PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Car-following model of multispecies systems of road traffic
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A speed-adjustment car-following model is extended to systems of traffic where there is a variety of vehicle
response times and speed-headway relationships. This is proposed as a model of the interactions between cars
and trucks on single-lane roads where there is no overtaking, and some of its properties are derived. First, we
make a distinction between temporal stability on a circular road and spatial stability on a straight road and go
on to derive criteria for linear stability in each case. The propagation and dispersion of a linear disturbance
wave is studied, and we also compare the nonlinear evolution of both single- and multiple-species systems on
circuitous and straight roads. When the speed-headway relationship of all vehicles is given by the nonlinear
law proposed by Bandet al.[Phys. Rev. 551, 2 (1995], we find that for models of car-truck systems, as for
systems consisting of one type of vehicle only, there is a range of equilibrium headways for which the system
is linearly unstable. The size of this range increases with the proportion of the more unreactive vehicle type,
trucks, in the population of vehicles. Computer simulations verify the analytical results and show the nonlinear
development of disturbances when the system is linearly unstable. It is demonstrated that slow vehicles in a
platoon moving at close to their top speed can damp nonlinear congestion Wa1863-651X97)06002-9

PACS numbeps): 05.40:+j

I. INTRODUCTION predict phenomena analogous to those seen on real roads.
From the point of view of consistency of the different
With roads becoming more congested, the need to impletypes of models, it is desirable that all three mentioned are
ment effective traffic control measures is becoming greategquivalent, at least in suitable limits. It is shown in the Ap-
all the time. Such measures include on-ramp meteringpendix that car-following and continuum models are equiva-
speed-limit control, and imposing tolls. For these to be eflent in the limit of slowly varying traffic density along the
fective, we require accurate models of the flow of traffic.road. In what follows, we deal only witkingle-laneflows
Much work in the past has centered on models in which aliVith no overtaking, such as might be found when lanes on a

vehicles have the same characteristics, such as response tiff@torway close due to roadwork. Lane ch?fngin% te}:]ds to
and top speed. However, it is seen that that variety of vehiclépread and disperse congestion waves, an effect that has been

characteristics is an important factor in determining, amongStUdIEd in[1].

. - ! We wish to model the effect of having variety in the be-
other things, the stability of steady traffic flow and the Ioroloa_havioral characteristics of vehicles in agtraffictystream For
gation of congestion waves. :

._ease of analysis, we adapt a simple velocity-adjustment car-
T_here are several approaches .to the problem of mOdeI'n\%llowing model. Whereas continuum models implicitly take
traffic flow. On open roads, pgrtlcularly motorways., rT?OStinto account a degree of variation in vehicle type, since the
work has concentrated da) continuummodels, where indi-  1angth scale of variations in the density and velocity field is
vidual vehicles are smoothed out into continuous velocity;ssmed to be large compared to vehicle spacing, multispe-
and density fields, an¢b) car-following models, where the ¢jes systems have not been widely studied in the context of
behavior of each vehicle is linked to that of the vehicle in Car-fo”owing models. In the latter mode|, each vehicle has
front by a mathematical ruléa “car-following law"). associated with it a sensitivity parameter and a relationship
The understanding of certain features of traffic flows hasjescribing its desired speed as a function of its headway.
improved with the advent of faster computers. An examplewhen we come to specify this relationship, for the purposes
of such a feature is the phenomenon of congestion wavegf computer simulation in Sec. V, we use the function intro-
These waves occur when flow in the laminar regita# duced in[2], namely,
vehicles traveling at a constant speectceeds the capacity
of the driver-vehicle-road system, and successive overbrak- U(b)=tanhb—2) +tanh2, @
ing of following vehicles leads to an instability. Congestion
waves are generally nonlinear, which makes their exacwhereb is the headway. This speed-headway relationship is
analysis difficult. plausible in that the desired speed is increasing with head-
Increased computational power has also made possiblgay, from zero, when the headway is zero, to a finite posi-
the recent development otellular automaton models tive value when the headway becomes large.
(closely related to car-following models which the road is First, we present the results on linear stability derived by
discretized into two-state cells and vehicles progress in rarBandoet al.in [2], for the case of a single-species system on
dom jumps. Like the other two models, cellular automata cara circular road. The model is then extended in a natural way
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to multispeciesystems, where the sensitivity parameters andinstable to small perturbations. In fact, the attractor in this

the equilibrium speed-headway relationships are specific tparameter range is a nonlinear traveling-wave solution.

each vehicle. In studying the latter system, we assess the We now consider an extension of the modehtaltispe-

differences between circular road and straight road systentes systems, in which the vehicles are nonidentical:

to establish whether or not periodic boundary conditions af- ) _

fect stability artificially. In the language of Herman al.[3], Xi=a;(Ui(Xi+1=X) =X, 4

we consider thasymptotic stabilityof the straight road sys- . i

tem, where the growth or decay of perturbations takes plac¥here the subscript on the parametea and the function

in spacerather than irtime, which is the case for the circular Y(P) renders them specific to vehidleln what follows, we

system. will refer to veh!cles with relatively high values ef as cars
Having established a framework for studying the behavio@nd to those with low values af as trucks. We expect to

of general multispecies systems, we go on to discuss ifind that trucks in a group of cars will act to make the sy_stem

greater depth the behavior of a particular two-species systefjore unstable and that cars in a group of trucks will be

as a model of cars and trucks. We find that increasing th§'@ved to the trucks. , 3 ,

population of unreactive trucks in a car-truck system tends to WWhen we come to perform linear stability analysis, we

make the system less stable and cause traffic jams. will require a dynamically stationary state about which we
We then study numerically the evolution of nonlinear €@n linearize, in which all vehicles are moving at the same

congestion waves, first in the single-species case, and tfP€ed. We first define the “least top speed” of the set of

influence of periodic boundary conditions on it. We go on toVehicles:

investigate the effect of trucks on their propagation. Of par- V=inf sugJ;(b) (5)
ticular interest in this respect is the way in which vehicles b

moving at close to their top speed in a platoon can damp

nonlinear congestion waves, and a demonstration of this phé=or n cars on a circular road of length, we have the con-
nomenon is shown. Finally, as a step towards a more realistidition that=_;b;=L, whereL is finite. We make the as-
view of road traffic, we perform some numerical simulationssumption thatJ;(b) =0 whenb=0 and that;(b) is strictly

of systems where there is a random variation of sensitivityincreasing inb. This is consistent with the speed-headway
parameters and/or top speeds among the vehicles and welationship U(b)=tanhp—2)+tanh2 proposed by Bando
make qualitative remarks concerning the progress of congegt al. in [2] and discussed in Sec. V. Suppose we fix the

tion waves in each case. speed of all vehicles to be, satisfying Eq.(6). As v is
increased from O to the least top speédthe sum of the
Il. DESCRIPTION OF THE MODEL headways increases from O to an arbitrarily large value, so

. . that there must exist a speeduch that the headways sum to
In the velocity-adjustment model proposed by Bando pee y

et al. [2], the acceleration of each vehicle is defined to be™
directly proportional to the difference between its actual
speed and its “desired speed,” a function of its headway:

We will consider later the effect of removing periodic
boundary conditions by analyzing the linear stability of a
multispecies system on a straight road, where the lead ve-
hicle in a platoon can be controlled. There is then a family of
dynamically stationary states

X; is the position of car, with the vehicles numbered so that U,(b)=v 6)
vehiclei follows vehiclei + 1. The setting for their model is n ’

a circuit of lengthL, with n vehicles on it, so that vehicle wherev can take any value between 0 aNd First, we

N follows vehicle 1. In addition, the dual limit,n—~ is  analyze the linear stability of the multispecies system on a
taken, with the vehicle density/L finite. The function circuit in order to see how the stability properties found by
U(b;) of the headway; =x;. 1 — X; defines the desired speed Bando et al. change when we have two or more types of
of vehiclei. The constant of proportionalitgt is called the  vehicles interacting on the circuit.

sensitivityparameter, with an associated equilibration time of

order 14, so thata can be thought of as a reciprocal reaction Ill. ANALYSIS OF A MULTISPECIES SYSTEM

time of the vehicles. ON A CIRCUITOUS ROAD

Bando et al. showed that the constant-speed state of a Th . £ diff ial . . d
single-species system on a circuit is linearly stable if and e governing system of difierential equations Is secon
only if order in time, so we must introduce perturbations to both the

position and speed of each vehicle. The perturbed quantities
, are x;=x2+vt+&(t) andv;=v+ 7(t), wherex? are the
U (b)<1, (3 vehicles’ initial positions and; (t) and 7;(t) are small time-

dependent perturbations. Linearizing E4), we obtain
g\ (¢
large enough are stable. Clearly, the stability depends on 7 ” =M 7/’ @)
traffic density also. For their choice of speed-headway rela-
tionshipU (b) =tanhp—2)+tanh2, they found a “window of where | is the nXn identity matrix,
instability” b;<b=b,, in which the constant-speed state is D=diaga, ,a,, . . . ,a,}, and

Xi=a(U(Xi 41— X)) —X)). (2)

whereb=L/n, so that systems of vehicles for whichis

small enough are unstable and that groups for wizicis ( ¢ 0 |

A D
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~a;Ui(by)  aU}(by) 0
0 _azué(bz) azué(bz) 0
A= . o . . (8)
0
a,U (b, 0 . e —ayU, (b,

b; are the unperturbed headways. The problem is now a s&tonsider the contouy’:
of coupled first-order equations, and the solution is

v ={z=g(iw):w e Re}, (14

|

§j) (9) whereg(2)=M"_,(Bi+ajz+z%)=f(z)+II_,B;. The con-

7 tour v’ is precisely the contouy, shifted to the right through
a distancdl]_, B; . Their winding numbers will be the same,
unlessy’ has any intersections with the positive real axis in

on j the interval _(OH{‘:l,Bi). _ . - .

50) -3 ( 3 ) (10) We consider the magnitude gfiw) as w varies, using

i) the equation

G
7o =1 n

2n
j=1

n

for an arbitrary initial condition

(&,%)7 are the eigenvectors d¥l, and z; are the corre- =

spo_ndmg e|genyalues. For linear stab|I|_ty toa g_eneral pertur- l9(iw)|= \/H [(8— w?)2+a?w?]. (15)

bation, we require that the real partgjfis negative, for all =1

j- Note that each eigenvector will have an associated fre-

quency of oscillation(if z; is complex, which it is in gen- This function is not necessarily monotonically increasing

eral), so that &finite numberof modes is set up. with w?, so it is possible that there exist values offor
We require an equation for the eigenvaluesrom Eq.  which [g(iw)|<|g(0)| and arg(i w)=2m for some inte-

(7) we get the pair of equationsé=» andzyp=Aé+Dzn.  germ (a necessary and sufficient condition for instabjlity

These equations combine to forip=A7n+zD7, so that Now the function arg(iw) is given by

we are looking for solutions to dei(+ zD+ Z°1)=0. Define

Bi=a;U{ (b;). The characteristic equation is then n
argg(iw)= D, arg Bi— w’+iaw). (16)

n n =1
f(z)—iﬂl (Bitaz+z’) Iﬂl Bi=0. 1D Each term in the sum is strictly increasing fromsr to =

and takes the value 0 at=0. If we letn become large, then
Commultativity of the products means that stability of systenfor «=0(1), arg(iw) increases by # for a O(1/n)
is independent of the ordering of vehicles around the circuitchange inw. We now consider lg(iw)|, which is just the
if we assume that the behavioral parameters of each vehiclegarithm of the product in Eq.15):
depend only on the vehicle in question.
The number of roots in Re<0 is given by the integrd#4] 1.0
Injg(io)|=52, I[(Bi—0?)?+alw?].  (17)
] 2i>1
1 dzf'(z) (12
2ai]r H(z) ° Around a quadratic minimum of lg(iw)|, anO(1/n) change
_ . _ ) in  (one turn around the origifeads to arO(n/n?= 1/n)
where the contouf’ runs up the imaginary axis fromi 0 change in Ifg(iew)|. So if n is large enough, and if for some
+io _and is closed by an counterclockwise semicircle at N4y iy INlg(iomn)| is strictly less than lig(0)], then Ifg(iw)|
finity in the left half plane. will be less than Itg(0)| for all w on the same turn around

. It can pe shown that the contribution from the semicircley,, origin. This guarantees an intersectiorg6ifw) with the
is n (this is true for all polynomial$ of degree 2) and that positive real axis to the left ag(0).

the contribution from the imaginqry_ axis is th_e WinQing UM~ Therefore, ifn is large and there exists a real value of
ber of the contoury around the origin, where is defined as o for which|g(i )| <|g(0)|, the system is linearly unstable.
We have effectively approximated the discrete spectrum of
y={z=f(iw):weRe. (13)  excited modes by a continuum, in the linmit- oo,



2206 ANTHONY D. MASON AND ANDREW W. WOODS 55

09
08

07 F

FIG. 1. Proportion of cars required to stabilize
a car-truck systemay,, = 0.8 andL=200.0. The
curves correspond ta.,=1.67, 2.5, 5, and»
reading from top to bottom.
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Unfortunately, the equatiofg(i w)|=|g(0)| is not solv- n 1 20
able analyticallyexcept for the trivial solutiom=0), so we 2 — ( 1- —Ui’(bi)) <0; (19
resort to a numerical solution, in the case of a two species =1 U (by) 8

system, where each type has a different acceleration param-

eter but the same equilibrium speed-headway functioN.B. This condition guarantees instability, but even if in-

U(b). We can compute the derivative/dw)In|g(i w)| eas- equality(19) does not hold, there may be other points on the

ily, in order to find the minimum values of |g(iw)|. The  graph of|g(iw)| at which instability can arise.

result is For the case of only one species of vehicle, the above
analysis is exact; that is, we do not need to assaonsdarge.
The condition for instability is necessary and sufficient and

nel (82— 28¢) + 202 can be written

72, .2 2
(Bc—w%) +agw

dI ] B
donlglio)|=w

2 -
n{ (a2—287) +2w?] 1-5U'(b)<0, (20)
Brw?rade? |0 1P

which is just that obtained if2]. In some sense, the overall
stability of the mixed system is governed by a weighted

wherenc andny are the number of vehicles of typ€s(cary  mean of “stability parameters” corresponding to the ve-
and T (trucks, respectively. To find the minimum of hjcles in that system.

In|g(i w)| we look at its turning points: the appropriate val-
ues ofw are given by the roots of Eg18). When expanded,
the numerator is of the formvp(w?), wherep is a cubic
polynomial. The largest real roab* of this cubic can be We use the numerical scheme detailed above to find the
found numerically to any desired accuracy using thestability region innc 1 space. For all values dic 1 tested,
Newton-Raphson method, and the stability of the system ishis region was the same as that derived from @§). We
determined accordingly as |b(i *)|=In|g(0)| (require  present graphgFig. 1) depicting the proportion of cars
greater for stability. Hence, for this type of two-species sys- pc=n¢c/n required to stabilize a population of cars and
tem we can decide with certainty whether or not a giventrucks @=0.8) for various values of the car sensitivity pa-
system is stable. rameter. The road length is 200, and we give all vehicles

In fact, we can find aufficientcondition for stability or the same desired speed-headway functidib), so that the
instability by analytical means. We note that vehicles are evenly spaced around the track with
(d/dw)In|g(iw)|=0 at  w=0. Therefore, if U/(b)=1.
(d?/dw?)In|g(iw)|<0 atw=0, there must be a minimum of For n<66, the system is always stable, independently of
In|g(i w)| with value less than lig(0)|, which implies insta-  the ratiopc: all vehicles travel at their free-flow speed, but
bility. with large headways. The same is true for 206, but this

This condition can be translated into parameter space, usime, the system is stable because every vehicle is traveling
ing Eq. (17): if 2{‘:1(ai2—2,8i)/32<0, then the system is slowly enough to offset the effect of small headways. In the
linearly unstable. Using the definition gf , a sufficient con- range ofn for which a population of trucks alone would be
dition for instability is unstable (66&n<206), the replacement of some trucks by

Car-truck system: Semianalytic results
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the same number of cars often, but not always, stabilizes thstable[3] in passing from vehiclé +1 back to vehicle.
system. From Eq.(24), it can be shown that only frequencies in the
Cars can be thought of as being more responsive and havange 0< w<(1/U/)+/(2/a;)U/ — 1 are amplified. In the case
a damping influence on perturbations. Note that even in th@g/a YU/ —1=<0, all frequencies are attenuated.
limit of large sensitivity parameter, we require a fairly large  The overall amplificationy of frequencyw from the lead-
proportion of cars before the system stabilizep to 50%  jng vehicle to vehicle 1 is computed by taking the product
car9. In the I|n_1|t Acars— @ With ayos fixed at 0.8, the equa- I,y . We say that a group af of vehicles is asymptoti-
tion of motionx; =U;(b;) must hold to avoid singularities in caIIy stable to disturbances of frequeneyif and only if
Eq. (4). However, such ultrareactive cars do not “absorb”
disturbances, as might be expected. The cars are effectively
“slaved” to the trucks and behave passively. We now move
onto a straight road to see the effects, if any, of removing the Yw)= H yi<1 (25)
periodic boundary conditions associated with the circuit. =1

n

IV. ANALYSIS OF A MULTISPECIES SYSTEM since if a line of traffic is made up of repeating units of
ON A STRAIGHT ROAD permutations of this group, disturbances of frequeacyill

grow down the line of vehicles.

On a circuitous road, only a finite number of oscillatory  The parallels with the circular road system can now be
modes can be set up. However, this spectrum may be ageen. In that caséassuming a large enough number of ve-
proximated as a continuum in the limit of a large number ofhicles to be able to approximate the spectrum of excited fre-
vehicles. On a straight road, we analyze the stability of equencies as a continugnthe system is stable if and only if
platoon of cars. We assume that the behavior of the leadinghere exists a solution for positive, real of the inequality
vehicle can be controlled for all time, and consider the re{g(iw)|<|g(0)| [see Eq(15)]. This is exactly the same in-
sponse of the system to small, pure harmonic disturbances efuality as Eq(25), but with one crucial difference in state-
arbitrary frequencyw. Since we are considering the linear ment. In the case of the circular road, we ask if thereaane
stability of the system, the response to each frequency consolutions to the inequality, but for a straight road, we ask if
ponent of a general time-dependent disturbance can be cothe inequality is satisfied for prespecifiedw. The problem
sidered separately. set on a circular road is thus about temporal stability to ar-

We consider small perturbations about the dynamicallybitrary initial spatial disturbances, whereas the problem set
stationary state. Vehicleis following vehiclei + 1, with the  on a straight road is about spatial stability to tempdoal-
equation of motion going disturbances.

It is perhaps surprising at first sight that the interaction of
disturbance waves on a circigomething that cannot hap-
pen on a straight roadappears to have no effect on the
stability of the system. However, the analysis for a circuit
assumes a large number of vehicles, so that decaying distur-
bance waves will have practically disappeared before they
complete one circuit and growing waves will have become
nonlinear. It turns out that wave interactions are important to
the evolution of the system in the nonlinear regime, and in
where, as for the circuitous roald,, is the unperturbed head- that setting, the system’s behavior depends strongly on
way between vehicles andi+ 1. Now we decompose the whether we have a circuitous or a straight road.
perturbations into components of different frequencies. Writ- In addition to growth or decay in its amplitude, the dis-
ing =25e"“" and using the shorthantd/ to represent turbance suffers a phase lag of

U/ (b;), we see that

xi=a,(Ui(Xi 11— %) —X))- (21)

Linearizing, so thak;=x+uvt+ ¢, we obtain

aie|+e,+U (b)el u/ (b)e,H, (22

w
S = arcta
i1 i —s (26)
— w
b= 23) s
1— — |+t = I a
auy/ U,

in going from vehicle + 1 to vehiclei, from which the time

In passing from vehiclé+ 1 to the following vehicld, the lag is derived by dividing by,

perturbation is amplified by a factor

1 _ 1 )
yi= — = (24) Ti= V—Varctan—w2 . (27)
\/ AN Ui-—
aIUI/ UII 1

so the disturbance grows if and onlyy¥>1. In that case, In this discrete setting, we define the wave speed at position
we say that frequency disturbances arasymptotically un- i as
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g sl | FIG. 2. Amplification factor against backward
= ' propagation speedb=2 and U’(b)=1. The
E, curves are parametrized by disturbance frequency
s 16} o and only growing disturbances are represented.
< From left to right,a increases from 0.2 to 1.6 in
sl increments of 0.2.
12 |
10A4~ : Of6 0.8 1 1. 1.4 1.6 1.8 2
Speed of backwards propagation
b, and has an associated amplification factor
Cii=——. (28)
7
. . . . 1
We see from this equation that different frequencies are Y= ) (30)
transmitted backward relative to the traffic at different a 1/ a
speeds. For largev, this speed asymptotes te b;w/w. U/ 4\u/

However, this occurs in the region of attenuatedso that

such fast waves are never observed over more than sevefghe piots presentetFig. 2 are of amplification per vehicle
vehicles. For small @ the asymptotic result is () against backward wave speed, for various values iof

¢ =—bjU/(b;) +0(w?), so that low-frequency disturbances the range (0.2,1.6), for a single-species system where
travel at a speed independent of the sensitivity parametep, —2 0 andu/ (b;) = 1.0.w is used as the parameter for each
This is be;cause the period_ pf o;cillations is much.greate{:urve’ and only growing modes/(=1) are displayed. There
than the time scale for equilibration @), so the vehicles s clearly a range of wave speeds, so disturbances spread as a

are in quasiequilibrium. . : _ “wedge” in the space-time plane and the amplitude of the
The most unstable mode™ = ya;Uj(b;) —ai/2, defined  disturbance experienced by a given vehicle increases and
only when O<a;/U{ <2, travels backward with speed then decreases smoothly in time. These properties have been

confirmed numerically. We now present the results of some
numerical simulations that verify the results on stability and

*
*— _ L* (29) propagation of disturbances presented above, both for circui-
arctari2o™/a;) tous and for straight roads.
1400 4
1200 s
1000 4
2 800 - FIG. 3. Perturbations relative to trajectories of
= vehicles in thex-t plane. The arrangement of ve-
600 | hicles (left to right) is TTT.---TCCC.--C.
) L=200,n:=20, nt=48,ac=1.5, anda;=0.8.
400 i
200 .
0 NN
0.2 03 0.4 0.5 0.6 0.7

X (compressed')
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vehicles in thex-t plane. The arrangement of ve-
hicles (left to right) is TTT.---TCCC.--C.
L=200,n:=20, nt=49,ac=1.5, anda;=0.8.
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V. NUMERICAL VERIFICATION In the second diagranfFig. 4), for which nc=20 and

OF STABILITY ANALYSIS ny=49, the opposite occurs. The trucks are able to effect a
. . .net amplification of the wave per circuit, and the disturbance
We employ the same speed-headway relationship as igy,\s (instability). This change in stability, from stable to
[2], namely, unstable, has occurred with the addition of just one truck: we
have crossed the boundary of the stability region in param-
U;(b)=tanib—2)+tanh2. (31 eter space.
In the first case, the localized wave propagation would be
The numerical scheme used is the fourth-order Runge-Kutt@ery similar if we were to “unroll” the system onto a
one, with a step size of 0.01 time units. It is found that thestraight road: the influence of one pass through the distur-
results are correct to five decimal places after 1000 timéance wave almost completely dies away before the wave
steps. comes round again. In the second case, phase interactions
between successive passes are likely to be having a pro-
A. Circular road nounced effect, since the disturbance wave has become com-

) pletely delocalized by timé=1500, and nonlinear effects
The n vehicles on the tracklength 200 are spaced gare pecoming important.

evenly with headway and are all given an initial speed of

v=U(b), except one vehicle, which has an initial speed of B. Straight road

0.9%. It is found for both stable and unstable systems that, The vehicles are spaced with all headwdysequal to
before nonlinear effects take over, disturbances are localizegd— 5 \nits. The lead car travels at all times at a constant

in time and resemble a wave packet propagating backwargheed, = U(b). The other cars all start at speedexcept for
around the circuit, so that vehicles “drive through” it. Each the second-to-leading can{ 1), which starts off with speed
vehicle has long periods of motion etery nearly constant  0.99,. The disturbance to this car is localized in that its
speed and short periods of oscillatory disturbance. The syspeed equilibrates t over a time scale of orderd/where
tem’s qualitative behavior is very similar to the straight roada is its sensitivity parameter.
system to be discussed in Sec. V B. Again, thex scale is compressed for diagrammatic pur-
We restrict our attention to two-species systems of carposes. The disturbance wave packet is seen to travel back-
and trucks. Two space-time diagrams are presefitggs. 3  ward down the line of traffic and to disperse in time, i.e.,
and 4, showing perturbations to the trajectories of individualbecome less localized. As with the circuitous system, the
vehicles on a circuit. In both diagramac=1.5 and perturbation increases in size when passing through clusters
ar=0.8 on a circuit of length 200. The spacing of the ve-Of trucks and decreases in size when passing through clusters
hicles is compressed on the graphs so that the small pertu@f cars(if the spacing is set up as for the circular raathis
bations show up. The vehicles were arranged so that a singlé shown in Fig. 5, where the wave first passes through a
groupny of trucks was following a single group. of cars.  region wherea:1.5. (d'establhzmg., then through a region
In Fig. 3, which depicts a stable systemc&20 and where a=3.0 (stablll_z_lng, and finally through a region
ny=48), the perturbation starting at=0.04, which is local- Wherea=1.0 (destabilizing. The wave grows, then decays,
ized to begin with, remains localized as it travels as a wavémd then grows again.
arour_lql the circuit. It (_Jlecays in the region of cars, but is VI. NONLINEAR BEHAVIOR
amplified through the line of trucks. However, at the end of OF SINGLE-SPECIES SYSTEMS
each loop of the circuit, this amplification is not enough to
bring it back to the same amplitude it had at the start, and it We now return briefly to looking at single-species sys-
dies away. tems in order to investigate the effect of periodic boundary
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conditions on the propagation of nonlinear waves. We conbackward more quickly when its shock nearBsthanges
sider the straight road case first. strength, as a result of vehicles not having time to attain top
In a plot of headway against position, we see a fully de-speed in transit fronB to A. As the two plateaus get closer,
veloped nonlinear wave traiffrig. 6). Congestion waves are this effect becomes more pronounced, until platéaactu-
seen as plateaus in this diagram. The speeds of thaly merges withB: an example on Fig. 7 is a=600 and
backward-propagating shocks that join the plateaus arg=75.
greater in magnitude towards the back of the wave train, so This process continues to annihilate plateaus until we are
that the regions between the shocks increase in length witkeft with a set of well-separated plateaus, all moving at the
time. Between the front plateau and the front of the wavesame speed backward along the road. The system thus orga-
train are regions of high spatial frequency oscillation, whichnizes itself into a stable state. The selected amplitude of each
also increase in length with time. In these regions, there aref the plateaus, which are kink solitofs], is observed as
typically four or five vehicles per oscillation. the largest-amplitude part of the wave train in the case of a
On a circuit, the nonlinear wave train evolves in exactlystraight road.
the same way until it becomes longer than the circuit, at Periodic boundary conditions are therefore important
which time the back comes into contact with the front of thewhen discussing the nonlinear evolution of single-species
wave train. There follows a self-interaction of the wave trainsystems; this is also the case when we have a variety of
(Fig. 7), in which the high spatial frequency oscillations are vehicle types. In that case, the presence of trucks has no
consumed first as the plateaus move backward through thersffect on the mechanism of plateau annihilation described
These plateaus then annihilate each other, as follows. Pl&bove, and we are again left with a set of well-separated
teau A, moving just in front of platealB, starts to move regions of congestion. We now investigate the formation and

35 r ﬂ -
3F ]
25 - -
. FIG. 6. Fully developed nonlinear wave train,
2 2L i for a straight road systerfsingle species head-
«© . . g
2 way is plotted against positiom=1 andb=2
sl | for all vehicles initially. Snapshot d@t= 600, with
600 vehicles.
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U
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x {not compressed)
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FIG. 7. Evolution of a set of congestion
waves relative to the road, in thet plane, for a
circuitous road systenisingle specigs a=1,
b=2, andU’(b)=1. 200 vehicles, up to time
t=600.

time

0 50 100 150 200 250 300 350 400
x {not compressed: alternate vehicles displayed for clarity}

behavior of multispecies congestion waves on a straightence the single-species system is not simply a degenerate
road. case, which happens to support these waves.
Following from this, we demonstrate the effect of varying
VII. NONLINEAR BEHAVIOR the. speedjheadway relationships .from vehicle to yghicle,
OF MULTISPECIES SYSTEMS while I_<eep|nga constant. The functiokl (b) of vehiclei is
now given byU;(b) =c;[ tanhp—2)+tanh2, where the “top
We first introduce to the system a random spread of serspeed parameterst; are defined independently for each ve-
sitivity parametersa, as a step towards a more realistic hicle. In the diagram presented, we see a single-species sys-
model of road traffic. We keep the same speed-headway reem of cars, with one truck. The truck is given a slightly
lationship U(b) for each vehicle, and the progress of thelower value ofc than the carg0.8 compared to)land, as a
nonlinear waves is shown in Fig. 8. result, a gap opens up between it and the car in front. The
Vehicles with different sensitivity parameteastake dif-  gap has the effect on nonlinear traveling waves of inducing a
ferent lengths of time to move from low-density free flow temporary phase shift as the gap passes thréigh 9. The
into the congestion regime and back again, and we expedisturbance to the congestion wave then decays away and the
this to have a bearing on the backward propagation speed gfp, which is compressed as it enters the wave, starts to
nonlinear waves. Indeed, from Fig. 8, this appears to be veriexpand again as it leaves.
fied: having a random spread of valuesaohmong the ve- If, however, the truck is given auchlower top speed
hicles makes the nonlinear wave speed nonconstant as thian the car$0.5 compared to)] the gap that opens in front
propagates. However, despite being distorted, the nonlineaf the truck is wider than beforg=ig. 10. In fact, the gap is
waves maintain their overall structure as they propagatdarge enough to destroy the nonlinear wave. This is a form of
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FIG. 9. Single truck with top speed parameter
¢=0.8, observed within a system of 199 cars
with top speed parameter=1.a=1.0 for all ve-
hicles, and they set off evenly spaced with
b=2. Trajectories are displayed relative to the
road.

time

L
300 400 500 6
x (relative to road: alternate vehicles displayed)

nonlinear damping and it depends on the fact thatb) is  plitude. Linear theory gives us some indication of how long
small for largeb: the car in front of the truck can make large it would take for a small disturbance to grow sufficiently to
deviations from its equilibrium position without significantly cause “harsh” brakingdeceleration greater than some pre-
changing the truck’s speed. This is a possible mechanism faget value further down the line of traffic, for example. How-
stabilizing real traffic platoons. ever, the exact nature of the braking profile cannot be deter-
However, because the system is so unstable in this casgiined by this method.
(b=2 is the most unstable Configuration, when cars are driv- The Vehicie-foiiowing model discussed here makes many
ing at their desired spegda new wave is formed further assumptions about the real world, not least that there is no
upstream as a result of the very small perturbation that theglobal perception” about thejeneralstate of the traffic. In
truck experiences. The wave cannot be said to have expefieality, drivers learn that they are in a congested flow not just
enced a temporary disturbance, as in Fig. 9, because it ceasgsm the behavior of the car in front: much more information
to be nonlinear in its interaction with the truck and has t0js taken into account. Also, there is aiways an element of
start its nonlinear evolution afresh. This scenario is an €Xrandomness over time in, say, the sensitivity parameter of a
ample of a truck both causing a traffic jam and breaking ongjiven driver.
up. There is a large number of practically unmeasurable pa-
rameters associated with the traffic system, and the best we
can do in the case of a linearly unstable system is to say that
it is likely that harsh braking will take place during a given
Before a disturbance can start to evoharlinearly to any  time interval. The likelihood of such an event occurring
significant degree, it must have attained a large enough anwould be unacceptably high for a linearly unstable system: a

VIIl. APPLICATION TO REAL TRAFFIC FLOWS

time

FIG. 10. Same as for previous diagram, but
with Cyye=0.5.

300 400 500 600
x {relative to road: alternate vehicles displayed)
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suitable indicator of this instability is given by E@l9). the traffic density. We also require a continuous speed func-
Given fitted curves otJ(b) for a range of vehicle types, the tion. As for the headway, we define this function such that it
quantity §=[1/U/ (b)?][1— (2/a;)U/ (b)] could be evalu- interpolates the “discrete speed; when evaluated at each
ated for each vehicle automatically and in real time, usingcar position, i.e., v(x;,t)=v;(t) for all i. Clearly,
sensors under the road. Steps could be taken to stabilize thg: ;=v (X; + b(X;),t), and substituting in EqA1),

system(e.g., by reducing the speed limif the sum of this
quantity over the vehicles in a platoon were to fall below
Zero.

d
ab(xi ,t):U(Xi+b(Xi ,t),t)_U(Xi ,t) (A2)

IX. CONCLUSION Expanding the total derivative, we obtain

We have studied several aspects of the behavior of a mul- o o
tispecies car-following model both on circular and on ¢ d
straight roads. It was found, in the limit of long roads with a gt % -8 Fv(Xi, D) 2 (Xi, ) =v(x; +b(x B.D=v(xib).
large number of cars, that the linear stability criteria for cir- (A3)
cular and straight roads were the same, given an appropriate
definition of stability on a straight road. The definition used We now replace; by x throughout:
was that ofasymptotic stabilitya term used by Hermaet al.

[3] to describe the overall attenuation of a disturbance as it gb b
passes through a group of vehicles. Computer simulation ~ (X,D) Tv(X,1) = (x,t) =v (X+b(x,1),) ~v(X,1).
verified the stability criterion for a two-species system on a (A4)

circuitous road.

We also looked at the propagation of small disturbanceslf we now assume that all quantities(x,t) associated with
both on circular and straight roads. Again, computer simulathe traffic flow vary on length scales much greater than the
tions were used to verify that disturbances grow through asheadway, i.e.,
ymptotically unstable groups of vehicles and decay through
stable groups. It was found that by having a high enough
concentration of trucks in a population of cars, the system as bAx
a whole could be made asymptotically unstable, as predicted: EATTA <1 (AS)
in this sense, trucks can cause traffic jams. Dispersion, i.e.,
dependence of propagation speed on the frequency of distuwe can expand EqA4) as a Taylor series, obtaining
bance, was also analyzed, and seen in practice.

We then made some qualitative remarks concerning the
development of small disturbances into nonlinear waves, in-
cluding a description of the mechanisms involved in pattern
selection when periodic boundary conditions are applied. We
went on describe the effects of how, in the case of a prewhere each consecutive term on the right-hand side is much
dominantly “all-car” system, trucks interact with congestion less than the one preceding it. Neglecting all but the leading-
waves, including the nonlinear damping effect of trucksorder terms, replacing by 1k, and rearranging, we obtain
moving at close to their maximum speed in a platoon of
vehicles. Finally, some general remarks were made about
how this work could be applied to real-life traffic control ki+0x=0, (A7)
problems.

1
b;,+vb,=bv,+ Ebzvxx-l—'u, (AB)

which is the equation of vehicle conservation common to all
continuum models, witlg=kuv.

We also require a car-following law. In general, this can
APPENDIX be expressed as

We show, following Whitham irf{6], that in the limit of
slowly varying headway along the road, all car-following o .
models are equivalent to a continuum model. We take as a T(b;,bi,b;, ... vivi,...)=0, (A8)

starting point an equation true for all car-following models ) o i
which can be placed within the framework of continuum

models simply by replacing; with 1/k andv; with v. In the
(A1)  limit of slow variation, we canet all the arguments involv-

ing a time derivative to zero, yieldin§(1/k,v)=0: speed is
whereb; is the headway of cair (the distance to car+-1)  a function of local density alone.
andv; andv;,, are the speeds of carsandi+1, respec- In the case of multispecies models, we define traffic den-
tively. The overdot denotes a total time derivative. sitiesk!(x,t) for each vehicle typg as the number of ve-

Letting x; denote the position of cdr, we can define a hicles of typej per unit length of road. We replace the equa-

continuous headway function b(x,t) such that tion kb=1, true by definition of density for single-species
b(x;,t)=b;(t) for alli and we defind(x,t)=1/b(x,t) to be  systems, with the equatiad’_, ki(x,t)b!(v) =1, wheren is

bi=vi+1—vi,
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the _number of ve_hicle types gmx(x,t) is the local speed_ of k{+(kjv)xzo_ (A9)
traffic. The functionsb!(v) give the headway for vehicle

typesj moving at speed, in the limit of slow variation.

Consider a stretch of roadway of lendthmuch longer than

1Kkl for eachj, but much shorter than the length scale of For the continuum approximation to be valid for multispe-
density variation. Conservation of vehicles vyields cies systems, we require longer length scales of variation

fi“k{(x’,t)dx’=ij(x,t)v(x,t)—Lki(x+ L,t)v(x+L,t), than for single-species systems, as each vehicle type must
which after truncating Taylor expansions givesseparate have slowly varying density along the road and in general
conservation equations each density will be lower than in the single-species case.
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