated for each noise level to find
stationary state~transitions to other detected periodic stat
were correctly taken into account!. It could be shown with a
consistency test based on the number of transitions in dif
ent time intervals that the deviations from Eq.~7! can be
explained by statistical fluctuations for all but two poin
represented in Fig. 2. These two points with poor consiste
represent about 20% of the ensemble of points for noise
plitudes below 431023 s22. In contrast, their statistical fre
quency should be below 4%. The occurrence of orde
states with long periods~.80 s! would give erroneous re
sults with exaggerated chaos lifetimes and might be a rea
for the observed poor consistency. Figure 2 shows a m
transient half lifetimeT5432639 h for the calculated ‘‘su-
pertransients’’~a term introduced by Lai@12# for very long
transients! being independent of noise with amplitudes co
ering a range of more than three decades. This result is
sistent with the above-mentioned null effect reported
Blackburn, Gro”nbech-Jensen, and Smith@10#. The increase
of T for large noise amplitudes is due to orbits escaping fr
the stationary states less than 800 s after capture. Such b
transitions from order to chaos can be described in princ

he

.
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2218 55FRITZ GASSMANN
by a combination of the Arrhenius law and the dissipatio
fluctuation theorem@s2;~temperature!# giving @3#

T8;eDE/s2, ~8!

whereT8 is the average time for escape from the basin o
quasistable periodic attractor caused by noise of amplituds
andDE is the minimum escape energy@4#.

In the vicinity of pointA, a scaling law as described b
Grebogi, Ott, and Yorke@11# for low-dimensional maps and
by Blackburn, Smith, and Edmundson@17# for a parametri-
cally damped pendulum, could be found also for the noi
free Lorenzian water wheel. The mean half lifetimeT of
transients from chaos to one of the two stationary states
pends upon the system parameterq via

T;uq2qcu2g, ~9!

whereqc denotes a critical value ofq, andg is the critical
exponent. Figure 3 shows Eq.~9! being satisfied over
roughly one decade ofuq2qcu and over four decades ofT,
suggesting a critical exponentg'3.9. These results suppo
the conjecture stated by Grebogi, Ott, and Yorke@11# thatg
tends to be larger for more-dimensional systems, being
for one-dimensional maps with a quadratic maximum, a
1, . . . ,2 for two-dimensional maps. For the thre
dimensional parametrically damped pendulum, Blackbu
Smith, and Edmundson@17# found g'1. What they pointed
out for the pendulum, namely that transient chaos does
arise out of a boundary crisis, seems to be true also for
Lorenzian water wheel. Rather, the stable attractors for
stationary states are born atqc near the chaotic attractor an
their basins partly overlap with it. However, we find it co
fusing to speak about a ‘‘destroyed,’’ ‘‘remnant,’’ o
‘‘ghost’’ strange attractor@17# after the birth of the stable
attractor atqc . Rather, the dynamical structure called ‘‘ch
otic or strange attractor’’ changes smoothly and continuou
over a certain range in parameter space containing the c
cal valueqc . There, basins of quasistable attractors begin
grow and overlap with increasing portions of the chao
attractor, thus reducing chaos lifetime according to Eq.~9!.

FIG. 2. Time needed for half of 104 chaotic transients to find a
stationary state for different noise amplitudess at pointA ~q50.75,
t1540 s!. Error bars indicate6 twice the standard deviation; circle
indicate points with poor consistency~see text!; the asterisk indi-
cates noiseless transients.
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The situation is reminiscent of a labyrinth not destroyed
an additional door to the outside, but only made a little eas
to escape from. The peaks in Fig. 3 arise from narr
tongues of concurring pendulum states as shown in Fig
reducing transition probabilities to the stationary states. F
ther, some points show very poor consistencies with Eq.~7!.
Only less than 1 in 105 points having such low consistencie
could be explained by statistical fluctuations. Inspection
probabilities for transitions to the stationary states in diff
ent time intervals revealed maxima for some intervals a
often a decay to low values for long times. Undetected lo
periodic orbits might offer an explanation for this stran
effect.

PointB ~q50.58, t1510 s! is located in a region of pa
rameter space with complicated structure, where differ
short periodic stable orbits coexist with the stationary sta
and chaotic supertransients. A scaling law for the noise-f
system according to Eq.~9! could not be found due to errati
behavior ofT~q!. Repetition of calculations leading to Fig
1, but this time with high additive torque noise, showed
dramatically changed region around pointB, indicating noise
dependency. Analogously to Fig. 2, Fig. 4 was calcula
showing very important noise dependency of transition tim
from chaos to the stationary states. Three noise regimes
different behavior of our model system were found, the m
surprising being regimeB3 where transition times are re
duced by more than three decades. All calculations gave
tributions of transition times consistent with Eq.~7! after
discarding the first 30 s. Deleting a small time interval af
initialization was necessary to eliminate transients t
reached the stationary state quickly~typically within less
than 10 s!, without any indication of chaos, an observatio
made also by Blackburn, Smith, and Edmundson@17# with
the parametrically damped pendulum. For the 24 points w
s<0.6 s22, an average of 411625 transients out of 10 000

FIG. 3. Average transition times from chaos to a stationary s
for different q and for zero noise. Each dot was obtained by
averaging of 104 transients starting at randomly chosen points
phase space. Circles indicate very poor consistency~see text!;
points at upper figure boundary denote absence of transition
stationary states; error bars indicate6 twice the standard deviation
straight line corresponds to Eq.~9! with critical exponentg'3.9;
peaks result from transitions to pendulum states.
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55 2219NOISE-INDUCED CHAOS-ORDER TRANSITIONS
~i.e., 4.11%! were affected. The basins for the stationa
states withv'61.05 s21 occupy, therefore, 4.11% of phas
space volume~for v confined to the range62 s21! homoge-
neously filled with initial conditions. The probability for on
single randomly chosen variable to lie within these lar
basins is 79.6% on the average~i.e., 0.7961450.041!.

Regime B1 with very small noise~s,1025 s22! displays
noise-induced chaos as observed, for example, by Fedch
et al. @8# with the Lorenz system based on analog and dig
simulations. Without noise or with very weak noise, ra
domly initialized transients get trapped relatively quick
~typically within less than 10 h! by different ordered state
with very long periods of the order of 103 s. Several of these
complicated periodic orbits could be detected using a tw
dimensional plane in phase space to be discussed below.
transient with period 2583.0 s was found that almost resis
a noise amplitude of 1026 s22 ~eight full periods were com-
pleted before the orbit turned chaotic; see Fig. 7!. We con-
sider these very long periodic orbits not as mere artifa
only ~they surely cannot be observed with real water whe
because they depend on the integration time stepDt that has
to be understood as an additional system parameter!, but as
properties of the model system being perhaps of more g
eral importance.

Regime B2 with small noise~1025,s,231022 s22! is
characterized by irregular and so far unexplained variati
of transition times by a factor of three and might be wo
being investigated in more detail. Sensitivity studies w
reduced time steps showed important increases of trans
times. WithDt50.1 s, roughly constant values around 40
h were calculated and withDt50.03 s, no transitions to th
stationary states could be found in this low-noise region. T
integration time step has thus to be regarded as an addit
system parameter also in this region.

Regime B3 with large noise~s.0.02 s22! has been mos
carefully investigated in this study. To our knowledge, su
dramatic shortening of chaotic transients by noise is repo
here for the first time. Inspection of many transitions fro
chaos to one of the two symmetric stationary states w
noise amplitudes50.5 s22 showed very clearly defined an
abrupt phase changes always preceded by a characte
‘‘swing into the other direction’’ to a maximum ofuvu'2

FIG. 4. Time needed for half of 104 chaotic transients to find a
stationary state for different noise amplitudess at pointB ~q50.58,
t1510 s!. Error bars indicate6 twice the standard deviation; nois
regimes with different behavior are numberedB1–B3 .
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s21. This regularity allowed a superposition of many tran
tions ~using the well defined last zero crossing pointTZ for
adjustment! giving an average transition as shown in Fig.
Before transitions begin atTB'212 s, the different chaotic
and noisy transients average to almost zero. After the abo
mentioned characteristic swing, a typical damped oscillat
around the stationary state follows that belongs to the sta
attractor and is not part of the transition taking place in o
about 8 s. To investigate system behavior nearTB , a two-
dimensional planeP was defined in the 14-dimensiona
phase space containingTB and two arbitrarily chosen sym
metrical points on the chaotic attractor. By choosing app
priate coordinates, the origin ofP coincides withTB . Figure
6 clearly shows the fractal nature of the attraction basin
the stationary states on this plane. The time interval of 10
chosen for acceptance of a starting point to lie within t

FIG. 5. Average over 1367 transients from chaos to the stat
ary state with positive angular velocityv51.05 s21 in the presence
of noise with amplitudes50.5 s22. Transition roughly begins a
relative timeTB'212 s and ends atTE'24 s.TZ indicates the last
zero crossing before capture into the stationary state; numbers
refer to Fig. 6.

FIG. 6. Part of the attraction basin for the two stationary sta
on planeP without noise as found by scanning ofP with 5003500
points. The origin corresponds to pointTB in Fig. 5; positive num-
bers indicate approximate starting points as indicated in Fig
negative numbers refer to the symmetric stationary state withv5
21.05 s21.
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2220 55FRITZ GASSMANN
basin of one of the two stable attractors, revealed not to
critical for two reasons. First, transition times for trapp
trajectories starting on the portion ofP shown are below 4 s
as indicated in Fig. 6. Second, the lifetime of chaotic tra
sients is well above 100 s as soon as a trajectory startin
P is on the chaotic attractor. The attraction basin is th
astonishingly well defined as pointed out already by Bla
burn, Smith, and Edmundson@17# for the parametrically
damped pendulum. Remarkably, the origin ofP chosen as
the average beginning point of transitions does not belon
the attraction basin, implying that the average transi
shown in Fig. 5 does not exist~being a mere product of th
averaging process!.

To determine points of the chaotic attractor nearest toP,
a somewhat arbitrary threshold distanced has to be defined
The value ofd50.05 according to the metricsgi indicated in
Fig. 7 resulted from a trial and error procedure and can
supported by the following reasoning: the dominant proc
for determining distances between successive points in p
space isDn i /Dt'21/t1 for 11 buckets giving steps of a
least 111/230.2/10'0.07. So, many points would get los
with d!0.07. Comparison of Figs. 6 and 7 shows a ve
small overlapping zone near coordinates~0.38/1.3!, which
can explain the observed time that it takes for half of
chaotic transients to find the stationary state. Assuming
one of the 2504 points of the respective cloud in Fig. 7 w
an average recurrence time of 580 s is located in the bas
the stable attractors,T'ln~2!325043580 s'280 h. This is
of the order of the observed 400 h.

Surprisingly, the three clouds of points in Fig. 7 we
almost unaffected by noise, merely slightly smeared out w
large noise amplitudes. The increased overlap between
chaotic attractor and the basin of the stable attractors acc
ing to Fig. 6 produced by this noise effect could explain
reduction of chaos lifetime by a small factor only, by f

FIG. 7. Points of the chaotic attractor with distances sma
than d50.05 from planeP for noise amplitudes50.03 s22. A
periodic orbit stable with very small noise only~s,1026 s22! and
period 2583.0 s is indicated by pointsA–D. The metrics chosen fo
P and also for calculating distances isgi5(gw,gv,gn1,...,gn12)
5(1/2p,1/4,1,...,1). The numbers indicate average recurren
times ~in seconds! with standard deviations for the three regio
around the three points chosen to defineP.
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smaller than the observed three orders of magnitude. T
discrepancy could be eliminated by calculating a generali
basin for the stable attractors in the presence of noise. Fig
8 shows transition probabilities of 3–10 % in the three ch
otic attractor regions shown in Fig. 7. By taking into accou
recurrence times ofTi59506940, 6506700, and 6506660 s
for the three clouds~from left to right! with noise amplitude
s50.5 s22 and probabilitiespi50.03, 0.1, and 0.05, respec
tively, an upper limit ofT can be estimated by

T,
ln2

p
, p5(

i51

3
pi
Ti
, ~10!

giving a correct order ofT,0.73 h~the simulatedT is 0.38
h, see Fig. 4!. Equation~10! gives an upper bound forT
because of other possible transients to the stable attracto
‘‘touching’’ P. Further, Eq.~10! gives an explanation for the
validity of the exponential transient length distribution a
cording to Eq.~7! in the presence of large noise; the consta
transition probability per time unit leading to Eq.~7! is equal
to the quotient of transition probabilities smoothly distri
uted in phase space and recurrence times for trajectorie
the chaotic attractor to such probabilistic entry points to
stable attractors.

For lower noise levels, the validity of Eq.~7! seems to
rely on a different physical process, namely, an overlapp
of parts of the chaotic attractor with the basin of the sta
attractors. In this situation, the transition probability mig
be defined by a geometrical fraction of overlap region an
suitably defined characteristic volume in phase space circ
scribing the chaotic attractor, as proposed also vaguely
Blackburn, Smith, and Edmundson@17#. The random-walk-
like behavior of trajectories on the chaotic attractor~due to
the ‘‘butterfly effect’’! would then produce the constant tra
sition probability per unit of time. For a rathercompact
structureof the basin of the stable attractor similar to the o
shown in Fig. 6, a small noise dependency could arise fr
a slightly smeared out chaotic attractor, leading to increa

r FIG. 8. Probability of transitions to a stationary state within le
than 40 s in the presence of torque noise with amplitudes50.5 s22.
Isolines for probability 0.3 roughly indicate the attraction bas
without noise as shown in Fig. 6. Probabilities are based on 1
transients calculated in each point of a 25325 grid.
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55 2221NOISE-INDUCED CHAOS-ORDER TRANSITIONS
or decreased transition times as observed in regimeB2. For a
highly dispersed attraction basinas described by Blackbur
et al. @10,17#, however, small displacements of chaotic tr
jectories due to noise cannot affect the probability of enco
tering parts of the basin. The situation could be illustrated
a rather strange variant of golf with a big number of invisib
holes distributed regularly over the area. The probability
winning would not be affected by a storm or by a play
being blind or drunk. Also, high noise amplitudes converti
the attraction basin into a smooth probability field might n
affect transient lifetimes for systems with a dispersed attr
tion basin and so lead to the above-cited null effect@10#.

The reported noise-induced shortening of chaotic tr
sients by roughly three decades could be increased by
creasing the integration time stepDt from 0.2 s to 0.1 and
0.03 s. The sharp minimum ofT fell below 0.35 h to 0.16
and 0.12 h, respectively. Combined with the above sta
increased transition times for small noise amplitudes~regime
B2! when time steps are reduced, the noise effect appea
exceed four decades. As reduced time steps tend to incr
the effect of noise-induced shortening of chaotic transie
we expect the phenomenon presented here to be a phy
reality that will be encountered also with different~me-
chanic, electronic, chemical, perhaps biological! real-world
systems.

At very large noise amplitudes~s.0.5 s22!, a sharp in-
crease of mean transition times to the stationary states a
from noise-induced transitions from the quasistable sta
back to the chaotic attractor~i.e., noise-induced chaos@8#!,
and can be described@3# in principle by an Arrhenius relation
according to Eq.~8!, as stated above.

The noise-induced chaos-order transitions described
do not seem to be variants of other noise phenomena dis
ered over the last decade. Stochastic resonance~SR! in par-
te
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ticular, originally discovered and developed by Ben
Sutera, and others@18,19#, has attracted increasing attentio
in theoretical studies and applications@20,21#. However,
some recently discovered noise effects are clearly not rel
to any kind of frequency matching~e.g., noise-induced sta
bilization @22#! but are sometimes nevertheless called SR
their authors~e.g., noise-induced threshold crossings@23#,
noise-induced oscillations@24#!. All these noise effects differ
substantially from the noise-catalyzed spontaneous em
gence of ordered structures out of chaos that are descr
here. Further, its mechanism is not a noise-induced esc
from a chaotic attractor and, therefore, might not be
scribed with the above-mentioned general scaling law@5#
applicable to noisy pre-crisis situations. Rather, noise tra
forms the basin of a stable order-attractor with fractal bou
aries into a generalized smooth probabilistic basin filli
large portions of phase space that overlaps significantly w
the ~practically unaffected! chaotic attractor. We conjecture
therefore, that the noise effect might not be described b
noise-induced probability of escape from the chaotic attr
tor as in Ref.@5#, but rather by a noise-inducedtrapping
probability of the stable order attractor. Finally, the effe
described here is, at least for our model system, indepen
of the way noise is coupled to the system. Instead of a c
pling to the variablev as torque noise, coupling to the pa
rametert0 simulating a noisy water supply gives qualit
tively the same results.

The general characterization of systems and location
parameter space showing the large noise effect reported
is at the moment an open question. Potential fields of inte
might be biological evolution theory, cognition physiolog
economy, ecology, climate dynamics, and other research
eas dealing with complex multistable systems subjected
high noise levels.
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