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Nonlinear rotating modes: Green’s-function solution
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Lattice Green’s functions are used to investigate localized rotating modes recently exhibited in some non-
linear lattices. For a one-dimensional lattice, analytical expressions of the solution are obtained, first in the
rotating-wave approximation and then by including higher-order terms. Numerical simulations confirm the
validity of these solutions. The method is not restricted to one-dimensional lafi8&E#63-651%97)03202-9

PACS numbsg(s): 03.20:+i, 03.40.Kf, 63.20.Ry

[. INTRODUCTION difficult than for oscillatory modes because there is a quali-
tative change between the motion of the central site and the
The recent surge of interest in nonlinear energy localizaoscillations of the others. This precludes any continuum
tion in homogeneous discrete lattidds-3] has attracted at- limit, and different functions must be used to describe the
tention on localoscillatory modes, or discrete breathers. dynamics of different sites. In a previous wofg], we
They appear even more ubiquitous than the Soli[dﬂgje' ShO\.Ned how an apprQXImate solution Pould be derived. Nu-
cause they do not have a threshold energy and thus brid(j@er'ca| checks'have |nd|_cat§ad 'that this sc_>|ut|on was rather
the gap between the linear phonon modes and the highl oqd because it treated intrinsically the dlscretengss of the
nonlinear modes. Moreover, in some systems, discretf ttice. Howeve_zr, the_ method_that we used was strictly Ilm-
breathers are easily thermally activafégb] so that they are ited to a one-(_jlmensmnal Iattlce_. We present he_re a solu_tlon
likely to be physically relevant. MacKay and Aubry have based on lattice Green’s function. .The numer[cal sqluuon
recently proved that breathers are exact solutions of nonlinthat can be deduced from the analytical expressions given by
ear lattices if the intersite coupling is below a thresholdthe Green's functions is slightly better than the previous one,
which depends on the amplitude of the mda@g b_ut, more |mportantly, the method is not restricted to one-
But oscillatory modes are not the only nonlinear |oca|izedd|men5|_onal Iz_ittlces and can be formally _extended to two or
modes. In lattices of coupled rotators we recently exhibitedhree dimensions, although the calculations could become
rotating modes[8] in which a central rotator performs a n_1vo|v¢d. Section Il presents the modgl and the. solution de-
monotone increasing rotation while its neighbors oscillate/ived in the rotating-wave approximation. Section Ill goes
around their equilibrium positions. In the phase space of thé&eyond this approximation and discusses the results.
system, the motion of the central site and the motion of the
neighbors lie on opposite sides of a separatrix. As a result the 1. MODEL AND GREEN’S-FUNCTION SOLUTION
rotating modes are intrinsically discrete. There is no smooth IN THE ROTATING-WAVE APPROXIMATION
way to go from a full rotation to an oscillation. The theorem
of MacKay and Aubry[7] can be extended to show that
rotating modes can be exact solutions of the coupled-rotator 42U
equations of motions, and numerical investigations of the jy«; — U —si _ M _qsi
thermalization of the rotator lattice8] show that, like the JLsin(Une 3= Un) = SIN(N = Un—a) ] dt? gsintn . ()
breathers, the rotating modes can be thermally excited. ) ] ) ) .
Moreover, while it is Very easy to therma”y excite rotating Whereun IS the f|e|d Vanable a.SSOC|ated to thﬂl Site Of the
modes that involve one or a few lattice sites, nonlocalizedattice, and), g are constants. This set of equations describes
rotating modes are not observed unless one reaches very hiffte dynamics of a chain of coupled rotatépendula or mol-
temperatures because they have a very large energy. This i€guUles in a plastic crystaiith Hamiltonian
sharp contrast with oscillatory modes for which the nonlo- | du)2
calized counterparts, i.e., oscillatory waves, or phonons, are _ n
easily found. Aspa result, in physica)I/systems, smj)ch as plastic H_z [ 5(?) +K[1=cosUn: 1~ Un)]
crystals, where rotations have been found experimentally
[9,10], it seems very likely that they correspond to localized
rotating modes. This is why it is important to have a math-
ematical description of these modes.
However, due to the specificity of the rotating modes,wherel is the moment of inertia of a rotatoK andV the
getting an analytical solution turns out to be much moremagnitude of the coupling and on-site potentials, with

We consider the one-dimensional sine-lattice equation

+V[1-coa,]

, @
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J=K/I andg=V/I. One should notice that, instead of the erage velocity, o, modulated by the on-site potential which
usual harmonic coupling between sites, we consider here tnds to favor the positiong,=0 (mod 2#), while the other
sinusoidal coupling which is relevant, for instance, for dipo-sites will be driven to oscillate around equilibrium at a fre-
lar interactions. This is a crucial property of the model be-quency imposed by the central rotator. It is also convenient
cause it allows for the existence of localized rotating modesto express sim, and cosi, as

The monotonous rotation of a single site, while the neighbors
oscillate, does not cause a permanent buildup of coupling

o

energy. Moreover, as the coupling potential is bounded, the 5"“0:21 So,sin(rot) (9a)
rotating modes are highly localized for allg. This deter-
mines the approach that can be used to look for a solution. 0
Let us rewrite Eq(1) under the form coaly=Co+ >, CJ cogrmt) . (9b)
r=1 '
d?u, _
az —[9+J(cosuy 1+ Oy —y) JSINU, The coefficientsv,,, Co, Coy,, Sor (N=0,21,+2,...,
_ _ +o,r=1,...») andw are parameters to be determined.
+Jcosuy[sinup .y +sinu, 4] - (3 Inserting Egs(8) and (9) into the equations of motion&)

we get a set of equations that couple these parameters. In a
first step we confine ourselves to the “rotating-wave ap-
proximation,” often used to derive breather modes, which
amounts to retaining only the leading terms, i.e., the terms up
4) tor=1. We obtain

Equation (3) can be viewed as a modified version of the
equation of motion of theath pendulum with an effective
frequency

o} =[g+JI(cotp,;+cou,_1)]"?

2 _ 2q _

coupled to its neighbors by an effective coupling constant ®001= 05801~ ICo(v11F V1) (103
J*=Jcow, . (5) 0?0 .11=02109+3(1+Co)]-I(Spatvszy) . (10D

Let us look for a particular solution in which a single rotator )%, ,= wévn 1—IUns11tvn-11 ,» [n[=2 . (100

(say,n=0) undergoes a rotational motion while the others ' ' ' ’

oscillate. This means that In the remainder of this section we drop the second subscript

1 (vn1,Sp1 Will be denoted ag,,S,, respectively to sim-

plify the notation since onlyr=1 is considered in the
. . . rotating-wave approximation.

As we expect a highly localized solution, we preserve the The set of equation@l0) for v, is equivalent to the equa-

full nonlinearity of the equations for the central site only tions that one would derive for a linear homogeneous lattice
while the other equations are linearized around the equilib: 9

. " ) . [described by Eq(100 for all n], subjected to external
rlum position, which yields forces represented by,, Cqy, Sp. If the forcing terms are

|Ugl[>[un| for [n[=1 . ®)

d2u, known, thev, can be calculated with the lattice Green’s
e - — wsinug+J(u;+u_y)cosly (78 functionsG(n,w) solutions of
., (02~ 05)G(n,0) +I[G(N+1w)+G(N—1w)]=8n) .
g = ~[9+3(1+cosug)Ju. s+ I[u.z+sinug] (11)
(7b)  The Green’s functions have been calculated for many lattices
5 [11,12. Consequently the calculations presented here for a
d“u, = — wlu (U1t Uy ), N|=2 (70 one-dimensional lattice can be formally extended to higher
dt? @otin n+1t En=1h o dimensions although they could become tedious. For a

N-particle one-dimensional lattice with periodic boundary
wherewy= g+ 2J is the eigenfrequency of a single pendu- conditions,G(n,) is given by
lum in the small amplitude limit. _
Let us look for a solution of this set of equations under the e'nd

G = 12 ——
form (ne)=g T w’—wi+2Jcog

[

2 coNn
Up=vgot+ D, voSiNrot) | (8a) q
r=1

N &b w’— w5+2Jcoq) (12
~ _ where the wave vectay belongs to the first Brillouin zone
un=2l vneSinrot)  for [n[=1 . (8  (g=2km/N, —N/2<k=<N/2). In the limit of largeN, the
= discrete sum oveq can be replaced by an integral
This expression is chosen to match the type of motion that

we are looking for. The central rotator is expected to behave G(n,w)= 1 , f” cosq dq., (13
almost like a free rotating pendulum, i.e., rotate with an av- 7T(w2—w0) o 1+acog
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with a=2J/(0?— 03). Within the rotating-wave approximation, Eq4.7)—(20)

A localized solution, i.e., a Green’s function such thatdetermine completely the dynamics of the lattice for any
|G| —0 if [n]—o exists only ifa?<1. This defines the al- #0 as a functiqn of the motion of the centra! site=0. If
lowed frequencies», which must lie outside of the phonon they are combined with the Eq7a), they give a self-
band w3(q)=w2—2Jcos, ie. w?<wi=wi-2J or consistent set of equations which can be used to obtain the
0?>0=w2+2]. We denote, by G_(nw) and rotating mode solution. The analytical solution of this set of

G, (n,w), the expressions of the Green's function in the IOWequatlons is, however, difficult to derive and it might be

and high frequency range, respectively. Using the vl
of the integral(13), they can be written as

(F 1)|”|exq—z|n|)
2Jsinh(z)

G.i(nw)==* with  z>0,

wz—wg>

2]

z= coshl( + (14)

Separating in Eqg10a and(10b) the part corresponding to
the perfect lattice described by Ed.0¢) from the extra con-

meaningless to look for an exact solution while we have
made approximations, such as the partial linearization of the
original equations and the rotating-wave approximation. At

the same level of accuracy, one can drop the last term of Eq.

(7@ which amounts to assuming that the large amplitude
motion of the central site is not perturbed by the small vibra-

tions of the neighboring sites. The central rotator is simply

described by

dzuO 2 .
W+wosmu0=0, (21

which has an exact solution in terms of elliptic functions

tributions, and according to the properties of the Green'§14]. For a given lattice, the nonlinear rotating mode is a
function for linear equations, one can express the responsme-parameter excitation. It is convenient to characterize it

v, to these extra contributions at sitestd,,— 1 as

vn=G.(N,0)[0§(Sh—vo) ~ICo—1)(v1+v_1)]
+G+(n—1w)[I(Co~1Dv1—I(Sy—vo)]
+G+(n+1w)[I(Co~Dv_1=I(So—vo)] .
(15

where the appropriate Green'’s functi@n. has to be chosen
according to the frequency. Taking into account the defi-
nition (11) of the Green’s function, we obtain

vn=(So—vo)[®*G(n,w) = 5(n)]

+(1-Coluy[(0*~g)G(n,w)—8(n)] . (16)

Forn=1, Eq.(16) determinew ; as a function of the prop-
erties of the central rotator

B (So—vo) @G (1,w)
1-(1-Co)(0*—9)G=(Lw) °

7

U1

Inserting Eq.(17) into Eq.(16) for n#0, we obtain an equa-

tion giving the spatial localization of the nonlinear rotating

modes

_ @%6.(n,0)(S—v0)
T1-(1-Co)(0?=9)G=(1e) -

(18)

Un

The same calculation fon=0 gives a relation betweet
and the parameterS, and v, that characterize the central
site according to Eqg8) and(9),

S ©¥G.(00)+AG.(1Lw)]
vy ©2G.(0w)—1+Aw?G,(lw) (19
with
_ 2__ _
A:(l Co)[(0°—9)G+(0,w)—1] 20

1-(1-Co)(0*~9)G(1w)

by the angular velocityf), of the central rotator at its equi-
librium positionuy=0. The solution of the rotating pendu-
lum is then

_Up (8 —> Qo
sm?—s 7t,;< or Uug(t)=2a Tt,K

where the modulug of the Jacobi elliptic functions sn and
am is equal to

. (22

k=2wq/ Q<. (23

From this expression aigy, we can determine all the neces-
sary parameters to gat(t) for anyn+0. The Fourier series
expansion of the amplitude elliptic functidd5] gives the
expansion(8a) of uy,

() - ' ()
Uo= t+42, a %, (29

“r(1rgn) ™ 2K
whereK («) is the elliptic integral of the first kind<" is the
associated elliptic integralK’ =K(yJ1—«?%), and q
=exp(—7K'/K). Equation(24) givesv,=4q/(1+9g?). The
expression of sim, is easily derived from Eq(21) and ex-
pansion(24)

rq’

i 0 25
r(1+g2)o " 2K L @9

. ° o [2m\?
SiNUgy= 21 ( K_K)
so thatSy= (27/kK)?q/(1+q?), So/vo= (7! kK)2. Finally
codJy is derived from the Fourier series of[gi6)t/2) ,«]. Its
constant ternCg is

2m+1

27\ % q
C°:1‘(K_K) 2 =1y

B kK

2 2 1
2 sinkf[(2m+ 1) wK'/2K]"

m=0

(26)

IntroducingSy /vy andCy into Egs.(19) and(20) defines a
relation between the frequeney of the rotating mode and
Q). One should notice that, although we have dedusgd
vo, Co from an analytical expression fary(t), Eq. (22),
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valid for a central rotator uncoupled to the rest of the lattice,

we do notassume that the frequency of the rotating mode is (a)

simply the angular frequency of the isolated rotator as we did =0 ' l ' ' '

in our previous work[8]. The rotating mode is a one-

parameter solution which can be characterized by the value L5l )

of Q,. The value ofw, obtained by solving Eq(19) for a

given (), takes into account the coupling to the other sites.

The shape of the rotating mode away from the central site is =10
given by the values,, which are completely determined by

Eqg. (18), oncew is known. From Eq.18) and expression

(14), we get 0.5
w? 4q a2
U=t || =] —1
2Jsinte 1+9°| | kK 0.0 s
-20-10 0 10 20
1 n

—1)Inla—2zn|
X T (1-Co)(w?-g)Ga (L) - D E T (2D

To complete the determination of the solution defined by Eqg. 0.25 rroreree ,
(8) in the rotating-wave approximation, one can obtajy
from the relationQ)o=v4 o+ wv 4, deduced from the expres- 0.20¢
sion of the velocity of the central site at time-0. Figure 1
shows the extrema of oscillation,, (n#0), of the rotators 0.15F ]
for the parameter§=1, g=2 and two values of the fre-
guency of the rotating modey=1.264 91 which belongs to S5 0.10F1 -
the low frequency range and=3.033 15 in the high fre-
guency range. The amplitude of the vibrations away from the 0.05} ]
central rotating site decays a8 with
1 0.00
p= :e*zzﬁ[ngzJ—wZ: V(g+23-w?)—47] . 005

(28)

This decay rate is the same as the one obtained in the previ-
ous solutior{8] because it is determined by the properties of ~FiG. 1. Extrema of oscillationy, (n#0), of the off-center
the “nearlzed lattice. Except Whaﬂ is in the immediate otators for)= 1,9=2, andw=1.264 91(a) low frequency range
vicinity of the phonon b_and &~ w,, in the low frgquency and w=3.033 15(b) high frequency range.
range orow~wy, in the high frequency range, which corre- o N )
spond to unstable solutiori§]) where p approaches 1, the ties of the rotators shows that the initial condition radiates
rotating modes are highly localized excitations, as shown ogmall amplitude waves away from the center, i.e., the solu-
F|g 1. In the h|gh frequency range, the Sign of Mﬂ#s tion is not exact. This is not surprising since it has been
alternates, which corresponds to the usual “optical” characobtained in the rotating-wave approximation which neglects
ter Of modes above the top of the phonon band' a” hlgh frequency terms. The case that we haVe Chosen fOI’
The validity of the solution has been tested by numericafig. 2 is one example where the limitations of the Green’s
integration of Eqs(1) with an initial condition obtained from function solution show up clearly. Highey/J ratio, which
Egs. (22) and (27). The integration is performed with a 9ives more localized solutions, shows that the solution is in
fourth-order Runge-Kutta scheme and a time step chosen f@ct rather good. However, Fig. 2 points out the interest of
preserve the total energy to an accuracy ofLfbr the total ~ 90ing beyond the rotating-wave approximation.
time interval investigated. The results are plotted in Fig. 2.

The energy density IIl. BEYOND THE ROTATING-WAVE APPROXIMATION
2 The next approximation is to keep terms up to the fre-
1/du, 1 . ; . :
e,==|——| +=J[2—cogU,,1—U,)—COoUp—Uy_1)] quency v in the analysis of Eqs(7), and to identify the
21 dt 2 factors of simt and sin2t. The sinwt terms give again the

+g[1—cosu,] (29  set of equationg10), and the sin@t terms give the addi-
tional equations

shows a sharp peak around the center of the rotating mode. c
During one period of the mode there is an exchange betweeny , 0,1
the kinetic energymaximum when the central rotator is at 2o Vo= wpSo 2~ I (viatv_1 )= IC(vyatv-1))
the positionuy=0) and the potential energy, which is ac- (309
companied by a small oscillation of the width of the energy
density peak. Simultaneously the amplitude of the peak 0s- 40?0 11,=v+149+JI(1+Cp)]—I(Spotv 22
cillates to conserve the total energy, i.e., the area under the ,
peak. While Fig. 2a), for the energy density, seems to indi- +JC_0,1 (30D
cate an almost exact solution, the plot of the angular veloci- 2 Uil
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FIG. 2. Time evolution of an initial condition given by Eq22)
and (27) for g=2,J=1, »=3.033 15.(a) Energy densitye,. (b)
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footing. It is justified by the fundamental difference between
the large amplitude motion at the central site, which tends to
drive the other rotators, and the small vibrations of the re-
maining sites. The validity of the approach is confirmed by
the numerical tests of the solution.

Solving Egs.(30) with the Green’s function of the linear-
ized lattice, which are the same as the functions calculated
above simply taken for the frequencwanstead ofw, gives

Un2=G+(n,2w) wg(so,z_vo,z)_\](co_1)(01,24'071,2)

Coa
J TU

Coa
_37(01,1+U—1,1) +G.(n—1,20) 1,1

+I(Co— D)1= ISy~ vg) [+ G+(N+1,20w)

G

X
2

v_11FICo—Dv 1= ISy~ 02

(31

For the terms at frequencya Eq. (31) corresponds to Eq.
(15 derived above for the terms at frequeney As the
v+11 terms are known from the lowest order solution, Eqg.
(31) can be treated exactly as Eq5), except thatw is taken
from the value determined above.

For the numerical tests of this solution including the 2
corrections, we have, however, used a simplified version of
Eq. (31) by dropping thev . ; contributions, i.e., assuming
Co,1=0. This greatly simplifies the calculations and the ne-
glected terms are, in fact, extremely small. It is easy to un-
derstand why when one looks at their physical origin. The
vn,2 terms are the response of the lattice to thet&rm in the
central rotator motion, which is not small, and to @ 2on-
tribution resulting from the nonlinear coupling between the
central rotator and the vibration of thel sites. This second
factor is small because, as shown above, the vibrations away
from the center have a very small amplitude. Therefore, ne-

Angular velocities of the rotators. The amplitudes oscillate with theglecting this higher order term is justified. Looking at Eq.
period of the rotating mode. The slow oscillation observed on the(31) with C§,=0, one can see that it is then exactly identical

figure is an artifact due to a stroboscopic effect generated by th
finite sampling time(much larger than the integration time skep
which is necessary to generate a clear three-dimensional figure.
4wzvn,2: wgvn,2+‘](vn+1,2+vnfl,2) ) |n|>2 .
(300

This new set of equations couples thg,; andv, , terms.
However, as the, , terms do not appear in Eq&.0) which
give the leading contribution to the solution, E¢B0) can be
solved as before angl, ; is still given by the solution(27).
Then, to calculate , , (n#0), the set of equation@0b) and

fo Eq.(15). It means that, , is simply given by Eq(18) and
Green’s function calculated for the frequency,2.e.,

_ 40°G(n,20)(Syo o)
In2T 1= (1-Co) (40’ )G (1,20)

(32)

which can easily be evaluated by replaciBg, anduvg, by

their values taken from expansiof25) and (24). In doing

this evaluation, one should take care to use the appropriate
Green’s functionG... The choice betwees_ and G, is

now determined by the value of«2 For high frequency

(309 can be treated as a set of linear equations forced by theotating modesew being above the phonon band, this is also

external termsS, , andv .4 5, which are known. It should be

true for 2w and the functionG, can be used both far, ;

noticed that such a treatment of the equations is not fullyanduv, ,. But, for low frequency modes, it may happen that

self-consistent because it does not guarantee that3daq)
will be exactly satisfied becauseis only determined by the
lowest order set of equatiori&0). This is a limitation of the
method which is inherent in our approach, which does no

o is below the phonon band, i.ev,; is calculated with
G_, but 2w is above the phonon band afl. has to be
used forv,, ,. Of course 2 could fallinto the phonon band.
tn this casev,, would be determined by aonlocalized

treat the central rotator and the remaining sites on an equ&reen’s function. This means that the energy of the central
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illustrate the solution. This leaves onbne nonlinear equa-
tion to solve, the equation that describes the rotation of the
central site. In solving this equation, we again use the fun-
damental difference between the large amplitude motion of
the center and the small vibrations of the other sites, which is
consistent with the linearization already performed. This al-
lows us to get an analytical expression for the rotation of the
central site from the motion of an isolated rotator. However
this does not amount to treating the central rotator as if it
were really isolated because, although we useufit) the
functional expression of a single rotator, the calculation of
the frequencyof the rotation includes the coupling with the
other sites. For a weak coupling case, the frequency correc-
tion can be small and this is why the numerical solutions
obtained earlier with a method that ignored it were already
rather good 8]. It is, however, important to have a method
which can treat larger couplings, in particular, because some
real physical systems where rotations have been investigated
belong to this clasgl0]. The motion of the sites away from
the center are calculated by a lattice Green’s function method
which can include successively the main frequency of the
central rotation and its harmonics. We have shown that in-
cluding the second harmonic brings a significant improve-
ment. In principle, higher harmonics can be included in a
similar way but it would become meaningless owing to the
other approximations performed. Since the solution is ob-
tained by linearizing the equations away from the center, it
would be straightforward to generalize it to more compli-
cated interactions, such as second-neighbor interactions that
may be relevant for some real systems. This would simply
require the introduction of the lattice Green’s function appro-
priate for the new linearized equations. The only fundamen-
tal restriction on the interaction potential is that it must have
a finite range and be a periodic function to allow one site to
rotate while the neighbors oscillate without causing a mo-
notonous increase of the coupling enef§}. The main in-
terest of the Green’s function method is that it is not re-
stricted to one-dimensional lattices. Lattice Green’s
functions have been obtained for a large variety of two- and

FIG. 3. Time evolution of an initial condition including the three-dimensional lattices. Using these Green’s functions,
2w terms. The parameters are the same as in Fig. 2. The solution {e one-dimensional calculations shown in this paper can be
almost exact(a) Energy densitye, . (b) Angular velocities of the  aytended to higher dimensions. The only limitation is that
rotators. multidimensional Green’s function are generally not known

analytically and consequently the rotating mode solution will

rotator would constantly flow away from the center throughonly be known numerically. Work in this direction is in
linear waves at frequency«2 and the rotating mode would progress because the simulations of a thermalized lattice
be unstable. This provides an analytical justification for ourshow that, when rotating modes are thermally created they
previous numerical observatiof]. are generally localized contrary to vibrational modes which

Figure 3 shows the time evolution of an initial condition show up first as phonons before local breathers can be
including thev,, ; andv, , terms. The parameters are exactly formed. Moreover as molecular rotations have been detected
the same as in Fig. 2. Note that the initial condition is nowexperimentally in plastic crysta[®,10], it seems likely that
almost exact, showing the significant improvement broughhonlinear localized modes can exist in some real materials. It
by the introduction of the second harmonie 2n the solu- s therefore interesting to determine their properties.
tion.

The numerical simulations show therefore that a rather ACKNOWLEDGMENTS
accurate expression of the rotating modes can be obtained
with the lattice Green’s function method. The starting point  One of the authoréS.T) would like to express his sincere
is to linearize the equations outside of the site that performshanks to Professor S. Homma and all other members in the
a continuous rotation. This approximation is justified by theDivision of Physics, Faculty of Engineering, Gunma Univer-
qualitative differencebetween the motion of the center and sity, where part of this paper was done. M.P. would like to
that of the other sites, as well as by the small amplitude ohcknowledge the hospitality of the Gunma University, where
the vibrations of the off-center sites, even in the case of ahis work was initiated. Work at Los Alamos is under the
rather strong coupling such as the exangl@=2 chosento auspices of the U.S. D.O.E.

du, /AL




1928 SHOZO TAKENO AND MICHEL PEYRARD 55

[1] A.J. Sievers and S. Takeno, Phys. Rev. L&t;. 970(1988.

[10] F. Fillaux and C. J. Carlile, Phys. Rev. 42, 5990(1990.

[2] S. Takeno, K. Kisoda, and A.J. Sievers, Prog. Theor. Phys[11] S. Takeno, Prog. Theor. Phy28, 33 (1962, and references

Suppl.94, 242(1988.

[3] J.B. Page Phys. Rev. &1, 7835(1990.

[4] S. Takeno, J. Phys. Soc. Ji§1, 2821(1992.

[5] T. Dauxois, M. Peyrard, and A.R. Bishop, Phys. ReV4E
684 (1993.

[6] T. Dauxois and M. Peyrard, Phys. Rev. Lét, 3935(1993.

[7] R.S. MacKay and S. Aubry, Nonlineariff; 1623(1994); and
S. Aubry (unpublished

[8] S. Takeno and M. Peyrard, Physicad92, 140 (1996.

[9] L. Boyer, R. Vacher, L. Cecchi, M. Adam, and P. Bergays.

Rev. Lett.26, 1435(1971).

therein.

[12] A.A. Maradudin, E.W. Montroll, and G.H. Weiss, i8olid
State Physics, Advances in Research and Applicatiedised
by F. Seitz and D. Turnbul{Academic, New York, 1963
Suppl. 3.

[13] I.S. Gradshteyn and I.M. RyzhikTable of Integrals, Series
and ProductgAcademic, New York, 1980

[14] M. Toda, Special FunctiongAsakura Shoten, Tokyo, 1981
Chap. 7(in Japanese

[15] P.F. Byrd and M.D. Friedmarijandbook of Elliptic Integrals
for Engineers and PhysicistSpringer-Verlag, Berlin, 1954



