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Variational approach to solitons in systems with cascaded((z) nonlinearity
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Soliton propagation in media with cascadg® nonlinearities is investigated. The exact soliton solutions of
the governing equations are studied. They are either independent of any free parameters or depend only on one.
In the limit of a large mismatch the equations have a well known two-parameter nonlineadiglercsoliton
solution. The analogous two-parameter families of solutions for arbitrary phase mismatch are found by means
of the variational approach. This proves Menyuk’s robustness hypothg84i863-651X97)10701-3

PACS numbds): 42.65.Tg

. INTRODUCTION B 9°B
The cascading of the second-order nonlineariiés (1)
has attracted a special interest because of its effective con- . dC dC #*C

oo . R ——BC—6—- +B2=0.

tribution to the third order nonlinearities®, and been ' 9E B gs ¢ 957

proved to offer a promising approach to obtaining an effi- _ _

cient third-order nonlinear optical resporide-5]. It is well !N Egs.(1), B andC are the normalized slowly varying en-
known that wave propagation in materials with effecti@  Velopes of the fundamental and second-harmonic wajiss,
can be described by a nonlinear Sainger(NLS) equation the normalized coordinate in the direction of wave propaga-
which has exact soliton solutiofi§]. The equations govern- 10N, andjg is the normalized phase mismatch. The coordi-
ing the wave propagation in media with a cascagtnon- nates can be treated either as the time coordinate in the

linearity were shown to reduce to the NLS equation in theprObIem of wave propagation in a medium with dispersion,

limit of large phase mismatch and negligible conversion intoo, 2 transverse coordinate in the problem of wave propaga-

. " . tion in a planar waveguide; the coefficienjg, ., and §
';he serlzon?] harmom[Q,S]. Infadd't'(t)n’ It_rt1e govle:mng ?qua'b.characterize the wave evolution in the medium. For definite-
lons also have a number of exact Soliton SOIULoNS 10T arbly,ogg e consider below the case of a planar waveguide
trary mismatch[7,4,5,8,9. Detailed analyses of the exact

. , ) . which seems to be more realistic for an observation of soli-
soliton solutions have been carried out in a recent pggler tary waves

It should be pointed out here that analogous equations also Exact solutions of equatior(@) provide the starting point

appear in the theory of Fermi-resonance soliton propagatiopyr the choice of the trial functions, so at first we shall dis-

along the interface of organic semiconducti@d0,11. The  cyss these solutions.

stability of these exact solutions was studied 12]. Exact

soliton solutions of the equations governing the wave propa- Il. EXACT SOLITON SOLUTIONS

gation in media with cascadeg® nonlinearity are either

independent of any free parameters or depend only on one Several families of exact soliton solutions were found in

parameter. In contrast, asymptotically exact NLS soliton sot8—10. In what follows we extend the method §8,10],

lutions depend on two free parameters. This lies in the basiestricting our consideration to the case0.

of Menuyk’s robustness hypothesis of solitdisg], which Let us seek the solutions of Eqd) in the form

states that analogous two-parameter excitations should exist _ . .

for arbitrary mismatch. In what follows we investigate the B=F expl(~ikétiws)/2},

robustness hypothesis by means of a variational approach

[14] to the wave propagation in media with cascagéd

nonlinearities. Note that such an approach has been used {fhere 4 is a constant. Substitution of Eq®) into Egs.(1)

the recent pap€rl5] with the different choice of trial func-  gives

tions. Our choice appears more natural since it enables us to

reproduce the exact solutions for the appropriate values of K  ypw? ) , , )

the corresponding parameters. 5T 74 )F_'(”+ Yw)F' = ypF"—2F u=0,
The derivation of the equations governing the propagation 3)

of fundamental and second-harmonic waves in a medium (k— g+ y.w?)F—i(v+2vy.w)F' —y.F"—F? u=0.

with cascaded/® nonlinearities is described in detail fif].

In the normalized form they can be written as The imaginary parts of these equations vanish when

C=uF exp —iké+tiowst, F=F(s—vé), 2
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(a)

Yo=2%c»

v=0,

w=0,
4
b) 4

Let us first consider cage). Equationg3) for functionF are
compatible if

V== Ypw=—27%..

k/2 Vb 2
Py z—zﬂ : 6)
which determineg: andk:
1/2
= ﬁ) ke 2B ©6)
2. 2%~ e
Under these condition$; satisfies the equation
1/2
S Fi( 2 ) F?=0. v
2%~ Ye YbYe
Its first integral has the form
dF\? N o
x| ~(@TBF —(axy)y5 tS)
where
X: 2v2 1/23 o 3Vmye B ©
3V e ’ V2 Y 2%

and v is an integration constant. Zeros of the polynomial on

the right hand side of E(8) are

Fi=y, Fp=ila—y=V(a+7)?-4y4] (10
for the upper sign choice, and
Fi=v7, Fo=3[—a—y=J(a—y)?-4y"], (11

for the lower sign choice. Their locations on tReaxis de-

pend on the values af and y. There are different cases in

1895
for the “bright” soliton, and
1 18 )1/2 18
=_ >0 15
2 (Vc—va Ye— 27 19

for the “dark’” soliton, while u, k, and« are given by Eqgs.
(6) and (9), respectively. These solutions do not have any
free parameters.

In the same way a particular one-parameter solution can
be obtained in casth) [see Eqs(4)]. In this case we have

u=-1, kzg‘g—%wz, (16)

and integration of the E(q7) for the functionF leads to the
bright soliton

@ exp(—iké+iws)
cosh[k(s—vé)] ’
17

_au exp(—iké&f2+i wsl2)
~ cosH[k(s—v&)]

and the dark soliton

1 2 . .
B=—aﬂ<m—§)exp(—|k§/2+|ws/2),

(18)

B 1 2 ) .

C——a(cos [K(S_Ug)]—§)exp(—|k§+|ws),
where
112

a=?, K:(§) | (19

and B/2y.>0 for the bright soliton ang/2vy,<0 for the dark
soliton.
Note that, av approaches zero, we return to solutions

which F oscillates between the zeros where this polynomial12) and(13) with y,=21v,. The solutions obtained depend

is positive. In all these cases the solution of E8). can be

on one free parametap. This kind of solution has been

expressed in terms of elliptic functions. However, when thediscussed iri8,9].

two zeros of the polynomial, between which it is negative,

It is well known that there is another possibility to find an

coincide, we obtain the soliton solutions. Simple analysisasymptotically exact solution of Eqél). As many authors

(see details if8]) leads to the “bright” soliton solutiorti.e.,
higher intensity pulse on the zero background

as o iké2 ol ule— ke
B= %)—, c= ﬂﬁ— (12)
cositks cositks

and the “dark” soliton solution(i.e., lower intensity pulse
on the constant nonzero background

1 2 .
B=—a Sgr('“)(cosﬁks_ §) e ",
1 2 .
= T |aiké
c a"“'(cosﬁxs 3)9 ’ (13
where
1 ﬁ )1/2 ﬁ
== >0, 14
2 (2%—% 2%~ V¢ (14

have showri2,3], in the limit of large mismatck8 the wave
propagation is approximately described by the nonlinear
Schradinger equation. Indeed, whegs|y,|, |C|<B?, from

the second equation of Eg4) we obtain

1
C~—-—B2%
B

Substitution of Eq.(19) into the first equation of Eq91)
yields

(20

~JB #B 2

—_— — —_— 2 =
i 9% Yb 682+,8|B| B=0. (21

This NLS equation has the well-known soliton solution

K exf —i(ké— ws)/2]

B=V=87 coshk(s—vé)]

(22
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which depends on two free parameterandw, whilev and ~ The Lagrange equations for the variabtes, », {, v, and«
k are given by are

v=""7p0, K=2yp(x*=w?4). (23) w? 4 1w

“vml 7 t5 K’ AR +3{ws+5c=0,

The expression for the fiel@ follows from Eg.(20). (29)
Thus there exist several families of exact or asymptoti-

cally exact solutions of Eq$1). Solution(12) does not con- 4 ® 4 b2
tain any free parameters. Soluti¢h7) depends on one free  g— ?’c( w2+ — K2> — (_ Le—me|+ %gwg_ Sw+ + — —
parameterw, and exists if onlyy,=2v.. Finally, solution 5 2 5S¢
(22) depends on two free parametersand w but is exact -0 (29)
asymptotically for large values g8 only. One may expect ’
that in the system under consideration the analogous solito- 2 2
. . . ; d [b°+2c
nic solutions should exist which belong to a two-parameter — =0, (30)
family, and are not under constraint of any conditions. This dé K
possibility will be discussed in Secs. lll and IV with the use
of the variational approach. In what follows we confine our- w[d [b*+2c? b?+2c? dw o 31
selves to the case of bright soliton solutions only. As we 2 |dé¢ P k dE (32)
have seen, there are two families of the exact solutions with
different shapes of solitons. Consequently, there should bey p24 2¢2 b2 202
two families of variational solutions and they will be consid- d_g {) + ? (Let20yp)+ P (Letdoyc+20)
ered separately.
=0, (32
Il. VARIATIONAL APPROACH TO CASCADED X(Z)
SOLITONS: THE FIRST FAMILY OF SOLUTIONS 2[ (wz 4 2) 1 (w 1
- . Y|l gtk 5|5 e ety o
The variational approach is based on the possibility to 4 5 2\2°¢ T4
present Eqs(l) as Lagrange equations corresponding to the 8 4
Lagrangian + 3 ypb??+ 3 YC?Kk2+c? B— yc( 0+ 3 K2>
L:f [i—(B*B—B*B +CEC—C*Cy) ® ! 8 2
i . . .
+ L (C*Cs—C:C)|ds From Egs.(30) and (31) we obtaindw/d¢=0, i.e.,w is a
2 constant. Then the differentiation of the phas¢Eq. (26)]

o with respect to¢ yields the expression for the “wave num-
+ f [BC* C— y,B¥Bs— y.C¥C,+B?C*+B*2C]ds,  ber” k,
24 »

whereB,= B/ 3¢, Bg=dB/ds, and so on.
Solution (17) suggests the following form for the trial From Eq.(32) we obtain

functions
Ypb?+4y.c?
b expi@/2 c exp(i V={=—0 — >, (35)
B Al ¢/2) e plie) 25 e b2t 2c2
cosi[ k(s—¢)] cost[ k(s—¢)]
and, consequently,
where
w? y,b%+4y.c?
=w(s—&2)+ 7. 26 =g —
e=w(s—¢&2)+ 7 (26) k ¢ 5 b2+ 202 (36)
Substitution of Eqs(25) into Eq. (24) yields o ) )
Substitution of Eqs(28) and (29) into Eq. (33) yields the
4h? w? 4 ,) 1o 1 relation
L=——|—vl—*+=« )——(—gg—ng + - o,
3K 4 5 2 2 4 2(7bb2+ ,}/CCZ) K2: bzc, (37)
4c? , 4 ) (o
+ EP B— vl 0t 5% )7\2 Le Mg so Eqgs.(28) and(29) can be written in the form
1 32b% 5 k+ w2+4 5 38
+§§w§—5w +1—57 (27 C—gi ’be gK , (38
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FIG. 1. The dependence of the wave number of the solitonic

excitation onw for the first family of solutions. The lower curve
corresponds to the exact variational soluti@i®), and the upper
curve to its approximatiori41). The chosen parameter values are
equal toy,=vy.=—1, B=-5, and 6=0. The soliton widthx is
calculated with the use of formuld4).

FIG. 2. The dependence of the wave number of the solitonic
excitation on the wave number for the second family of solutions.
The lower curve corresponds to the exact variational soluti®
and the upper curve to its approximati#8). The chosen values of
the parameters are equal 4¢=vy.=—1, =10, 6=0, andx=1.

) 25 ) 4 ) The relative difference between them is of ordgry.<*/ 5.
b=3—2 k—B-i—ycw-i—gK —dw
IV. VARIATIONAL APPROACH TO CASCADED x®
k w2 4 SOLITONS: THE SECOND FAMILY OF SOLUTIONS
X| =+ yp| —+ = &2 . (39 _ _ _
2 4 5 In this section we start from the NLS asymptotically exact

solution(22), which suggests the following form for the trial

i _ _ functions:
When we substitute these expressions into Bd) we ob-
tain the equation fok. The solution of the equation obtained

b exp(i ¢/2) c explie)

gives the wave numbés as a function of two parametess B=————, =————, 42
and cosh k(s—¢)] cost[ k(s—¢)] (42)
where ¢ is given by Eq.(26). These trial functions differ
B—dw 2 1 from the functions given by Eq25) only by the power of
k(w,k)= > Tg (6p+ ye) K2 — 2 (Yot 27y @? coshk(s—¢)] in the expression foB. Their substitution into

the Lagrangian yields

B— 6w 2 , 1
* 55 By vk 7 (7 2b? 0w K 1w 1
R R - I A PR R R
2 256 1/2
—2y0)0?| +o¢ 7b7cK4) (40 4c? , 4 )\ (o
T3 [P Yol @t g k= 5 L e
2

The choice of the sign before the square root depends on the n 1 (0o So |+ § E (43)
sign of the expression in the square brackets, and should be 2°7¢ 3 Kk’

made so that Eq40) reproduces the exact solution given by
Eg. (12) whenw=0 andx is given by Eq.(14). It is worth-  The Lagrange equations are similar to those given by Egs.
while to present a simple and useful formula keeping only(28)—(33). We obtain againv=const, so thak is given by
the first two terms in the series expansion of E4Q) in Eq. (34). In the case under consideration we obtain
powers ofw” whenk is given by Eq.(14),
b?+ §.c?
Uzggz_w%—“, (44)

2Bp 3%Ye b%+ 3c?

= - w
2= Ye 2(¥pt o)

k(w) (41

and, hence,

This reproduces the exact solutiof@s and(16) in both spe-
cific casesv=0 andy,=27v,. In Fig. 1 a plot of the function
k(w) is shown. The lower line shows the exact variational
solution (40) and the upper line shows its approximation
(41). Instead of Eqs(37)—(39), we obtain

ypb?+ §y.c?

b?+ 2¢? 49
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8
(ybb2+§yccz x%=b?c, (46)
31k w? K 4
c=zlz 7T +3]| (47)
3 4 k w?  K?
2_ " _ 24 2 _ a4
b—4{k ﬂ-i-yc(a)-f-sk +dw 2+'Yb 4+3
(48)

Substitution of the last two equations into E46) yields the
equation fork. Its solution has the form

B—dw 2 ) 1 )
k(w,K)=T+ Yt g VoK _Z(7b+27’c)w
B—bw 2 1 2
iH 5| g Ye| K 7 (%2700’
64 1/2
+ I ’yb’ch4] (49

that Eq.(49) reproduced Eq23) for |8>| yul,| v¢|- In Fig. 2

the plots of the functiork(w) are shown fork given by Eq.
(14). The lower line corresponds to the exact variational so-
lution (49), and the upper line to its asymptotic for@2). It

is seen that the relative difference between the solutions is of
the order ofy,y.«%3?<1, as it should be expected.

V. CONCLUSION

In this paper we investigated the soliton propagation in
media with cascadeg® nonlinearities. We studied the exact
soliton solutions of the equations governing the wave propa-
gation in the media under consideration. The exact solutions
discussed are either independent of any free parameters or
depend only on one free parameter. In the framework of
variational approach we found soliton solutions for arbitrary
phase mismatch which depend on two free parameters. In the
limiting cases the solutions obtained reduce to the exact or
asymptotically exact solutions of the governing equations.

ACKNOWLEDGMENT

This work was supported by an International Association
for the promotion of cooperation with scientists from the

The sign before the square root depends on the sign of thdew Independent States of the former Soviet Unit-
expression in the square brackets, and should be chosen $4S) 93-0461 research grant.

[1] R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, and[9] C. K. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B

H. Vanherzeele, Opt. Letl7, 28 (1992.
[2] R. Schiek, J. Opt. Soc. Am. BO, 1848(1993.
[3] Q. Guo, Quantum Op®6, 133(1993.
[4] K. Hayata and M. Koshiba, Phys. Rev. Lettl, 3275(1993.
[5] M. J. Werner and P. D. Drummond, J. Opt. Soc. Am1®&
2390(1993.

11, 2434(1994.

[10] V. M. Agranovich, O. A. Dubovsky, and A. M. Kamchatnov,
J. Phys. Chenm98, 13 607(1994.

[11] V. M. Agranovich, S. A. Darmanyan, O. A. Dubovsky, A. M.
Kamchatnov, E. |. Ogievetsky, P. Reineker, and Th.
Neidlinger, Phys. Rev. B3, 15 451(1996.

[6] M. J. Ablowitz and H. SegurSolitons and the Inverse Scatter- [12] A. D. Boardman, K. Xie, and A. Sangarpaul, Phys. Re\62\

ing Transform(SIAM, Philadelphia, 19811

4099 (1995.

[7] Y. N. Karamzin and A. P. Sukhorukov, Zh. Eksp. Teor. Fiz. [13] C. R. Menyuk, J. Opt. Soc. Am. B0, 1585(1993.

68, 834 (1975 [Sov. Phys. JETR1, 414 (1976]

[14] D. Anderson, Phys. Rev. 87, 3135(1983.

[8] V. M. Agravonich and A. M. Kamchatnov, Pis'ma Zh. Eksp. [15] V. V. Steblina, Y. S. Kivshar, M. Lisak, and B. A. Malomed,

Teor. Fiz.59, 397 (1994 [JETP Lett.59, 429 (1994].

Opt. Communl118 345(1995.



