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Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas
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Effects of ion temperature on compressive and rarefactive ion-acoustic solitary waves, which have been
found to coexist in non-thermal plasmas, are investigated by the pseudopotential approach, which is valid for
arbitrary amplitude solitary waves. It is shown that the effects of ion temperature change the minimum value
of a (the parameter that determines the number of nonthermal electrons present in the plasma under consid-
eration as well asM (the Mach numberfor which these solitary waves coexist and also change the width and
amplitude of these solitary waves. It is also shown that for cold ions, the present results completely agree with
the existing published resulf€airnset al, Geophys. Res. Let2, 2709(1995; J. Phys(France IV 5, C6-43
(1995]. [S1063-651%97)05001-7

PACS numbds): 52.25—b

I. INTRODUCTION

Ju o
T U Vju=-Ve-—VP, 2
The study of electrostatic solitary waves in plasmas has
received considerable attention because of its vital role in JP
understanding the nonlinear features of localized electro- —+u-VP+yPV.u=0, 3
static disturbances in laboratory plasnias3] as well as in at
space plasmdgl—6] and has been extensively studied in the
past few yeard7—11]. It is found theoretically and con- VZp=ne—n, (4)

firmed experimentally that if the ions are assumed to respond

as a fluid to perturbations in the potential, with no significantwheren (n,) is the ion(electron density normalized to the
trapping in a potential well, a thermal plasma supports onlyunperturbed ion density,; o=T;/T,, with T; (T,) being the
compressive solitary wavesolitary structures with density ion (electron temperaturey is the ion fluid velocity normal-
compressiop but not rarefactive one¢solitary structures ized to the ion-acoustic spe@i= (kgTo/m)"2 with kg and
with density depletion Recently, motivated by the observa- m being the Boltzmann constant and ion mass, respectively;
tions of solitary structures with density depletions made byP is the ion pressure normalized togkgT;); y=(2+N)/N,

the Freja and Viking satellite)l2,13, Cairnset al.[14,15  Wwith N being the number of degrees of freed@which has
have considered a plasma consisting of nonthermally distribvalue 1 for the one-dimensional case and 3 for the three-
uted electrons and cold ions and shown that it is possible tdimensional case ¢ is the electrostatic potential normalized
obtain both positivécompressiveand negativérarefactive  to KgT¢/€, with e being the electronic charge; the space vari-
solitary waves. As an extension and natural development otble is ~ normalized to the Debye length
these investigatiorfd 4,15, the present work has considered Ap= (KeTe/4mnoe?) 2 and the time variable is normalized
the same plasma system, where ions are no longer cold, af@ the ion plasma period , *= (m/4mnye?) 2 As electrons
studied the effects of ion temperature on the compressive arifé assumed to be nonthermally distributed, to model the
rarefactive solitary waves that have been found to coexist iglectron distribution with a population of fast particles we
this nonthermal plasma model. This paper is organized agan choose the distribution function as was chosen by Cairns
follows. The basic equations are given in Sec. Il. The ionet al.[14,15. Therefore, without details, the electron density
temperature effects on one-dimensional solitary structureBe in EQ. (4) is directly given by{14,19

have been studied by the pseudopotential approach in Sec.

ll. This study has then been extended to three-dimensional Ne=(1-Bo+Be?)e’, 6)

structures in Sec. IV. Finally, a brief discussion is given in

Sec. V. A 5
P=1+3a’ ©

Il. GOVERNING EQUATIONS wherea is a parameter determining the fast particles present

We consider a plasma system consisting of warm adiain our plasma model.
batic ions and nonthermally distributed electrons. The basic
system of equations governing the ion dynamics in this || ONE-DIMENSIONAL SOLITARY STRUCTURES
plasma system is given HL6—18 _ . o _
We will confine ourselves, in this section, to a study of
solitary waves in our nonthermal plasma model for one-
Jn _ dimensional structures. The basic equations, in the one-
—+V.(nu)=0, (1) . .
ot dimensional case wherg=3, can be expressed as
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M2 (hw=0 7 3~ Pu-30(P—1)+2Mu—u>—2¢=0, (20
5t T ox (NW=0, (7 y Pu=30(P—1) u—u—2¢=0, (20
au au do o JP where we have used the same boundary conditions, viz.,
YT T ax T oax” ®  ¢-0,u—0, P—1, andn—1 at £+, Substitutingu and
P, obtained from Eqgs(15) and (16), respectively, into this
9P 9P Ju equation, one can obtain a quadratic equatiomfoas
—+u—+3P —=0, 9
ot X X (30)n*—(30+M2—2¢p)n%+M?2=0. (21
072 . . . . .
ﬁ_):g:(l_B(PJFBQDz)e‘p_n. (10) Therefore, the solution of this equation foris given by
o 2 2 S vz
To obtain a solitary wave solution, we make all the depen- n= ! — %— \/( 1— %) —4—2 ,
dent variables depend on a single independent varigble V20, Moy Moy 01
—Mt, where M is the Mach numberthe velocity of the (22)

solitary wave normalized to the ion-acoustic sp€gil Con-
sidering the steady-state condition, i#at=0, we can write Where
our basic set of equations as

oo=V30/M?, o;=+1+ O'S. (23
on d
M 9E 9 (nu)=0, (1D The substitution of this expression forinto Eq. (14) gives
u du o dP do d?e o1 2¢
ME-uE-22 -2 12 — o =(1- B+ Be?)ed— -
M u P e Mg 13 \/ 1 2# e (24)
PRI T (13 M2 T4t

~1 2\ e 14 The qualitative nature of the solutions of this equation is

EZ_( ~BetpeT)ef—n. (14 most easily seen by introducing the Sagdeev potefti.
Therefore, Eq(24) takes the form

Now, under the appropriate boundary conditions, iz0,

u—0, P—1, andn—1 at é—*x, Egs.(11) and(13) can be d’e  dV(¢)
integrated to give 2T Tde (25)
n= ; (15) where the Sagdeev potentM(e) is given by
1-u/M’
, . V(p)=—[1+3B(1—¢)+ Be*]e?
P=n". 16
~Moo(e”+3e7 ") +Cy, (26
If we substitute Eq(15) into Eq.(12) and then multiply this
by 2, we obtain [ oF 20
6=cosh 27"0 — MTO'i (27)

oM ou 5 ou 5 0P+20' (9P_25<p 1
T T TR Ve TR TR

Again, multiplying Eq.(13) by ¢/M one can write

andC, is the integration constant that we will choose in such
a manner thaV(¢p)=0 at ¢=0. It is important to note here
that we cannot consider the limit—0 in the Sagdeev po-
tential V(¢) in its present form. To consider this limit—0,

¢ —— —Uu—23P ——=0. (18 we express as
4 2
+\/-——=|1-—=—]| —1|.
\/40'3 (1 Mzai) 1}

2
Now, subtracting Eq(17) from Eq.(18), one can get a dif- Hzln{ 01 (1 2¢

ferential equation that has the form 209 B Mzai
(28)
JP o J Jau au dp
3o (9_5_3M € (Pu)—2M 9€ +2u 9€ +2(9_§ =0. It is also important to mention that in our study the condition

(19)  for ion density to be reall—2(¢/M%0%)|=20¢/0, must al-
ways be satisfied. Using Eg28), we can express the
The integration of this equation yields Sagdeev potentid¥ (¢) as
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V(e)=~[1+3B(1-¢)+Bg?e
0.14K —
) 5 511/2 o=0(solid curves) ]
_ Moy _ 2¢ + \/ 1— 2¢ _ @ E o=0.02(dotted curves) ]
) MZ2g7 MZg2 o] 0-12p 0=0.04(dashed curves)
V2o 2¢ +\/<1 2¢ 2 Ugrz 0'1; :
a3 MZ?o? Mo o 0.08F -
+C;. (29 006k _
Now, we are again returning to our general equation, Eq. ¢ i .
(25), which can be regarded as an “energy law” of an os- 004 7
cillating particle of unit mass with velocitgie/d¢ and posi- r ]
tion ¢ in a potentiaN (). The solitary wave solutions of Eq. 0021 E
(25) exist if (i) (d®V/dp?),_,<0, so that the fixed point at . ]
the origin is unstable, an@i) V(¢)<0 when 0<e<¢,.x for o-or .
positive solitary waves and>p> ¢, for negative solitary s .
waves, Wherepyaymin is the maximunmminimum) value of —0.021 -
¢ for which V(¢)=0. The general results can be obtained as r ]
follows. The nature of these solitary waves, whose amplitude —0.04- ‘ ' |
tends to zero as the Mach numblér tends to its critical T X X T XTI Y
value, can be found by expanding the Sagdeev potential to a

third order in a Taylor series ip. The critical Mach number

is that which corresponds to the vanishing of the quadratic F|G. 1. Effect of ion temperature on the minimum valuexdbr

term. At the same time, if the cubic term is negative, there isvhich compressive and rarefactive solitary waves coexist.

a potential well on the negative side and if the cubic term is

positive, there is a potential well on the positive side. Therenon”neaﬂy depend ow, i.e., on ion temperature. Figure 1

fore, by expanding the Sagdeev potentiép), given by Eq.  shows how the minimum value af, for which compressive

(29), around the origin the critical Mach number, at which and rarefactive solitary waves coexist, changes with.e.,

the second derivative changes sign, can be found as with ion temperature. This shows that as the ion temperature

increases, we need more nonthermal electrons in order for

\/ rarefactive solitary waves to exist. We have already showed

M= 2(1-5) [1+V1+120(1-p)] (30)  that for@=0.2 the critical Mach number i, but due to the

effect of the ion temperature this value changes. The plot in
and at this critical value dfl the third derivative is negative, Fig. 2 shows how the critical Mach number changes with

i.e., rarefactive solitary waves exist, if and o. It is clear that as the ion temperature increases, the
critical Mach number 1) increases. It is observed that, for
S,<0, cold ions, i.e.,c=0, and fora=0.2 (a value that we shall

continue to use in the rest of our numerical illustratigiise
compressive and rarefactive solitary waves are found to co-

1
S,= > (1+ 19— ) 3 (31 exist when the Mach number passes the vafire1.414, but
SO for 0=0.02, the rarefactive solitary waves do not exist until
the Mach number exceeds the value 1.435. Figure 3 shows
15 120(1=5) the behavior of the Sagdeev potentiéllp) when the Mach
So= (1 B) [1+V1+120(1-p5)]. number passes from 1.43 to 1.45. This shows that when the

Mach number exceeds the value 1.435, a potential well
This gives us a very simple criterion for analyzing the rangeforms on the negative axis, resulting in the existence of
of different parameters, vizg and o, for which the com- rarefactive solitary waves. To find what happens on the posi-
pressive and rarefactive types of solitary waves exist. It idive side, we plot curves for the same set of parameters on a
obvious that the consideration of cold ion linfir=0) cor-  larger scale. This is shown in Fig. 4, where it is seen that the
responds to our earlier woifl 4,15, where we have shown compressive solitary waves also exist.
that the minimum value ofx for which compressive and Now, to see what happens when the ion temperature is
rarefactive solitary waves co-exist is0.155 and that for further increased, we numerically study the behavior of the
a=0.2 the critical Mach numbeithe minimum value of the Sagdeev potentiaV/(¢) and find the parameters for which
Mach number above which the compressive and rarefactiveompressive and rarefactive solitary waves may coexist.
solitary waves coexigtis v2. It is clear from Eqs(29—(31)  These are displayed in Figs. 5 and 6. It is seen from Fig. 5
that the Sagdeev potenti®l(¢), the critical Mach number that wheno=0.04, rarefactive solitary waves no longer exist
M. (which we can now define as that minimum valuehdf  for M =1.45(we have already found that, for values less than
above which compressive as well as rarefactive solitaryhis, rarefactive solitary waves exist when=0.02, but
waves exist andS, (which determines the criterion for the when it exceeds this value, the rarefactive solitary waves
coexistence of compressive and rarefactive solitary wavesstart to exist. Figure 6, where the behavior of the Sagdeev
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FIG. 4. Behavior of the Sagdeev potenték) on a larger scale

FIG. 2. Effect of ion temperature on the variation of the critical for @=0.2, 0=0.02, and a series of Mach numbers: 1(&%) in
Mach number witha. steps of 0.005 to 1.48ottom.

potential is shown for the same set of parameters on a largégompressive and rarefactiveolitary wave solutions found
scale, shows what happens on the posigiais. It is shown by Solving Poisson’s equation with exactly the same param-
that as we increase the ion temperature, we need a highgfers, but different initial conditions. It is found that as the
Mach number in order to obtain the coexistence of compres®n temperature increases, the amplitude of both the com-
sive and rarefactive solitary waves. Figure 7 shows the efPressive and rarefactive solitary waves decreases, whereas
fects of the ion temperature on potential profiles for twotheir width increases.
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FIG. 3. Behavior of the Sagdeev potenti(¢) for «=0.2, FIG. 5. Behavior of the Sagdeev potenti(¢) for «=0.2,
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IV. THREE-DIMENSIONAL SOLITARY STRUCTURES
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FIG. 8. Radial potential profiles for spherically symmetric soli-
tary structures and for the same parameters used in Fig. 7, viz.,
a=0.2, M =1.455, ando=0 (solid curve, c=0.02 (dotted curvg,
and 0=0.03 (dashed curve

structures, discussed in the preceding section, can be con-

The solitary structures, discussed up to now, are one distructed by assuming that they are moving parallel to a
mensional. In the present section, we will switch our attenstrong magnetic field. If the ion Larmor radius is small com-
tion to three-dimensional solitary structures, since the strucpared to this size of the structure, we can just consider the
tures observed in space are certainly not infinite in twoions to be a beam flowing along the field linés the rest
directions. A very simple three-dimensional analog of theframe of the structupe The ion densityn then just depends
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FIG. 7. Potential profiles for=0.2,M =1.455, andr=0 (solid
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curve), 0=0.02 (dotted curve, ando=0.03 (dashed curve

on the potential, as before, and is given by E29). We also
assume that the electrons have the same kind of adiabatic
response and that the one-dimensional distribution, consid-
ered up to now, is obtained by integrating over the parallel
degrees of freedom. Thus the electron densjtys also the
same and is directly given by E¢p). Therefore, under these
assumptions, Poisson’s equation, i, can be expressed in
the spherically symmetric case as

d’¢ 2de o 2¢
ot = =(1— Be+ BeP) e — 1-—>—
arz T rar ~ (L BetBe)e Vao, M2o ]
2 271/2
2¢ )
/1= 5| —4—| . 32
v Mzaf) az‘} 2

where the space variabteis normalized to the Debye length
\p . We will now solve this equation numerically and find
spherically symmetric structures that exist as solutions of
this equation. It is important to note here that, in our numeri-
cal solutions of this equation, the condition for ion density to
be real,|1—2(¢/M?09)|=204/03, must always be valid. The
potential profiles in a spherically symmetric solution of this
equation are illustrated in Fig. 8. These plots also show the
effects of ion temperature on these radial profiles. The most
obvious change, found by comparing these radial profiles
with one-dimensional structurgsliscussed in Sec. | is



55 EFFECTS OF ION TEMPERATURE ON ELECTROSTACIL. . . 1857

that there is a larger dip in the potential for the same paramdip in the potential decreases. It should be mentioned that for
eters. It is also seen that as we increase the ion temperatuenld ions, the present analysis gives the same results as we

this dip in the potential decreases. have found in our earlier worksl4,15.
This analysis may be of relevance to observations in the
V. DISCUSSION magnetosphere of density depressipf©g,13. A possible

) . . _scenario is that lower hybrid turbulence produces, through
Motivated by the observations of solitary structures withmoqylational instability, cavities that collapse until the lower
density depletions made by the Freja and Viking satellittsyyprig wave amplitude is sufficient to trap and accelerate a
[12,13, Cairnset al.[14,15 have shown that the presence of gpstantial number of electrofs0,11. The damping of the
nonthermal electrons changes the properties of the ion soungrpylence could then leave a cavity and also create just the
solitary waves and that for a suitable nonthermal electrorking of energetic electron population necessary for it to live
distribution it is possible to obtain both positifeompres- o a5 an ion-acoustic solitary structure no longer supported
sive) and negativerarefactive solitary waves. The present by the ponderomotive pressure of the high-frequency turbu-
investigation is mainly concerned with ion temperature ef-ence. However, the type of electron distribution we have
fects on these solitary structures. It is found that as we iniggked at is common to many space and laboratory plasmas

crease the ion temperature, we need more nonthermal elegr which wave damping produces an electron tail, so the
trons and higher Mach number in order for rarefactivetneory may be of more general interest.

solitary waves to exist. It has also been shown that as the ion

temperature rises, the amplitude of both the compressive and ACKNOWLEDGMENTS
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