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Monte Carlo study of the molecular-weight distribution of living polymers
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A Monte Carlo simulation in two dimensions shows that the distribution of chain lengths in a system of
living polymers is well described by a Schultz molecular-weight distributgh, T) o< (1/L) ?ef~ texp(I/L),
with an effective exponeny, reflecting the crossover from dilute to semidilute regime. Beyond the cross-
over density ¢* the distribution function gradually reduces to a purely exponential faBii,T)
= ¢/L%exp(—1/L) known from mean-field approximation treatments. In the case of numerical simulation the
determination of¢* can be done by seeking the maximumngf. [S1063-651X97)11702-Q

PACS numbdrs): 61.25.Hq, 64.60.Cn, 05.50q

In this brief communication we report some recent com-results and MFA predictions, E@l), at least for the case of
puter studies of the molecular-weight distributiddWD) of  dense solutions and sufficiently largein three dimensions.
living polymers by means of a Monte Carlo simulation of a  However, this distribution is not valid in a dilute regime
polydisperse system of flexible linear chains on a two-for chains which are short enough to be smaller than the blob
domensional square lattice. size[9]. It is known that chains, which are fully swollen and

It is well known that living polymers, that is, systems in may slip through the network made up of the chains of av-
which linear chain polymers can break and recombine reerage size. without being seriously perturbed by the inter-
versibly in the process of equilibrium polymerization, are chain interaction, are subject to a power-law distribution,
characterized by a polydisperse molecular-weight distribu-
tion which changes when temperatiffe@nd/or densityp of C(l, Tyecl” 1, €
the system are varied. However, the precise form of the
MWD is still a matter of debate and controveifdy?] due to where y>1 is a standard critical exponent. These small
approximations in the analytical treatment of such system&hains behave essentially as isolated chains.
and difficulties in the relevant laboratory experimentation. In A “Schultz distribution” form of the MWD has been
this sense a computer experiment, which is “exact” in termsProposed2] to unify the two limiting cases
of the particular model, and free from the undesirable side 1
effects of the real experiment, is believed to be a useful c T)OC(|—> exp{ _'_
means in gaining more insight into the nature of this inter- ' L)
esting class of soft condensed matter systems, which include
different substances, such as sulfur, selenium, variou$his form follows from the partition function of self-
detergents (wormlike micelles, and polymers like avoiding walks of length and reflects an important isomor-
poly(a-methylstyreng[3,4]. phism between the standard Landau-Ginzburg spin model in

In the mean-field approximatiofMFA), the MWD of the  the formal limit of vanishing spin dimensionality and the
wormlike polymer species in thermal equilibrium is given by model of long flexible macromolecules. A similar distribu-
(3] tion with a negative power has been also propdséd in

order to explain experimental resultsefhancedanomalous

& [ ) diffusion in living polymers
’ —20 |
EX[{ - E) , (5)

C(I,T)=Fex —E (1)
with o>0. In this latter case the observed chain distribution
would even decay faster withthan the MFA result, Eq.1).

4

C(l,T)e

where ¢ denotes the total concentration of monomers in the L
system and. is the average chain length,

\Y,

L= ¢/eex;{— , ) This is, at first _sight, completely the opposite to v_vhat is
2kgT expected theoretically{1-3] and observed numerically
[5-8].

with V the energy of a bond along the backbone of the chain, Unfortunately, we do not dispose, at present, with
andkg the Boltzmann factor. MWD’s obtained directly from a real experiment and there
The distribution[Eq. (1)] is normalized such that a sum- has been hardly any numerical evidence for a distribution in
mation of mass over all chains lengths of the system shoulthe form of Eq.(4), either in three dimensions or in two
yield the total monomer density, that is, [¢IC(I,T)dI dimensions. This seems, at first sight, rather surprising, at
= ¢. In a series of computer experiments, we have observelkast in the latter case, since the valueyo greater in two
recently a very good agreemdii—8] between simulational dimensions(2D) than in three dimensiong3D): y,p= %
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, $=04 TABLE |. Parameters for the MWD curves.
10 .
T L (L) b R Ny %]  C4[%]
oT=0.26
A T=030 0.22 18.53 23.81 0.26 113.2 0.0391 0.001 65
° —— 7,4=0.30, L=10.2 0.23 14.60 19.57 0.27 84.29 0.0529 0.00271

0 et T Yor=0.19, L=6.83 1 0.24 1366 17.01 0273 70.16 0.0649 0.00383
o0als 025 11.60 1478 0.275 56.90 0.0727 0.004 93
0.255 10.65 13.65 0.28 50.75 0.0815 0.00598
0.26 10.17 1291 0.295 47.05 0.0889 0.0069
0.265 9.60 12.05 0.285 42.92 0.0958 0.007 98
0.27 9.165 11.17 0.250 3840 0.1 0.009 28
0.28 8.388 9.88 0221 3232 0.12 0.0124
0.29 7475 880 0200 27.77 0.14 0.0159
0.30 6.833 7.87 0190 2348 0.15 0.0196

10

60

chains,N; and to the total number of monomers in the sys-
tem, C,, are reported in Table I.

(L) is the true average chain length of the system
whereby also the single monomers are taken into account.
Rg is measured for chains starting from a dimer and larger,

~1.34, y3p=1.15. One could assume that this has beeri-€., for those which are defined by the presence of bonds.
mainly due to the simulation of too short chains. Single monomers do not contribute thus to the end-to-end

Recently, a new model for the study of living polymers in d|s_tra;]nce Olf the c.hams_,. Table | : ble. A
two dimensions was developed to study the static properties € values, given in 1able ,_alp_pear q_U|te reasonabie.
of wormlike micelles without the formation of ring4.1]. It p_Iot 0f C, vs inverse tgmpelratufél in semilog coordinates
uses basically the same binding-breaking algorithm as in a}ji€!ds @ perfect straight line with slope 2, as the energy
earlier work[6], but the chains are moved by means of anN€€ded to detach a monomer from the chafr;2, is. The
efficient slithering snakealgorithm in order to get faster average end-to-end distance of the chag, scales with
equilibration of the system. average chain length(L), with a power of~1.41. This

In the present investigation we use this model at fixed/@lue for the exponentizq is expected since some screen-
ied in order to achieve a change in the degree of interperfarger (L), and the exact exponentq=3/4 is effectively
etration(“overlap”) of the chains. In this way the crossover diminished. If the fitting parametelr, instead of L), is used
from a dilute to a semidilute regime at densiy and its for these plots, however, some unrealistic values of the scal-
impact on the MWD can be examined. Thus, although thd"g €xponents result, suggesting thatioes not represent the
number of chains decreases in the system, by increasirfi® mean chain length of the system once the single mono-
V/kgT, due to the strong excluded volume effect in two di- Mers have been exempted from consideration.
mensions, the chains gyration radius increases rapidly with AS pointed out by Sctfar [1], Eq. (4), which is known to
the contour lengti_. Another possibility would be to in- be rigorously correct in the limit of isolated chains, is ex-
crease systematicallg, but then nontrivial effects arise, as Pected to reduce to the MFA result, E), in the limit of
shown in[11]. After equilibration of the system, measure- large chain overlap. Indeed, from Table | it is evident that the
ments of the MWD were performed in intervals of 200 effective (measurefivalue of y, vy, increases toward the
Monte Carlo step§MCS) per monomer. Depending on tem- Value of y,p as one approaches the critical dens#ty at
perature, usually about 60 independent data sets have beEﬁO.ZG of the transition from a dilute to a semidilute re-
sampled. gme. .

Two typical MWD are shown in Fig. 1 fof =0.26 and The initial increase ofye; reflects the buildup of correla-
T=0.30. Some interesting features are immediately seen iHONS in the system as the average chain ler{gth grows,
Fig. 1. As has also been seen in other simulations, albeit ledat the density still remains belog™. For a dilute solution
pronounced, the number of single monomers appears to & polymers the correlation lengtlt, is a measure of the
much greater than expected from analytical predictions. ~ radius of gyratiorRy of the individual, independent polymer

If the monomers are omitted, all MWD curves are in theCoils. _
form of Eq. (4). The data for the curves without the mono-  Above ¢*, y. slowly decreases towards unity and the
mers has been fitted with three parameters b, L:  distribution, Eq.(1), becomes relevant. This is reasonable
C(l,T)=a(l/L)’exp(=I/L) so that an effective exponent 0O, since_ strong Qverlappin.g drives the system of chains into
Yets=1+b and a "mean chain length. have been deter- the ¢ regime. This respective value of for “collapsed”
mined. chains,y, may differ from the mean-field value of 1. Indeed,

The results fory; andL, as well as for the true average for monodisperse chains in two dimensions, thehains are
chain length({L), end-to-end distance of the chaifg,, and  not Gaussiari12] and display a value for the critical expo-

the percentage of single monomers with respect to all othement v,= % instead of vgaussia= 3, Which corresponds to

FIG. 1. Semilog plot of the MWD at =0.26 andT =0.30. Full
lines represent a fit with Eq4) and parameters, given in the leg-
end. The total monomer density in the systengis 0.4.
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globular chains. In another work2], the same value Schultz MWD, Eq.(4), with an effective exponent., re-

(vo=22) has been found for a system of polydisperse chaingflecting the crossover from a dilute to a _semidilute re_gime.

Thus it cannot be ruled out thay, also has a particular value Beyond the crossover densigy* the distribution function

in two dimensiong12,13. The transition from a dilute to a 9radually reduces to purely exponential form, £, known

semidilute system is seen experimentally by a maximum offom MFA treatments[3]. In three dimensions this effect

scattered intensity or a minimum of diffusion coefficigat. ~ Would be much less pronounced due to the proximity a6

In the case of numerical simulation the determination of“Mt-

¢* can be done by seeking the maximumngf. We are indebted to L. Scfex for stimulating discussion
Summarizing, we believe that our Monte Carlo simula-of the problem. This research has been sponsored by the

tions in two dimensions show that the distribution of chainBulgarian Foundation for Scientific Research, Grant No.

lengths in a system of living polymers is well described by aX—300/96.
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