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Power exchange between crossed laser beams and the associated frequency cascade
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The power exchange between crossed laser beams made possible by an ion-acoustic wave is studied, as is
the associated frequency cascade. The beam evolution is found to depend sensitively on whether the beams are
monochromatic or multichromatic initially, and whether their intersection region lies partially or completely
within the plasma[S1063-651X97)11601-4

PACS numbgs): 52.40.Nk, 42.65.Es, 52.35.Mw, 52.35.Nx

Stimulated Brillouin scatteringSBS in a plasma[1] is (92+ 2ve0,+ 02)n= — wZAB*, 2
the decay of a higher-frequency light wave into a lower-
frequency light wave and an ion-acoustic wave. There is congnere A=(v,/c)(Mme/m)¥ and B=(v,/c)(me/m;)Y2

siderable current interest in the near-forward SBS of 0nge the electron quiver velocities associated with the laser

[2,3] and two[4~6] laser beams because of its relevance Gg|gs divided by a characteristic speed that is of the order of

inertial-confinement-fusiokiCF) researct7,8]. _the electron thermal speed amdis the electron density
The indirect-drive approach to ICF8] involves multi-  aiation associated with the grating divided by the back-

chromatic laser beams that overlap as they enter the hOhb'round electron density. In Eq&l) ¢ and 7 represent dis-
raum. SBS allows the frequency components of one beam 3 ce measured along the propagation directions of the

interact with the frequency components of another beam. Bg5eams. as shown in Fig.(H). The time derivatives were

cause a power transfer between the beams affects the implgitted from Eqs(1) because the time taken by the beams to
sion symmetry adversely, it is important to understand thig,ross the interaction region is much shorter than the time

process. ) ) taken by the grating to respond to the ponderomotive force.

Consider the interaction of two crossed laser be#/s Previous studies of the interaction of two crossed laser
andB) that have a common carrier frequeney. The pon-  peamg4—6] assumed that the beams were monochromatic.
deromotive force associated with the beams drives an ions the heam frequencies are equal, there is no power transfer
acoustic(sound wave (grating of wave vectorks=ka—K, i steady state. Conversely, if the beam frequencies differ, in
and a frequencws=cgks, as shown in Fig. (). In turn, the  gteady state there is a monotonic transfer of power from the
grating scatters the laser light from one beam direction to thﬁigher—frequency beam to the lower-frequency beam.

other. This interaction is governed g,6] In this paper we allow the beams to have many frequency
., . . components, and study the power transfer between the beams
deA=—i(wel2woC)NB,  9,B=—i(we/2woC)n*A, (1) and the associated frequency cascade. For simplicity suppose

that each beam has two frequency components with a fre-
quency separation equal to the sound frequency. Subse-

@ kp quently, other frequency components are generated by the
ke interaction, with the same frequency separation that was
> present initially. One can highlight this frequency cascade by

a writing

A= Aexd—wjt), B=2 Bexg—iopt), (3
J J

wherew;=jws, and

n=M exp —iwg)+N expiog). (4)

FIG. 1. Geometry of the interaction of crossed laser beda)s. By SUbStIFUtmg deflnltlor.1£§3? and (4)1/;nt0 Eas.( f,iznd ),
- : and making the substitutiong;/I*"“—A., B;/I7“—B;
wave vectors of the laser beams and the ion-acoustic way&he 2 o) i P i
beam widths are equal and are denotedahyand the beam inter- (2wsvs/wg)M ﬁM’ (_Za’s”s/_wsUNHN’ Ygﬁ 3 and
section angle is denoted bys2The characteristic coordinatésnd Y77 .Wherell is the Intenglt)é of beanh as It enters t.he
» measure distance in the propagation direction of beAmand  interaction region andy=wgwsl/4wowsvsC is the spatial
B, respectively. growth rate of SBS, one can show that
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FIG. 2. Frequency spectra of beanobtained by solving the

’ " FIG. 3. Frequency spectra of beanobtained by solving the
1D cascade equatiori§) and (7) numerically.

1D cascade equatiori6) and(7) numerically.

d:Aj=—i(MBj_1+NBj.1), dyAj=—i(MB;_1+NB, 1),
dyBj=—1(N"A_1+ M Aj.y), 5) deBj=—1(N*Aj_;+M*A; ), (7
where wherex represents distance measured along a line that bi-

sects the angle between tijeand » axes. The 1D cascade
equations(6) and (7) are generalizations of equations that
M=—i> ABY ;. N=i> A Bl 1. (6)  arise in the study of beat-wave acceleratj®,11.
] ] A truncated set of 1D cascade equations that allows each
beam to have 20 frequency components was solved numeri-
The distance variableg and » range from O td, where cally, subject to the boundary conditioBs(0)=A,(0)=1
| is the number of SBS gain lengths over which the interacand B;(0)=By(0)=p. The intensities of the first ten fre-
tion occurs. The dependence lobn the beam and plasma quency components of each beam, at discrete distances from
parameters is discussed in detail in R¢fd.and[6]. In re-  the boundary, are displayed in Figs. 2 and 3 for the case in
cent simulation$4] and experimentg9] relevant to ICF, the which p=0.3. Although the “microscopic” evolution of the
idealized values of were 10 and 20, respectively. Although individual frequency components is complicated, certain
small-scale inhomogeneities of the beams and plasma cdrends are evident in the figures. Most of the power contained
reduce the value dfin experiment$9], it is potentially large  in beamA is transferred to bearB, then returned to beam
enough to warrant a detailed study of crossed-beam interaé. As power is exchanged, the average frequencies of the

tions in ICF. beam spectra decrease and the range of frequencies over
Because of the intrinsic complexity of the frequency cas-which power is distributed increases.
cade, we began our study with the one-dimensigii&l) Motivated by the apparent periodicity of the power ex-

equations change, we plotted the total beam intensities
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P=2 |Al% Q=2 [B)* ®)
and the grating strengths
R=|M[?, S=|NJ? 9

Total intensity

as functions of distance. The evolution of these “macro-
scopic” quantities is displayed in Fig. 4 for the case in which
p=0.3. Despite the complexity of the microscopic evolution,
the macroscopic evolution is periodic and predictable. To
test the robustness of the observed periodicity, the 1D cas-
cade equations were solved numerically for boundary condi-
tions that included phase shifts between the be@oiplex
p) and between the frequency components of each beam. In
all cases the macroscopic evolution was unchanged. This re-
sult prompted an analytic analysis of the macroscopic evolu-
tion.

It follows from the 1D cascade equations that

Grating strength

d,P=—-2(R-9), d,Q=2(R-9), (10)

Distance

d,R=2R(P—Q), d,S=-2S5(P—-0Q). 11
X (P=Q) X (P=Q) (19 FIG. 4. Periodic evolution ofa) the beam intensitie® (solid

Equationg(10) are valid for arbitrary boundary conditions on line) and Q (broken ling, and (b) the grating strength& (solid
beamsA and B. Terms were omitted from Eq¢11) that I|_ne) andS (broken Ilne_ obtained by solving the 1D cascade equa-
equal zero for the boundary conditions described betweefions (6) and(7) numerically.
Egs. (7) and (8). There are three conservation laws associ-
ated with these model equations. The firstAs-Q=T, components of bearB to the lower-frequency components
where T=2+2r is the sum of the initial beam intensities Of beamA. This assertion is supported by Figh4 in which
andr=|p|2. The second iR+S=U+TQ—Q? whereU the growth of gratingN after beamA has been depleted is a
= —2r, and the third iRS=V, whereV=r? is the product Precursor to the transfer of energy from be&nback to
of the initial grating strengths. By using these conservatiorPeamA.
laws one cam eliminat®, S, andP from the model equa- To test the validity of the preceding 1D results, we inte-
tions, which reduce to the potential equation grated the two-dimension&2D) cascade equatior($) and
(6) numerically, subject to boundary conditions that are the
(d,Q)2=4Q(Q—2r)(Q—2)(Q—2—2r). (12 2D analogs of those described between E@s.and (8).
. ] ) When the beams intersect as they enter the plasma, the in-
It follows immediately thatQ oscillates regularly between teraction region is a triangle. When the beams intersect after
2r, the initial intenSity of beanB, and 2, the initial intenSity they have entered the p|asma, the interaction region is a
of beamA. As a bonus, Eq(12) can be solved analytically rhombus.
[12]. The result is The results for the triangular interaction region are dis-
played in Fig. 5. Light shading represents high beam inten-
Q(x)=2r/[1—(1—r)srP(2x,m)], (13 sity and grating strength, whereas dark shading represents
low beam intensity and grating strength. The beam and grat-
ing evolution is periodic in th& direction, and the growth of
gratingN is a precursor to the transfer of power from beam
B back to beanA\, as predicted by the 1D cascade equations.
Within the interaction region, the 1D and 2D results agree
quantitatively.
I=K(m), (14) The results for the rhomboidal interaction region are dis-
played in Fig. 6. Clearly, the beam evolution is not periodic
whereK(m) is the complete elliptic integral of the first kind. in any direction. Although 2D rhomboidal geometry sup-
For an initial intensity ratior =0.09, 1~3.8, in agreement pressed the periodicity that is characteristic of the 1D and 2D
with Fig. 4. One can obtain the same result by using thdriangular geometries, it does not suppress the effects of mul-
simpler formulal ~In(4/r), which is valid forr<1. tichromatic illumination completely. Under monochromatic
In contrast to monochromatic illumination, which results illumination P(£,0)= exp(—2r¢): the intensity of bearA de-
in a monotonic transfer of power from one beam to the othergreases as it propagates near the entry boundary of beam
multichromatic illumination results in a periodic exchange of B, as shown in Fig. @) of Ref.[6]. In contrast, under mul-
power between the beams. The main difference between th&hromatic illuminationP(£,0)= 1+ cosh(4¢): the intensity
two cases is the presence of gratiNgin the latter, which  of beamA increases as it propagates near this boundary, as
allows energy to be transferred from the higher-frequencyshown in Fig. 6a). Once again this qualitative difference is

where sn(Z,m) is the elliptic sine function of argument
2x and ordemn=1—r2. We verified solution(13) by com-
paring it to the numerical solution of the 1D cascade equa
tions displayed in Fig. @). It follows from solution(13) that
the spatial period of the power exchange
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FIG. 5. Gray-scale plot ofa) the total intensity of beam and FIG. 6. Gray-scale plot ofa) the total intensity of bear and

(b) the strength of grating\ obtained by solving the 2D cascade () the strength of grating\ obtained by solving the 2D cascade
equationg5) and(6) numerically for a triangular interaction region. equations(5) and (6) numerically for a rhomboidal interaction re-
The horizontal and vertical axes correspond to the propagation digion. The horizontal and vertical axes correspond to the propagation
rections of beam# andB, respectively. directions of beam# andB, respectively.
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