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Power exchange between crossed laser beams and the associated frequency cascade
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The power exchange between crossed laser beams made possible by an ion-acoustic wave is studied, as is
the associated frequency cascade. The beam evolution is found to depend sensitively on whether the beams are
monochromatic or multichromatic initially, and whether their intersection region lies partially or completely
within the plasma.@S1063-651X~97!11601-4#

PACS number~s!: 52.40.Nk, 42.65.Es, 52.35.Mw, 52.35.Nx
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Stimulated Brillouin scattering~SBS! in a plasma@1# is
the decay of a higher-frequency light wave into a low
frequency light wave and an ion-acoustic wave. There is c
siderable current interest in the near-forward SBS of o
@2,3# and two@4–6# laser beams because of its relevance
inertial-confinement-fusion~ICF! research@7,8#.

The indirect-drive approach to ICF@8# involves multi-
chromatic laser beams that overlap as they enter the h
raum. SBS allows the frequency components of one beam
interact with the frequency components of another beam.
cause a power transfer between the beams affects the im
sion symmetry adversely, it is important to understand t
process.

Consider the interaction of two crossed laser beams~A
andB! that have a common carrier frequencyv0. The pon-
deromotive force associated with the beams drives an
acoustic~sound! wave ~grating! of wave vectorks5ka2kb
and a frequencyvs5csks , as shown in Fig. 1~a!. In turn, the
grating scatters the laser light from one beam direction to
other. This interaction is governed by@3,6#

]jA52 i ~ve
2/2v0c!nB, ]hB52 i ~ve

2/2v0c!n*A, ~1!

FIG. 1. Geometry of the interaction of crossed laser beams~a!
wave vectors of the laser beams and the ion-acoustic wave.~b! The
beam widths are equal and are denoted byw, and the beam inter-
section angle is denoted by 2f. The characteristic coordinatesj and
h measure distance in the propagation direction of beamsA and
B, respectively.
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where A5(va /cs)(me /mi)
1/2 and B5(vb /cs)(me /mi)

1/2

are the electron quiver velocities associated with the la
fields divided by a characteristic speed that is of the orde
the electron thermal speed andn is the electron density
variation associated with the grating divided by the ba
ground electron density. In Eqs.~1! j andh represent dis-
tance measured along the propagation directions of
beams, as shown in Fig. 1~b!. The time derivatives were
omitted from Eqs.~1! because the time taken by the beams
cross the interaction region is much shorter than the t
taken by the grating to respond to the ponderomotive for

Previous studies of the interaction of two crossed la
beams@4–6# assumed that the beams were monochroma
If the beam frequencies are equal, there is no power tran
in steady state. Conversely, if the beam frequencies differ
steady state there is a monotonic transfer of power from
higher-frequency beam to the lower-frequency beam.

In this paper we allow the beams to have many freque
components, and study the power transfer between the be
and the associated frequency cascade. For simplicity sup
that each beam has two frequency components with a
quency separation equal to the sound frequency. Su
quently, other frequency components are generated by
interaction, with the same frequency separation that w
present initially. One can highlight this frequency cascade
writing

A5(
j
Ajexp~2v j t !, B5(

j
Bjexp~2 iv j t !, ~3!

wherev j5 jvs , and

n5M exp~2 ivst !1N exp~ ivst !. ~4!

By substituting definitions~3! and ~4! into Eqs.~1! and ~2!,
and making the substitutionsAj /I

1/2→Aj , Bj /I
1/2→Bj ,

(2vsns /vs
2I )M→M , (2vsns /vs

2I )N→N, gj→j, and
gh→h, whereI is the intensity of beamA as it enters the
interaction region andg5ve

2vs
2I /4v0vsnsc is the spatial

growth rate of SBS, one can show that
2044 © 1997 The American Physical Society
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djAj52 i ~MBj211NBj11! ,

dhBj52 i ~N*Aj211M*Aj11!, ~5!

where

M52 i(
j
AjBj21* , N5 i(

j
AjBj11* . ~6!

The distance variablesj andh range from 0 tol , where
l is the number of SBS gain lengths over which the inter
tion occurs. The dependence ofl on the beam and plasm
parameters is discussed in detail in Refs.@4# and @6#. In re-
cent simulations@4# and experiments@9# relevant to ICF, the
idealized values ofl were 10 and 20, respectively. Althoug
small-scale inhomogeneities of the beams and plasma
reduce the value ofl in experiments@9#, it is potentially large
enough to warrant a detailed study of crossed-beam inte
tions in ICF.

Because of the intrinsic complexity of the frequency c
cade, we began our study with the one-dimensional~1D!
equations

FIG. 2. Frequency spectra of beamA obtained by solving the
1D cascade equations~6! and ~7! numerically.
-

an

c-

-

dxAj52 i ~MBj211NBj11! ,

dxBj52 i ~N*Aj211M*Aj11!, ~7!

wherex represents distance measured along a line that
sects the angle between thej andh axes. The 1D cascad
equations~6! and ~7! are generalizations of equations th
arise in the study of beat-wave acceleration@10,11#.

A truncated set of 1D cascade equations that allows e
beam to have 20 frequency components was solved num
cally, subject to the boundary conditionsA1(0)5A0(0)51
and B1(0)5B0(0)5r. The intensities of the first ten fre
quency components of each beam, at discrete distances
the boundary, are displayed in Figs. 2 and 3 for the cas
which r50.3. Although the ‘‘microscopic’’ evolution of the
individual frequency components is complicated, cert
trends are evident in the figures. Most of the power contai
in beamA is transferred to beamB, then returned to beam
A. As power is exchanged, the average frequencies of
beam spectra decrease and the range of frequencies
which power is distributed increases.

Motivated by the apparent periodicity of the power e
change, we plotted the total beam intensities

FIG. 3. Frequency spectra of beamB obtained by solving the
1D cascade equations~6! and ~7! numerically.
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P5(
j

uAj u2, Q5(
j

uBj u2 ~8!

and the grating strengths

R5uM u2, S5uNu2 ~9!

as functions of distance. The evolution of these ‘‘mac
scopic’’ quantities is displayed in Fig. 4 for the case in whi
r50.3. Despite the complexity of the microscopic evolutio
the macroscopic evolution is periodic and predictable.
test the robustness of the observed periodicity, the 1D
cade equations were solved numerically for boundary co
tions that included phase shifts between the beams~complex
r! and between the frequency components of each beam
all cases the macroscopic evolution was unchanged. Thi
sult prompted an analytic analysis of the macroscopic ev
tion.

It follows from the 1D cascade equations that

dxP522~R2S!, dxQ52~R2S!, ~10!

dxR52R~P2Q!, dxS522S~P2Q!. ~11!

Equations~10! are valid for arbitrary boundary conditions o
beamsA and B. Terms were omitted from Eqs.~11! that
equal zero for the boundary conditions described betw
Eqs. ~7! and ~8!. There are three conservation laws asso
ated with these model equations. The first isP1Q5T,
whereT5212r is the sum of the initial beam intensitie
and r5uru2. The second isR1S5U1TQ2Q2, whereU
522r , and the third isRS5V, whereV5r 2 is the product
of the initial grating strengths. By using these conservat
laws one cam eliminateR, S, andP from the model equa-
tions, which reduce to the potential equation

~dxQ!254Q~Q22r !~Q22!~Q2222r !. ~12!

It follows immediately thatQ oscillates regularly betwee
2r , the initial intensity of beamB, and 2, the initial intensity
of beamA. As a bonus, Eq.~12! can be solved analytically
@12#. The result is

Q~x!52r /@12~12r !sn2~2x,m!#, ~13!

where sn(2x,m) is the elliptic sine function of argumen
2x and orderm512r 2. We verified solution~13! by com-
paring it to the numerical solution of the 1D cascade eq
tions displayed in Fig. 4~a!. It follows from solution~13! that
the spatial period of the power exchange

l5K~m!, ~14!

whereK(m) is the complete elliptic integral of the first kind
For an initial intensity ratior50.09, l'3.8, in agreemen
with Fig. 4. One can obtain the same result by using
simpler formulal' ln(4/r ), which is valid forr!1.

In contrast to monochromatic illumination, which resu
in a monotonic transfer of power from one beam to the oth
multichromatic illumination results in a periodic exchange
power between the beams. The main difference between
two cases is the presence of gratingN in the latter, which
allows energy to be transferred from the higher-freque
-
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components of beamB to the lower-frequency componen
of beamA. This assertion is supported by Fig. 4~b!, in which
the growth of gratingN after beamA has been depleted is
precursor to the transfer of energy from beamB back to
beamA.

To test the validity of the preceding 1D results, we int
grated the two-dimensional~2D! cascade equations~5! and
~6! numerically, subject to boundary conditions that are
2D analogs of those described between Eqs.~7! and ~8!.
When the beams intersect as they enter the plasma, th
teraction region is a triangle. When the beams intersect a
they have entered the plasma, the interaction region
rhombus.

The results for the triangular interaction region are d
played in Fig. 5. Light shading represents high beam int
sity and grating strength, whereas dark shading repres
low beam intensity and grating strength. The beam and g
ing evolution is periodic in thex direction, and the growth of
gratingN is a precursor to the transfer of power from bea
B back to beamA, as predicted by the 1D cascade equatio
Within the interaction region, the 1D and 2D results agr
quantitatively.

The results for the rhomboidal interaction region are d
played in Fig. 6. Clearly, the beam evolution is not period
in any direction. Although 2D rhomboidal geometry su
pressed the periodicity that is characteristic of the 1D and
triangular geometries, it does not suppress the effects of m
tichromatic illumination completely. Under monochromat
illuminationP(j,0)5exp(22rj): the intensity of beamA de-
creases as it propagates near the entry boundary of b
B, as shown in Fig. 4~b! of Ref. @6#. In contrast, under mul-
tichromatic illuminationP(j,0)511cosh(4rj): the intensity
of beamA increases as it propagates near this boundary
shown in Fig. 6~a!. Once again this qualitative difference

FIG. 4. Periodic evolution of~a! the beam intensitiesP ~solid
line! andQ ~broken line!, and ~b! the grating strengthsR ~solid
line! andS ~broken line! obtained by solving the 1D cascade equ
tions ~6! and ~7! numerically.
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due to gratingN, which is strong near the aforementione
boundary, as shown in Fig. 6~b!.

In summary, the power exchange between two cros
laser beams was studied analytically and numerically. M
tichromatic illumination and two-dimensional geometry a
both capable of changing the qualitative character of
beam evolution, so their effects should not be overlooke
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