
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Car-following model of multispecies systems of road traffic
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A speed-adjustment car-following model is extended to systems of traffic where there is a variety of vehicle
response times and speed-headway relationships. This is proposed as a model of the interactions between cars
and trucks on single-lane roads where there is no overtaking, and some of its properties are derived. First, we
make a distinction between temporal stability on a circular road and spatial stability on a straight road and go
on to derive criteria for linear stability in each case. The propagation and dispersion of a linear disturbance
wave is studied, and we also compare the nonlinear evolution of both single- and multiple-species systems on
circuitous and straight roads. When the speed-headway relationship of all vehicles is given by the nonlinear
law proposed by Bandoet al. @Phys. Rev. E51, 2 ~1995!#, we find that for models of car-truck systems, as for
systems consisting of one type of vehicle only, there is a range of equilibrium headways for which the system
is linearly unstable. The size of this range increases with the proportion of the more unreactive vehicle type,
trucks, in the population of vehicles. Computer simulations verify the analytical results and show the nonlinear
development of disturbances when the system is linearly unstable. It is demonstrated that slow vehicles in a
platoon moving at close to their top speed can damp nonlinear congestion waves.@S1063-651X~97!06002-9#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

With roads becoming more congested, the need to im
ment effective traffic control measures is becoming grea
all the time. Such measures include on-ramp meter
speed-limit control, and imposing tolls. For these to be
fective, we require accurate models of the flow of traffi
Much work in the past has centered on models in which
vehicles have the same characteristics, such as response
and top speed. However, it is seen that that variety of veh
characteristics is an important factor in determining, amo
other things, the stability of steady traffic flow and the prop
gation of congestion waves.

There are several approaches to the problem of mode
traffic flow. On open roads, particularly motorways, mo
work has concentrated on~a! continuummodels, where indi-
vidual vehicles are smoothed out into continuous veloc
and density fields, and~b! car-followingmodels, where the
behavior of each vehicle is linked to that of the vehicle
front by a mathematical rule~a ‘‘car-following law’’ !.

The understanding of certain features of traffic flows h
improved with the advent of faster computers. An exam
of such a feature is the phenomenon of congestion wa
These waves occur when flow in the laminar regime~all
vehicles traveling at a constant speed! exceeds the capacit
of the driver-vehicle-road system, and successive overb
ing of following vehicles leads to an instability. Congestio
waves are generally nonlinear, which makes their ex
analysis difficult.

Increased computational power has also made poss
the recent development ofcellular automaton models
~closely related to car-following models! in which the road is
discretized into two-state cells and vehicles progress in
dom jumps. Like the other two models, cellular automata
551063-651X/97/55~3!/2203~12!/$10.00
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predict phenomena analogous to those seen on real roa
From the point of view of consistency of the differe

types of models, it is desirable that all three mentioned
equivalent, at least in suitable limits. It is shown in the A
pendix that car-following and continuum models are equi
lent in the limit of slowly varying traffic density along th
road. In what follows, we deal only withsingle-laneflows
with no overtaking, such as might be found when lanes o
motorway close due to roadwork. Lane changing tends
spread and disperse congestion waves, an effect that has
studied in@1#.

We wish to model the effect of having variety in the b
havioral characteristics of vehicles in a traffic stream. F
ease of analysis, we adapt a simple velocity-adjustment
following model. Whereas continuum models implicitly tak
into account a degree of variation in vehicle type, since
length scale of variations in the density and velocity field
assumed to be large compared to vehicle spacing, multi
cies systems have not been widely studied in the contex
car-following models. In the latter model, each vehicle h
associated with it a sensitivity parameter and a relations
describing its desired speed as a function of its headw
When we come to specify this relationship, for the purpo
of computer simulation in Sec. V, we use the function intr
duced in@2#, namely,

U~b!5tanh~b22!1tanh2, ~1!

whereb is the headway. This speed-headway relationship
plausible in that the desired speed is increasing with he
way, from zero, when the headway is zero, to a finite po
tive value when the headway becomes large.

First, we present the results on linear stability derived
Bandoet al. in @2#, for the case of a single-species system
a circular road. The model is then extended in a natural w
2203 © 1997 The American Physical Society
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tomultispeciessystems, where the sensitivity parameters a
the equilibrium speed-headway relationships are specifi
each vehicle. In studying the latter system, we assess
differences between circular road and straight road syst
to establish whether or not periodic boundary conditions
fect stability artificially. In the language of Hermanet al. @3#,
we consider theasymptotic stabilityof the straight road sys
tem, where the growth or decay of perturbations takes p
in spacerather than intime, which is the case for the circula
system.

Having established a framework for studying the behav
of general multispecies systems, we go on to discuss
greater depth the behavior of a particular two-species sys
as a model of cars and trucks. We find that increasing
population of unreactive trucks in a car-truck system tend
make the system less stable and cause traffic jams.

We then study numerically the evolution of nonline
congestion waves, first in the single-species case, and
influence of periodic boundary conditions on it. We go on
investigate the effect of trucks on their propagation. Of p
ticular interest in this respect is the way in which vehic
moving at close to their top speed in a platoon can da
nonlinear congestion waves, and a demonstration of this p
nomenon is shown. Finally, as a step towards a more real
view of road traffic, we perform some numerical simulatio
of systems where there is a random variation of sensiti
parameters and/or top speeds among the vehicles and
make qualitative remarks concerning the progress of con
tion waves in each case.

II. DESCRIPTION OF THE MODEL

In the velocity-adjustment model proposed by Ban
et al. @2#, the acceleration of each vehicle is defined to
directly proportional to the difference between its actu
speed and its ‘‘desired speed,’’ a function of its headway

ẍi5a„U~xi112xi !2 ẋi…. ~2!

xi is the position of cari , with the vehicles numbered so th
vehicle i follows vehiclei11. The setting for their model is
a circuit of lengthL, with n vehicles on it, so that vehicle
N follows vehicle 1. In addition, the dual limitL,n→` is
taken, with the vehicle densityn/L finite. The function
U(bi) of the headwaybi5xi112xi defines the desired spee
of vehicle i . The constant of proportionalitya is called the
sensitivityparameter, with an associated equilibration time
order 1/a, so thata can be thought of as a reciprocal reacti
time of the vehicles.

Bando et al. showed that the constant-speed state o
single-species system on a circuit is linearly stable if a
only if

2

a
U8~b!<1, ~3!

whereb5L/n, so that systems of vehicles for whicha is
small enough are unstable and that groups for whicha is
large enough are stable. Clearly, the stability depends
traffic density also. For their choice of speed-headway re
tionshipU(b)5tanh(b22)1tanh2, they found a ‘‘window of
instability’’ b1<b<b2, in which the constant-speed state
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unstable to small perturbations. In fact, the attractor in t
parameter range is a nonlinear traveling-wave solution.

We now consider an extension of the model tomultispe-
ciessystems, in which the vehicles are nonidentical:

ẍi5ai„Ui~xi112xi !2 ẋi…, ~4!

where the subscripti on the parametera and the function
U(b) renders them specific to vehiclei . In what follows, we
will refer to vehicles with relatively high values ofa as cars
and to those with low values ofa as trucks. We expect to
find that trucks in a group of cars will act to make the syst
more unstable and that cars in a group of trucks will
slaved to the trucks.

When we come to perform linear stability analysis, w
will require a dynamically stationary state about which w
can linearize, in which all vehicles are moving at the sa
speed. We first define the ‘‘least top speed’’ of the set
vehicles:

V5 inf
i
sup
b
Ui~b!. ~5!

For n cars on a circular road of lengthL, we have the con-
dition that ( i51

n bi5L, whereL is finite. We make the as
sumption thatUi(b)50 whenb50 and thatUi(b) is strictly
increasing inb. This is consistent with the speed-headw
relationshipU(b)5tanh(b22)1tanh2 proposed by Band
et al. in @2# and discussed in Sec. V. Suppose we fix t
speed of all vehicles to bev, satisfying Eq.~6!. As v is
increased from 0 to the least top speedV, the sum of the
headways increases from 0 to an arbitrarily large value,
that there must exist a speedv such that the headways sum
L.

We will consider later the effect of removing period
boundary conditions by analyzing the linear stability of
multispecies system on a straight road, where the lead
hicle in a platoon can be controlled. There is then a family
dynamically stationary states

Ui~bi !5v, ~6!

where v can take any value between 0 andV. First, we
analyze the linear stability of the multispecies system o
circuit in order to see how the stability properties found
Bando et al. change when we have two or more types
vehicles interacting on the circuit.

III. ANALYSIS OF A MULTISPECIES SYSTEM
ON A CIRCUITOUS ROAD

The governing system of differential equations is seco
order in time, so we must introduce perturbations to both
position and speed of each vehicle. The perturbed quant
are xi5xi

01vt1j i(t) and v i5v1h i(t), wherexi
0 are the

vehicles’ initial positions andj i(t) andh i(t) are small time-
dependent perturbations. Linearizing Eq.~4!, we obtain

S j̇

ḣ
D 5S 0 I

A DD S j

h D [M S j

h D , ~7!

where I is the n3n identity matrix,
D5diag$a1 ,a2 , . . . ,an%, and
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A5S 2a1U18~ b̄1! a1U18~ b̄1! 0

0 2a2U28~ b̄2! a2U28~ b̄2! 0

. . . . . . . . .

. . . . . . . . .

. . .

0

anUn8~ b̄n! 0 . . . . . . 2anUn8~ b̄n!

D . ~8!
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b̄i are the unperturbed headways. The problem is now a
of coupled first-order equations, and the solution is

S j

h D 5(
j51

2n

cje
zj tS j j

h j D ~9!

for an arbitrary initial condition

S j0

h0
D 5(

j51

2n

cj S j j

h j D , ~10!

(j j ,h j )T are the eigenvectors ofM , and zj are the corre-
sponding eigenvalues. For linear stability to a general per
bation, we require that the real part ofzj is negative, for all
j . Note that each eigenvector will have an associated
quency of oscillation~if zj is complex, which it is in gen-
eral!, so that afinite numberof modes is set up.

We require an equation for the eigenvaluesz. From Eq.
~7! we get the pair of equationszj5h and zh5Aj1Dh.
These equations combine to formz2h5Ah1zDh, so that
we are looking for solutions to det(A1zD1z2I )50. Define
b i5aiUi8(b̄i). The characteristic equation is then

f ~z![)
i51

n

~b i1aiz1z2!2)
i51

n

b i50. ~11!

Commutativity of the products means that stability of syst
is independent of the ordering of vehicles around the circ
if we assume that the behavioral parameters of each veh
depend only on the vehicle in question.

The number of roots in Rez,0 is given by the integral@4#

n25
1

2p i EG

dz f8~z!

f ~z!
, ~12!

where the contourG runs up the imaginary axis from2 i` to
1 i` and is closed by an counterclockwise semicircle at
finity in the left half plane.

It can be shown that the contribution from the semicir
is n ~this is true for all polynomialsf of degree 2n) and that
the contribution from the imaginary axis is the winding num
ber of the contourg around the origin, whereg is defined as

g5$z5 f ~ iv!:vPRe%. ~13!
et
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Consider the contourg8:

g85$z5g~ iv!:vPRe%, ~14!

whereg(z)[) i51
n (b i1aiz1z2)[ f (z)1) i51

n b i . The con-
tourg8 is precisely the contourg, shifted to the right through
a distance) i51

n b i . Their winding numbers will be the same
unlessg8 has any intersections with the positive real axis
the interval (0,) i51

n b i).
We consider the magnitude ofg( iv) asv varies, using

the equation

ug~ iv!u5A)
i51

n

@~b i2v2!21ai
2v2#. ~15!

This function is not necessarily monotonically increasi
with v2, so it is possible that there exist values ofv for
which ug( iv)u,ug(0)u and argg( iv)52mp for some inte-
germ ~a necessary and sufficient condition for instability!.

Now the function argg( iv) is given by

argg~ iv!5(
i51

n

arg~b i2v21 iaiv!. ~16!

Each term in the sum is strictly increasing from2p to p
and takes the value 0 atv50. If we letn become large, then
for v5O(1), argg( iv) increases by 2p for a O(1/n)
change inv. We now consider lnug(iv)u, which is just the
logarithm of the product in Eq.~15!:

lnug~ iv!u5
1

2(i51

n

ln@~b i2v2!21ai
2v2#. ~17!

Around a quadratic minimum of lnug(iv)u, anO(1/n) change
in v ~one turn around the origin! leads to anO(n/n251/n)
change in lnug(iv)u. So if n is large enough, and if for som
vmin , lnug(ivmin)u is strictly less than lnug(0)u, then lnug(iv)u
will be less than lnug(0)u for all v on the same turn aroun
the origin. This guarantees an intersection ofg( iv) with the
positive real axis to the left ofg(0).

Therefore, ifn is large and there exists a real value
v for which ug( iv)u,ug(0)u, the system is linearly unstable
We have effectively approximated the discrete spectrum
excited modes by a continuum, in the limitn→`.
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FIG. 1. Proportion of cars required to stabiliz
a car-truck system.atruck50.8 andL5200.0. The
curves correspond toacar51.67, 2.5, 5, and̀
reading from top to bottom.
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Unfortunately, the equationug( iv)u5ug(0)u is not solv-
able analytically~except for the trivial solutionv50), so we
resort to a numerical solution, in the case of a two spec
system, where each type has a different acceleration pa
eter but the same equilibrium speed-headway func
U(b). We can compute the derivative (d/dv)lnug( iv)u eas-
ily, in order to find the minimum values of lnug( iv)u. The
result is

d

dv
lnug~ iv!u5vS nC@~aC

222bC!12v2#

~bC2v2!21aC
2v2

1
nT@~aT

222bT!12v2#

~bT2v2!21aT
2v2 D , ~18!

wherenC andnT are the number of vehicles of typesC ~cars!
and T ~trucks!, respectively. To find the minimum o
lnug( iv)u we look at its turning points: the appropriate va
ues ofv are given by the roots of Eq.~18!. When expanded
the numerator is of the formvp(v2), wherep is a cubic
polynomial. The largest real rootv* of this cubic can be
found numerically to any desired accuracy using
Newton-Raphson method, and the stability of the system
determined accordingly as lnug( iv* )u" lnug(0)u ~require
greater for stability!. Hence, for this type of two-species sy
tem we can decide with certainty whether or not a giv
system is stable.

In fact, we can find asufficientcondition for stability or
instability by analytical means. We note th
(d/dv)lnug( iv)u50 at v50. Therefore, if
(d2/dv2)lnug( iv)u,0 atv50, there must be a minimum o
lnug( iv)u with value less than lnug(0)u, which implies insta-
bility.

This condition can be translated into parameter space
ing Eq. ~17!: if ( i51

n (ai
222b i)/b

2,0, then the system is
linearly unstable. Using the definition ofb i , a sufficient con-
dition for instability is
s
m-
n

e
is

n

s-

(
i51

n
1

Ui8~ b̄i !
2 S 12

2

ai
Ui8~ b̄i ! D,0; ~19!

N.B. This condition guarantees instability, but even if i
equality~19! does not hold, there may be other points on t
graph ofug( iv)u at which instability can arise.

For the case of only one species of vehicle, the ab
analysis is exact; that is, we do not need to assumen is large.
The condition for instability is necessary and sufficient a
can be written

12
2

a
U8~ b̄!,0, ~20!

which is just that obtained in@2#. In some sense, the overa
stability of the mixed system is governed by a weight
mean of ‘‘stability parameters’’ corresponding to the v
hicles in that system.

Car-truck system: Semianalytic results

We use the numerical scheme detailed above to find
stability region innC,T space. For all values ofaC,T tested,
this region was the same as that derived from Eq.~19!. We
present graphs~Fig. 1! depicting the proportion of cars
rC5nC /n required to stabilize a population of cars an
trucks (a50.8) for various values of the car sensitivity p
rameter. The road lengthL is 200, and we give all vehicles
the same desired speed-headway functionU(b), so that the
vehicles are evenly spaced around the track w
U8(b)51.

For n,66, the system is always stable, independently
the ratiorC : all vehicles travel at their free-flow speed, b
with large headways. The same is true forn.206, but this
time, the system is stable because every vehicle is trave
slowly enough to offset the effect of small headways. In t
range ofn for which a population of trucks alone would b
unstable (66<n<206), the replacement of some trucks b
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the same number of cars often, but not always, stabilizes
system.

Cars can be thought of as being more responsive and
a damping influence on perturbations. Note that even in
limit of large sensitivity parameter, we require a fairly larg
proportion of cars before the system stabilizes~up to 50%
cars!. In the limit acars→` with atrucks fixed at 0.8, the equa
tion of motionẋi5Ui(bi) must hold to avoid singularities in
Eq. ~4!. However, such ultrareactive cars do not ‘‘absor
disturbances, as might be expected. The cars are effect
‘‘slaved’’ to the trucks and behave passively. We now mo
onto a straight road to see the effects, if any, of removing
periodic boundary conditions associated with the circuit.

IV. ANALYSIS OF A MULTISPECIES SYSTEM
ON A STRAIGHT ROAD

On a circuitous road, only a finite number of oscillato
modes can be set up. However, this spectrum may be
proximated as a continuum in the limit of a large number
vehicles. On a straight road, we analyze the stability o
platoon of cars. We assume that the behavior of the lead
vehicle can be controlled for all time, and consider the
sponse of the system to small, pure harmonic disturbance
arbitrary frequencyv. Since we are considering the line
stability of the system, the response to each frequency c
ponent of a general time-dependent disturbance can be
sidered separately.

We consider small perturbations about the dynamica
stationary state. Vehiclei is following vehiclei11, with the
equation of motion

ẍi5ai„Ui~xi112xi !2 ẋi…. ~21!

Linearizing, so thatxi5xi
01vt1e i , we obtain

1

ai
ë i1 ė i1Ui8~ b̄i !e i5Ui8~bi !e i11 , ~22!

where, as for the circuitous road,b̄i is the unperturbed head
way between vehiclesi and i11. Now we decompose th
perturbations into components of different frequencies. W
ing e i5d ie

ivt and using the shorthandUi8 to represent
Ui8(b̄i), we see that

d i5
d i11

S 12
v2

aiUi8
D 1

iv

Ui8

. ~23!

In passing from vehiclei11 to the following vehiclei , the
perturbation is amplified by a factor

g i5
1

AS 12
v2

aiUi8
D 21S v

Ui8
D 2
, ~24!

so the disturbance grows if and only ifg i.1. In that case,
we say that frequencyv disturbances areasymptotically un-
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stable @3# in passing from vehiclei11 back to vehiclei .
From Eq.~24!, it can be shown that only frequencies in th
range 0,v,(1/Ui8)A(2/ai)Ui821 are amplified. In the case
(2/ai)Ui821<0, all frequencies are attenuated.

The overall amplificationg of frequencyv from the lead-
ing vehicle to vehicle 1 is computed by taking the produ
) i51
n g i . We say that a group ofn of vehicles is asymptoti-

cally stable to disturbances of frequencyv if and only if

g~v!5)
i51

n

g i,1 ~25!

since if a line of traffic is made up of repeating units
permutations of this group, disturbances of frequencyv will
grow down the line of vehicles.

The parallels with the circular road system can now
seen. In that case~assuming a large enough number of v
hicles to be able to approximate the spectrum of excited
quencies as a continuum!, the system is stable if and only i
there exists a solution for positive, realv of the inequality
ug( iv)u<ug(0)u @see Eq.~15!#. This is exactly the same in
equality as Eq.~25!, but with one crucial difference in state
ment. In the case of the circular road, we ask if there areany
solutions to the inequality, but for a straight road, we ask
the inequality is satisfied for aprespecifiedv. The problem
set on a circular road is thus about temporal stability to
bitrary initial spatial disturbances, whereas the problem
on a straight road is about spatial stability to temporal~on-
going! disturbances.

It is perhaps surprising at first sight that the interaction
disturbance waves on a circuit~something that cannot hap
pen on a straight road! appears to have no effect on th
stability of the system. However, the analysis for a circ
assumes a large number of vehicles, so that decaying di
bance waves will have practically disappeared before t
complete one circuit and growing waves will have beco
nonlinear. It turns out that wave interactions are importan
the evolution of the system in the nonlinear regime, and
that setting, the system’s behavior depends strongly
whether we have a circuitous or a straight road.

In addition to growth or decay in its amplitude, the di
turbance suffers a phase lag of

f i5arctan
v

Ui82
v2

ai

~26!

in going from vehiclei11 to vehiclei , from which the time
lag is derived by dividing byv,

t i5
1

w
arctan

v

Ui82
v2

ai

. ~27!

In this discrete setting, we define the wave speed at posi
i as
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FIG. 2. Amplification factor against backwar
propagation speed.b52 and U8(b)51. The
curves are parametrized by disturbance freque
v and only growing disturbances are represent
From left to right,a increases from 0.2 to 1.6 in
increments of 0.2.
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cui-
ci :52
bi
t i
. ~28!

We see from this equation that different frequencies
transmitted backward relative to the traffic at differe
speeds. For largev, this speed asymptotes to2biv/p.
However, this occurs in the region of attenuatedv, so that
such fast waves are never observed over more than se
vehicles. For small v the asymptotic result is
ci52biUi8(bi)1o(v2), so that low-frequency disturbance
travel at a speed independent of the sensitivity parame
This is because the period of oscillations is much grea
than the time scale for equilibration (1/ai), so the vehicles
are in quasiequilibrium.

The most unstable modev*5AaiUi8(bi)2ai
2/2, defined

only when 0<ai /Ui8<2, travels backward with speed

c*52
bv*

arctan~2v* /ai !
~29!
e
t

ral

r.
r

and has an associated amplification factor

g i*5
1

A ai
Ui8

2
1

4 S aiUi8
D 2
. ~30!

The plots presented~Fig. 2! are of amplification per vehicle
(g) against backward wave speed, for various values ofa in
the range (0.2,1.6), for a single-species system wh
bi52.0 andUi8(bi)51.0.v is used as the parameter for ea
curve, and only growing modes (g i>1) are displayed. There
is clearly a range of wave speeds, so disturbances spread
‘‘wedge’’ in the space-time plane and the amplitude of t
disturbance experienced by a given vehicle increases
then decreases smoothly in time. These properties have
confirmed numerically. We now present the results of so
numerical simulations that verify the results on stability a
propagation of disturbances presented above, both for cir
tous and for straight roads.
of
-

FIG. 3. Perturbations relative to trajectories
vehicles in thex-t plane. The arrangement of ve
hicles ~left to right! is TTT•••TCCC•••C.
L5200,nC520, nT548, aC51.5, andaT50.8.
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FIG. 4. Perturbations relative to trajectories
vehicles in thex-t plane. The arrangement of ve
hicles ~left to right! is TTT•••TCCC•••C.
L5200,nC520, nT549, aC51.5, andaT50.8.
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V. NUMERICAL VERIFICATION
OF STABILITY ANALYSIS

We employ the same speed-headway relationship a
@2#, namely,

Ui~b!5tanh~b22!1tanh2. ~31!

The numerical scheme used is the fourth-order Runge-K
one, with a step size of 0.01 time units. It is found that t
results are correct to five decimal places after 1000 t
steps.

A. Circular road

The n vehicles on the track~length 200! are spaced
evenly with headwayb and are all given an initial speed o
v5U(b), except one vehicle, which has an initial speed
0.99v. It is found for both stable and unstable systems th
before nonlinear effects take over, disturbances are local
in time and resemble a wave packet propagating backw
around the circuit, so that vehicles ‘‘drive through’’ it. Eac
vehicle has long periods of motion at~very nearly! constant
speed and short periods of oscillatory disturbance. The
tem’s qualitative behavior is very similar to the straight ro
system to be discussed in Sec. V B.

We restrict our attention to two-species systems of c
and trucks. Two space-time diagrams are presented~Figs. 3
and 4!, showing perturbations to the trajectories of individu
vehicles on a circuit. In both diagramsaC51.5 and
aT50.8 on a circuit of length 200. The spacing of the v
hicles is compressed on the graphs so that the small pe
bations show up. The vehicles were arranged so that a si
groupnT of trucks was following a single groupnC of cars.

In Fig. 3, which depicts a stable system (nC520 and
nT548), the perturbation starting atx50.04, which is local-
ized to begin with, remains localized as it travels as a w
around the circuit. It decays in the region of cars, but
amplified through the line of trucks. However, at the end
each loop of the circuit, this amplification is not enough
bring it back to the same amplitude it had at the start, an
dies away.
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In the second diagram~Fig. 4!, for which nC520 and
nT549, the opposite occurs. The trucks are able to effec
net amplification of the wave per circuit, and the disturban
grows ~instability!. This change in stability, from stable t
unstable, has occurred with the addition of just one truck:
have crossed the boundary of the stability region in para
eter space.

In the first case, the localized wave propagation would
very similar if we were to ‘‘unroll’’ the system onto a
straight road: the influence of one pass through the dis
bance wave almost completely dies away before the w
comes round again. In the second case, phase interac
between successive passes are likely to be having a
nounced effect, since the disturbance wave has become c
pletely delocalized by timet51500, and nonlinear effect
are becoming important.

B. Straight road

The vehicles are spaced with all headwaysbi equal to
b52 units. The lead car travels at all times at a const
speedv5U(b). The other cars all start at speedv, except for
the second-to-leading car (n21), which starts off with speed
0.99v. The disturbance to this car is localized in that
speed equilibrates tov over a time scale of order 1/a, where
a is its sensitivity parameter.

Again, thex scale is compressed for diagrammatic pu
poses. The disturbance wave packet is seen to travel b
ward down the line of traffic and to disperse in time, i.
become less localized. As with the circuitous system,
perturbation increases in size when passing through clus
of trucks and decreases in size when passing through clu
of cars~if the spacing is set up as for the circular road!. This
is shown in Fig. 5, where the wave first passes throug
region wherea51.5 ~destabilizing!, then through a region
where a53.0 ~stabilizing!, and finally through a region
wherea51.0 ~destabilizing!. The wave grows, then decay
and then grows again.

VI. NONLINEAR BEHAVIOR
OF SINGLE-SPECIES SYSTEMS

We now return briefly to looking at single-species sy
tems in order to investigate the effect of periodic bound
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FIG. 5. Perturbations relative to trajectorie
of vehicles in the x-t plane, for a straight
road system. Vehicles are arrange
PP•••PQQ•••QRR•••R, where aP51,
aQ53, andaR51.5. Headways are allb52 units
andU8(b)51.
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conditions on the propagation of nonlinear waves. We c
sider the straight road case first.

In a plot of headway against position, we see a fully d
veloped nonlinear wave train~Fig. 6!. Congestion waves ar
seen as plateaus in this diagram. The speeds of
backward-propagating shocks that join the plateaus
greater in magnitude towards the back of the wave train
that the regions between the shocks increase in length
time. Between the front plateau and the front of the wa
train are regions of high spatial frequency oscillation, wh
also increase in length with time. In these regions, there
typically four or five vehicles per oscillation.

On a circuit, the nonlinear wave train evolves in exac
the same way until it becomes longer than the circuit,
which time the back comes into contact with the front of t
wave train. There follows a self-interaction of the wave tra
~Fig. 7!, in which the high spatial frequency oscillations a
consumed first as the plateaus move backward through th

These plateaus then annihilate each other, as follows.
teauA, moving just in front of plateauB, starts to move
-

-

he
re
o
ith
e

re

t

m.
la-

backward more quickly when its shock nearestB changes
strength, as a result of vehicles not having time to attain
speed in transit fromB to A. As the two plateaus get close
this effect becomes more pronounced, until plateauA actu-
ally merges withB: an example on Fig. 7 is att5600 and
x575.

This process continues to annihilate plateaus until we
left with a set of well-separated plateaus, all moving at
same speed backward along the road. The system thus o
nizes itself into a stable state. The selected amplitude of e
of the plateaus, which are kink solitons@5#, is observed as
the largest-amplitude part of the wave train in the case o
straight road.

Periodic boundary conditions are therefore importa
when discussing the nonlinear evolution of single-spec
systems; this is also the case when we have a variety
vehicle types. In that case, the presence of trucks has
effect on the mechanism of plateau annihilation describ
above, and we are again left with a set of well-separa
regions of congestion. We now investigate the formation a
,
FIG. 6. Fully developed nonlinear wave train
for a straight road system~single species!: head-
way is plotted against position.a51 andb52
for all vehicles initially. Snapshot att5600, with
600 vehicles.
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FIG. 7. Evolution of a set of congestio
waves relative to the road, in thex-t plane, for a
circuitous road system~single species!. a51,
b52, andU8(b)51. 200 vehicles, up to time
t5600.
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behavior of multispecies congestion waves on a stra
road.

VII. NONLINEAR BEHAVIOR
OF MULTISPECIES SYSTEMS

We first introduce to the system a random spread of s
sitivity parametersa, as a step towards a more realis
model of road traffic. We keep the same speed-headway
lationshipU(b) for each vehicle, and the progress of t
nonlinear waves is shown in Fig. 8.

Vehicles with different sensitivity parametersa take dif-
ferent lengths of time to move from low-density free flo
into the congestion regime and back again, and we ex
this to have a bearing on the backward propagation spee
nonlinear waves. Indeed, from Fig. 8, this appears to be v
fied: having a random spread of values ofa among the ve-
hicles makes the nonlinear wave speed nonconstant
propagates. However, despite being distorted, the nonlin
waves maintain their overall structure as they propag
ht

n-

e-

ct
of
ri-

it
ar
e.

Hence the single-species system is not simply a degene
case, which happens to support these waves.

Following from this, we demonstrate the effect of varyin
the speed-headway relationships from vehicle to vehi
while keepinga constant. The functionU(b) of vehicle i is
now given byUi(b)5ci@ tanh(b22)1tanh2#, where the ‘‘top
speed parameters’’ci are defined independently for each v
hicle. In the diagram presented, we see a single-species
tem of cars, with one truck. The truck is given a slight
lower value ofc than the cars~0.8 compared to 1! and, as a
result, a gap opens up between it and the car in front.
gap has the effect on nonlinear traveling waves of inducin
temporary phase shift as the gap passes through~Fig. 9!. The
disturbance to the congestion wave then decays away an
gap, which is compressed as it enters the wave, start
expand again as it leaves.

If, however, the truck is given amuch lower top speed
than the cars~0.5 compared to 1!, the gap that opens in fron
of the truck is wider than before~Fig. 10!. In fact, the gap is
large enough to destroy the nonlinear wave. This is a form
-
d

.

FIG. 8. Nonlinear waves in a system of ve
hicles with independent, randomly distribute
sensitivity parametersa;U @0.6,1.6#. Vehicles
are evenly separated withb52 and their trajec-
tories are shown relative to the stationary road
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FIG. 9. Single truck with top speed paramet
c50.8, observed within a system of 199 ca
with top speed parameterc51. a51.0 for all ve-
hicles, and they set off evenly spaced wi
b52. Trajectories are displayed relative to th
road.
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nonlinear damping and it depends on the fact thatU8(b) is
small for largeb: the car in front of the truck can make larg
deviations from its equilibrium position without significant
changing the truck’s speed. This is a possible mechanism
stabilizing real traffic platoons.

However, because the system is so unstable in this
(b52 is the most unstable configuration, when cars are d
ing at their desired speed!, a new wave is formed furthe
upstream as a result of the very small perturbation that
truck experiences. The wave cannot be said to have exp
enced a temporary disturbance, as in Fig. 9, because it ce
to be nonlinear in its interaction with the truck and has
start its nonlinear evolution afresh. This scenario is an
ample of a truck both causing a traffic jam and breaking o
up.

VIII. APPLICATION TO REAL TRAFFIC FLOWS

Before a disturbance can start to evolvenonlinearly to any
significant degree, it must have attained a large enough
or

se
-

e
ri-
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e
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plitude. Linear theory gives us some indication of how lo
it would take for a small disturbance to grow sufficiently
cause ‘‘harsh’’ braking~deceleration greater than some pr
set value! further down the line of traffic, for example. How
ever, the exact nature of the braking profile cannot be de
mined by this method.

The vehicle-following model discussed here makes ma
assumptions about the real world, not least that there is
‘‘global perception’’ about thegeneralstate of the traffic. In
reality, drivers learn that they are in a congested flow not j
from the behavior of the car in front: much more informatio
is taken into account. Also, there is always an element
randomness over time in, say, the sensitivity parameter
given driver.

There is a large number of practically unmeasurable
rameters associated with the traffic system, and the bes
can do in the case of a linearly unstable system is to say
it is likely that harsh braking will take place during a give
time interval. The likelihood of such an event occurrin
would be unacceptably high for a linearly unstable system
ut
FIG. 10. Same as for previous diagram, b
with ctruck50.5.



e

in

w

u
on
a
ir
ria
ed

s
tio

e
la
a
g
g
a
te
i.e
st

th
in
er
W
re
n
ks
o
o
ol

g
s
s

nc-
t it
h

the

uch
ng-

all

an

m

en-

a-
s

55 2213CAR-FOLLOWING MODEL OF MULTISPECIES SYSTEMS . . .
suitable indicator of this instability is given by Eq.~19!.
Given fitted curves ofU(b) for a range of vehicle types, th
quantity d i5@1/Ui8(b)

2#@12(2/ai)Ui8(b)# could be evalu-
ated for each vehicle automatically and in real time, us
sensors under the road. Steps could be taken to stabilize
system~e.g., by reducing the speed limit! if the sum of this
quantity over the vehicles in a platoon were to fall belo
zero.

IX. CONCLUSION

We have studied several aspects of the behavior of a m
tispecies car-following model both on circular and
straight roads. It was found, in the limit of long roads with
large number of cars, that the linear stability criteria for c
cular and straight roads were the same, given an approp
definition of stability on a straight road. The definition us
was that ofasymptotic stability, a term used by Hermanet al.
@3# to describe the overall attenuation of a disturbance a
passes through a group of vehicles. Computer simula
verified the stability criterion for a two-species system on
circuitous road.

We also looked at the propagation of small disturbanc
both on circular and straight roads. Again, computer simu
tions were used to verify that disturbances grow through
ymptotically unstable groups of vehicles and decay throu
stable groups. It was found that by having a high enou
concentration of trucks in a population of cars, the system
a whole could be made asymptotically unstable, as predic
in this sense, trucks can cause traffic jams. Dispersion,
dependence of propagation speed on the frequency of di
bance, was also analyzed, and seen in practice.

We then made some qualitative remarks concerning
development of small disturbances into nonlinear waves,
cluding a description of the mechanisms involved in patt
selection when periodic boundary conditions are applied.
went on describe the effects of how, in the case of a p
dominantly ‘‘all-car’’ system, trucks interact with congestio
waves, including the nonlinear damping effect of truc
moving at close to their maximum speed in a platoon
vehicles. Finally, some general remarks were made ab
how this work could be applied to real-life traffic contr
problems.

APPENDIX

We show, following Whitham in@6#, that in the limit of
slowly varying headway along the road, all car-followin
models are equivalent to a continuum model. We take a
starting point an equation true for all car-following model

ḃi5v i112v i , ~A1!

wherebi is the headway of cari ~the distance to cari11)
and v i and v i11 are the speeds of carsi and i11, respec-
tively. The overdot denotes a total time derivative.

Letting xi denote the position of cari , we can define a
continuous headway function b(x,t) such that
b(xi ,t)5bi(t) for all i and we definek(x,t)[1/b(x,t) to be
g
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the traffic density. We also require a continuous speed fu
tion. As for the headway, we define this function such tha
interpolates the ‘‘discrete speed’’v i when evaluated at eac
car position, i.e., v(xi ,t)5v i(t) for all i . Clearly,
v i115v„xi1b(xi),t…, and substituting in Eq.~A1!,

d

dt
b~xi ,t !5v„xi1b~xi ,t !,t…2v~xi ,t !. ~A2!

Expanding the total derivative, we obtain

]b

]t
~xi ,t !1v~xi ,t !

]b

]x
~xi ,t !5v„xi1b~xi ,t !,t…2v~xi ,t !.

~A3!

We now replacexi by x throughout:

]b

]t
~x,t !1v~x,t !

]b

]x
~x,t !5v„x1b~x,t !,t…2v~x,t !.

~A4!

If we now assume that all quantitiesL(x,t) associated with
the traffic flow vary on length scales much greater than
headway, i.e.,

eL5
bLx

L
!1, ~A5!

we can expand Eq.~A4! as a Taylor series, obtaining

bt1vbx5bvx1
1

2
b2vxx1•••, ~A6!

where each consecutive term on the right-hand side is m
less than the one preceding it. Neglecting all but the leadi
order terms, replacingb by 1/k, and rearranging, we obtain

kt1qx50, ~A7!

which is the equation of vehicle conservation common to
continuum models, withq5kv.

We also require a car-following law. In general, this c
be expressed as

T~bi ,ḃi ,b̈i , . . . ,v i ,v̇ i , . . . !50, ~A8!

which can be placed within the framework of continuu
models simply by replacingbi with 1/k andv i with v. In the
limit of slow variation, we can set al.l the arguments involv-
ing a time derivative to zero, yieldingT(1/k,v)50: speed is
a function of local density alone.

In the case of multispecies models, we define traffic d
sities kj (x,t) for each vehicle typej as the number of ve-
hicles of typej per unit length of road. We replace the equ
tion kb51, true by definition of density for single-specie
systems, with the equation( j51

n kj (x,t)bj (v)51, wheren is
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the number of vehicle types andv(x,t) is the local speed o
traffic. The functionsbj (v) give the headway for vehicle
types j moving at speedv, in the limit of slow variation.
Consider a stretch of roadway of lengthL, much longer than
1/kj for each j , but much shorter than the length scale
density variation. Conservation of vehicles yiel
*x
x1Lkt

j (x8,t)dx85Lkj (x,t)v(x,t)2Lkj (x1L,t)v(x1L,t),
which after truncating Taylor expansions givesn separate
conservation equations
ug

y,
f

kt
j1~kjv !x50. ~A9!

For the continuum approximation to be valid for multisp
cies systems, we require longer length scales of varia
than for single-species systems, as each vehicle type m
have slowly varying density along the road and in gene
each density will be lower than in the single-species cas
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