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Variational approach to solitons in systems with cascadedx„2… nonlinearity
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Soliton propagation in media with cascadedx~2! nonlinearities is investigated. The exact soliton solutions of
the governing equations are studied. They are either independent of any free parameters or depend only on one.
In the limit of a large mismatch the equations have a well known two-parameter nonlinear Schro¨dinger soliton
solution. The analogous two-parameter families of solutions for arbitrary phase mismatch are found by means
of the variational approach. This proves Menyuk’s robustness hypothesis.@S1063-651X~97!10701-2#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The cascading of the second-order nonlinearitiesx~2!: x~2!

has attracted a special interest because of its effective
tribution to the third order nonlinearitiesx~3!, and been
proved to offer a promising approach to obtaining an e
cient third-order nonlinear optical response@1–5#. It is well
known that wave propagation in materials with effectivex~3!

can be described by a nonlinear Schro¨dinger~NLS! equation,
which has exact soliton solutions@6#. The equations govern
ing the wave propagation in media with a cascadedx~2! non-
linearity were shown to reduce to the NLS equation in
limit of large phase mismatch and negligible conversion i
the second harmonic@2,3#. In addition, the governing equa
tions also have a number of exact soliton solutions for a
trary mismatch@7,4,5,8,9#. Detailed analyses of the exa
soliton solutions have been carried out in a recent paper@9#.
It should be pointed out here that analogous equations
appear in the theory of Fermi-resonance soliton propaga
along the interface of organic semiconductors@8,10,11#. The
stability of these exact solutions was studied in@12#. Exact
soliton solutions of the equations governing the wave pro
gation in media with cascadedx~2! nonlinearity are either
independent of any free parameters or depend only on
parameter. In contrast, asymptotically exact NLS soliton
lutions depend on two free parameters. This lies in the b
of Menuyk’s robustness hypothesis of solitons@13#, which
states that analogous two-parameter excitations should
for arbitrary mismatch. In what follows we investigate th
robustness hypothesis by means of a variational appro
@14# to the wave propagation in media with cascadedx~2!

nonlinearities. Note that such an approach has been use
the recent paper@15# with the different choice of trial func-
tions. Our choice appears more natural since it enables u
reproduce the exact solutions for the appropriate value
the corresponding parameters.

The derivation of the equations governing the propaga
of fundamental and second-harmonic waves in a med
with cascadedx~2! nonlinearities is described in detail in@9#.
In the normalized form they can be written as
551063-651X/97/55~2!/1894~5!/$10.00
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]2B

]s2
12B*C50,

~1!

i
]C

]j
2bC2d

]C

]s
2gc

]2C

]s2
1B250.

In Eqs.~1!, B andC are the normalized slowly varying en
velopes of the fundamental and second-harmonic waves,j is
the normalized coordinate in the direction of wave propag
tion, andb is the normalized phase mismatch. The coor
nate s can be treated either as the time coordinate in
problem of wave propagation in a medium with dispersio
or a transverse coordinate in the problem of wave propa
tion in a planar waveguide; the coefficientsgb , gc , and d
characterize the wave evolution in the medium. For defini
ness we consider below the case of a planar wavegu
which seems to be more realistic for an observation of s
tary waves.

Exact solutions of equations~1! provide the starting point
for the choice of the trial functions, so at first we shall di
cuss these solutions.

II. EXACT SOLITON SOLUTIONS

Several families of exact soliton solutions were found
@8–10#. In what follows we extend the method of@8,10#,
restricting our consideration to the cased50.

Let us seek the solutions of Eqs.~1! in the form

B5F exp$~2 ikj1 ivs!/2%,

C5mF exp$2 ikj1 ivs%, F5F~s2vj!, ~2!

wherem is a constant. Substitution of Eqs.~2! into Eqs.~1!
gives

S k21
gbv

2

4 DF2 i ~v1gbv!F82gbF922F2m50,

~3!
~k2b1gcv

2!F2 i ~v12gcv!F82gcF92F2/m50.

The imaginary parts of these equations vanish when
1894 © 1997 The American Physical Society
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~a! v50, v50,
~4!

~b! gb52gc , v52gbv522gcv.

Let us first consider case~a!. Equations~3! for functionF are
compatible if

k/2

k2b
5

gb

gc
52m2, ~5!

which determinesm andk:

m56S gb

2gc
D 1/2, k5

2bgb

2gb2gc
. ~6!

Under these conditions,F satisfies the equation

F92
b

2gb2gc
F6S 2

gbgc
D 1/2F250. ~7!

Its first integral has the form

S dFdxD
2

5~a7F !F22~a7g!g2, ~8!

where

x5S 2&

3Agbgc
D 1/2s, a5

3Agbgc

2&

b

gc22gb
, ~9!

andg is an integration constant. Zeros of the polynomial
the right hand side of Eq.~8! are

F15g, F25
1
2 @a2g6A~a1g!224g2# ~10!

for the upper sign choice, and

F15g, F25
1
2 @2a2g6A~a2g!224g2#, ~11!

for the lower sign choice. Their locations on theF axis de-
pend on the values ofa andg. There are different cases i
which F oscillates between the zeros where this polynom
is positive. In all these cases the solution of Eq.~8! can be
expressed in terms of elliptic functions. However, when
two zeros of the polynomial, between which it is negativ
coincide, we obtain the soliton solutions. Simple analy
~see details in@8#! leads to the ‘‘bright’’ soliton solution~i.e.,
higher intensity pulse on the zero background!

B5
a sgn~m!e2 ikj/2

cosh2ks
, C5

aumue2 ikj

cosh2ks
, ~12!

and the ‘‘dark’’ soliton solution~i.e., lower intensity pulse
on the constant nonzero background!

B52a sgn~m!S 1

cosh2ks
2
2

3De2 ikj/2,

C52aumuS 1

cosh2ks
2
2

3De2 ikj, ~13!

where

k5
1

2 S b

2gb2gc
D 1/2, b

2gb2gc
.0, ~14!
l

e
,
s

for the ‘‘bright’’ soliton, and

k5
1

2 S b

gc22gb
D 1/2, b

gc22gb
.0 ~15!

for the ‘‘dark’’ soliton, whilem, k, anda are given by Eqs.
~6! and ~9!, respectively. These solutions do not have a
free parameters.

In the same way a particular one-parameter solution
be obtained in case~b! @see Eqs.~4!#. In this case we have

m561, k5 4
3b2

gb

2
v2, ~16!

and integration of the Eq.~7! for the functionF leads to the
bright soliton

B5
am exp~2 ikj/21 ivs/2!

cosh2@k~s2vj!#
, C5

a exp~2 ikj1 ivs!

cosh2@k~s2vj!#
,

~17!

and the dark soliton

B52amS 1

cosh2@k~s2vj!#
2
2

3Dexp~2 ikj/21 ivs/2!,

~18!

C52aS 1

cosh2@k~s2vj!#
2
2

3Dexp~2 ikj1 ivs!,

where

a5
b

2
, k5S U b

2gc
U D 1/2, ~19!

andb/2gc.0 for the bright soliton andb/2gc,0 for the dark
soliton.

Note that, asv approaches zero, we return to solutio
~12! and ~13! with gb52gc . The solutions obtained depen
on one free parameterv. This kind of solution has been
discussed in@8,9#.

It is well known that there is another possibility to find a
asymptotically exact solution of Eqs.~1!. As many authors
have shown@2,3#, in the limit of large mismatchb the wave
propagation is approximately described by the nonlin
Schrödinger equation. Indeed, whenb@ugcu, uCu!B2, from
the second equation of Eqs.~1! we obtain

C'2
1

b
B2. ~20!

Substitution of Eq.~19! into the first equation of Eqs.~1!
yields

i
]B

]j
2gb

]2B

]s2
1
2

b
uBu2B50. ~21!

This NLS equation has the well-known soliton solution

B5A2bgc

k exp@2 i ~kj2vs!/2#

cosh@k~s2vj!#
, ~22!



ot

e

t
lit
te
hi
se
r
w
i
b

d-

t
th

l

-
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which depends on two free parametersk andv, while v and
k are given by

v52gbv, k52gb~k22v2/4!. ~23!

The expression for the fieldC follows from Eq.~20!.
Thus there exist several families of exact or asympt

cally exact solutions of Eqs.~1!. Solution~12! does not con-
tain any free parameters. Solution~17! depends on one fre
parameterv, and exists if onlygb52gc . Finally, solution
~22! depends on two free parametersk andv but is exact
asymptotically for large values ofb only. One may expec
that in the system under consideration the analogous so
nic solutions should exist which belong to a two-parame
family, and are not under constraint of any conditions. T
possibility will be discussed in Secs. III and IV with the u
of the variational approach. In what follows we confine ou
selves to the case of bright soliton solutions only. As
have seen, there are two families of the exact solutions w
different shapes of solitons. Consequently, there should
two families of variational solutions and they will be consi
ered separately.

III. VARIATIONAL APPROACH TO CASCADED x„2…

SOLITONS: THE FIRST FAMILY OF SOLUTIONS

The variational approach is based on the possibility
present Eqs.~1! as Lagrange equations corresponding to
Lagrangian

L5E
2`

` F i2 ~Bj*B2B*Bj1Cj*C2C*Cj!

1
id

2
~C*Cs2Cs*C!Gds

1E
2`

`

@bC*C2gbBs*Bs2gcCs*Cs1B2C*1B* 2C#ds,

~24!

whereBj5]B/]j, Bs5]B/]s, and so on.
Solution ~17! suggests the following form for the tria

functions

B5
b exp~ iw/2!

cosh2@k~s2z!#
, C5

c exp~ iw!

cosh2@k~s2z!#
, ~25!

where

w5v~s2j/2!1h. ~26!

Substitution of Eqs.~25! into Eq. ~24! yields

L5
4b2

3k F2gbS v2

4
1
4

5
k2D2

1

2 S v

2
zj2hjD1

1

4
zvjG

1
4c2

3k Fb2gcS v21
4

5
k2D2S v

2
zj2hjD

1
1

2
zvj2dv G1

32

15

b2c

k
. ~27!
i-

o-
r
s

-
e
th
e

o
e

The Lagrange equations for the variablesb, c, h, z, v, andk
are

2gbS v2

4
1
4

5
k2D2

1

2 S v

2
zj2hjD1 1

4 zvj1 8
5c50,

~28!

b2gcS v21
4

5
k2D2S v

2
zj2hjD1 1

2 zvj2dv11
4

5

b2

c

50, ~29!

d

dj S b212c2

k D50, ~30!

v

2 F ddj S b212c2

k D G1
b212c2

k

dv

dj
50, ~31!

d

dj S b212c2

k
z D1

b2

k
~zj12vgb!1

2c2

k
~zj14vgc12d!

50, ~32!

b2F2gbS v2

4
1
4

5
k2D2

1

2 S v

2
zj2hjD1

1

4
zvjG

1
8

5
gbb

2k21
8

5
gcc

2k21c2Fb2gcS v21
4

5
k2D

2S v

2
zj2hjD1

1

2
zvj2dvG1

8

5
b2c50. ~33!

From Eqs.~30! and ~31! we obtaindv/dj50, i.e.,v is a
constant. Then the differentiation of the phasew @Eq. ~26!#
with respect toj yields the expression for the ‘‘wave num
ber’’ k,

k5
v

2
zj2hj . ~34!

From Eq.~32! we obtain

v5zj52v
gbb

214gcc
2

b212c2
, ~35!

and, consequently,

k52hj2
v2

2

gbb
214gcc

2

b212c2
. ~36!

Substitution of Eqs.~28! and ~29! into Eq. ~33! yields the
relation

2~gbb
21gcc

2!k25b2c, ~37!

so Eqs.~28! and ~29! can be written in the form

c5
5

8 F k21gbS v2

4
1
4

5
k2D G , ~38!
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b25
25

32 Fk2b1gcS v21
4

5
k2D2dv G

3F k21gbS v2

4
1
4

5
k2D G . ~39!

When we substitute these expressions into Eq.~37! we ob-
tain the equation fork. The solution of the equation obtaine
gives the wave numberk as a function of two parametersv
andk:

k~v,k!5
b2dv

2
1
2

5
~6gb1gc!k

22
1

4
~gb12gc!v

2

6S Fb2dv

2
2
2

5
~6gb2gc!k

21
1

4
~gb

22gc!v
2G21 256

25
gbgck

4D 1/2. ~40!

The choice of the sign before the square root depends on
sign of the expression in the square brackets, and shoul
made so that Eq.~40! reproduces the exact solution given b
Eq. ~12! whenv50 andk is given by Eq.~14!. It is worth-
while to present a simple and useful formula keeping o
the first two terms in the series expansion of Eq.~40! in
powers ofv2 whenk is given by Eq.~14!,

k~v!.
2bgb

2gb2gc
2

3gbgc

2~gb1gc!
v2. ~41!

This reproduces the exact solutions~6! and~16! in both spe-
cific casesv50 andgb52gc . In Fig. 1 a plot of the function
k~v! is shown. The lower line shows the exact variation
solution ~40! and the upper line shows its approximatio
~41!.

FIG. 1. The dependence of the wave number of the solito
excitation onv for the first family of solutions. The lower curve
corresponds to the exact variational solution~40!, and the upper
curve to its approximation~41!. The chosen parameter values a
equal togb5gc521, b525, andd50. The soliton widthk is
calculated with the use of formula~14!.
he
be

y

l

IV. VARIATIONAL APPROACH TO CASCADED x„2…

SOLITONS: THE SECOND FAMILY OF SOLUTIONS

In this section we start from the NLS asymptotically exa
solution~22!, which suggests the following form for the tria
functions:

B5
b exp~ iw/2!

cosh@k~s2z!#
, C5

c exp~ iw!

cosh2@k~s2z!#
, ~42!

wherew is given by Eq.~26!. These trial functions differ
from the functions given by Eq.~25! only by the power of
cosh@k~s2z!# in the expression forB. Their substitution into
the Lagrangian yields

L5
2b2

k F2gbS v2

4
1

k2

3 D2
1

2 S v

2
zj2hjD1

1

4
zvjG

1
4c2

3k Fb2gcS v21
4

5
k2D2S v

2
zj2hjD

1
1

2
zvj2dvG1

8

3

b2c

k
. ~43!

The Lagrange equations are similar to those given by E
~28!–~33!. We obtain againv5const, so thatk is given by
Eq. ~34!. In the case under consideration we obtain

v5zj52v
gbb

21 8
3 cc

2

b21 4
3c

2
, ~44!

and, hence,

k52hj2
gbb

21 8
3gcc

2

b21 4
3c

2
. ~45!

Instead of Eqs.~37!–~39!, we obtain

FIG. 2. The dependence of the wave number of the solito
excitation on the wave number for the second family of solutio
The lower curve corresponds to the exact variational solution~49!,
and the upper curve to its approximation~23!. The chosen values o
the parameters are equal togb5gc521, b510, d50, andk51.
The relative difference between them is of ordergbgck

4/b2.
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S gbb
21

8

5
gcc

2Dk25b2c, ~46!

c5
3

4 F k21gbS v2

4
1

k2

3 D G , ~47!

b25
3

4 Fk2b1gcS v21
4

5
k2D1dvGF k21gbS v2

4
1

k2

3 D G .
~48!

Substitution of the last two equations into Eq.~46! yields the
equation fork. Its solution has the form

k~v,k!5
b2dv

2
1S gb1

2

5
gcDk22

1

4
~gb12gc!v

2

6H Fb2dv

2
2S gb2

2

5
gcDk21

1

4
~gb22gc!v

2G2
1
64

15
gbgck

4J 1/2. ~49!

The sign before the square root depends on the sign of
expression in the square brackets, and should be chose
an

r-

iz.

p.
he
so

that Eq.~49! reproduced Eq.~23! for ubu@ugbu,ugcu. In Fig. 2
the plots of the functionk~v! are shown fork given by Eq.
~14!. The lower line corresponds to the exact variational
lution ~49!, and the upper line to its asymptotic form~22!. It
is seen that the relative difference between the solutions i
the order ofgbgck

4/b2!1, as it should be expected.

V. CONCLUSION

In this paper we investigated the soliton propagation
media with cascadedx~2! nonlinearities. We studied the exa
soliton solutions of the equations governing the wave pro
gation in the media under consideration. The exact soluti
discussed are either independent of any free paramete
depend only on one free parameter. In the framework
variational approach we found soliton solutions for arbitra
phase mismatch which depend on two free parameters. In
limiting cases the solutions obtained reduce to the exac
asymptotically exact solutions of the governing equations
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