PHYSICAL REVIEW E VOLUME 55, NUMBER 2 FEBRUARY 1997

Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios
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The anisotropic electrical properties of cardiac tissue are described by the bidomain model. In this model,
the ratio of the electrical conductivities parallel to and perpendicular to the myocardial fibers is greater in the
intracellular space than in the extracellular space, resulting in a condition called unequal anisotropy ratios. No
analytical solutions exist in this case. In this paper, we present approximate analytical solutions to the bidomain
equations. The gist of our method is a perturbation expansion in a parameter that is defined as one minus the
ratio of the anisotropy ratios in the extracellular and intracellular spaces. Three applications are considered:
stimulation of the tissue by an electrode, an expanding action potential wave front, and injury currents. In the
first application, the first-order perturbation term of the transmembrane potential depends on orientation by a
second-order Legendre polynomial and induces adjacent regions of depolarization and hyperpolarization. In the
second and third applications, the extracellular potential outside a wave front or an injured region depends on
orientation by a second-order Legendre polynomial and creates regions of positive extracellular potential in the
direction parallel to the fiber§S1063-651X97)07102-X]

PACS numbds): 87.10+€, 87.22.Jb

[. INTRODUCTION Goel and RotH 8] proposed a perturbation method that pro-
vides approximate analytical solutions to the bidomain equa-
A better understanding of the electrical properties of cartions for a two-dimensional sheet of cardiac tissue with un-
diac tissue is essential to a better diagnosis and treatment 6fjual anisotropy ratios. The gist of their method is a
heart diseas¢l1]. The bidomain modelis a mathematical Perturbation expansion in a parameter that is defined as one
model that is often used to describe the electrical propertie8linus the ratio of the anisotropy ratios in the extracellular
of cardiac tissu¢2]. The bidomain equations consist of two @nd intracellular spaces. In this paper, we extend this method
coupled partial differential equations that govern the electri2nd apply it to a three-dimensional volume of cardiac tissue.
cal potential in both the intracellular spag@eside the cells ~ Then we use this technique to study three important prob-
and the extracellular spadeutside the cells These equa- lems in cardiac glectrophysmlogy:. stimulation by an .el_ec—
tions are macroscopic, that is, they represent cardiac tissue §8de, an expanding action potential wave front, and injury
a continuum over distances on the order of 1 mm or largercurrents.
They do not account for changes of the electrical potential
over microscopic distances on the order of 4@ or less, Il. METHODS
which is the spatial scale of heart-muscle c¢8& The in-
tracellular and extracellular potentials should therefore be in-.
terpreted as averages over many cells, just as the mach

The intracellular potentia®; and the extracellular poten-
al @, are governed by the bidomain equations

scopic electric and magnetic fields in matter are averages 2D 2D 2D
over many atoms. Uit == +Oit —7 +giL —
The bidomain equations account for anisotropy, an impor- X ay 0z
tant characteristic of cardiac tissue. The electrical properties P
of cardiac tissue depend on direction because the long, thin =5[Gm(q>i—q>e)+cm — (cbi—cpe)} -1, (1)
cardiac cells tend to align themselves with their long axes dt

parallel to each other. Moreover, the cells are coupled
through intercellular channels, which tend to have greate?md
density near the ends of the cells. Thus microscopic anatomi- 2D 2P 2D
; ; ; ; e e

cal structure results in macroscopic anisotropy of the electri-
cal conductivity, with this conductivity being greater along
the fiber axis than perpendicular to it. Both the intracellular
and extracellular spaces are anisotropic, but to different de- =—g
grees[4]. In the intracellular space, the ratio of the conduc-
tivities parallel to and perpendicular to the fiber axis is about 2
10; in the extracellular space the ratio is abo&t{3]. This
property of unequal anisotropy ratios leads to many surpriswhereg;r, 9;_, e, @ndge, are the macroscopic electrical
ing and important bioelectrical phenomefa7]. conductivities of the intracellulati) and extracellular(e)

The bidomain equations do not uncouple when the tissuspaces in thex andy directions(T, transversgand in thez
has unequal anisotropy ratios. Therefore, analytical solutiondirection (L, longitudina) (S/m). We assume that the fiber
to the bidomain equations exist only under the artificial con-direction is uniform and that it is aligned in ttzedirection
ditions of equal anisotropy ratios. In a preliminary report,such that the conductivity tensors are diago@), andC,,

e
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are the conductance and capacitance per unit area of the calhd introduce the rescaled source terms
membrangS/nt and F/nf) and 3 is the ratio of membrane

surface area to tissue volum&/m). For the moment, we o e
assume thaG,, is a constantpassive tissuel; andl, are Y786, 7T BG,
the externally applied currents per unit volume in the intra-

cellular and extracellular spacéa/mq); they represent the When the product ofdir/g.t) and Eq.(2) is subtracted from
effect of an electrode passing current into the tissue. Equdsd. (1), we obtain

tions (1) and (2) arise from the continuity of current and

(10

from Ohm's law[2,4]. PP, N PO N PO P IPm
In order to develop our perturbation technique, we must G aY? 9Z° mo9T
modify Egs.(1) and(2). First, we replace, y, andz with the 5
dimensionless coordinaté§ Y, andZ, where —_ ae i " a(l—e)ye—
1+a(l—¢) 9Z? 1+a(l—c¢)
X y z
X= o Y= o Z= o (3 11

) o When Eq.(2) is added to Eq(1), we obtain
and the length constants in the longitudinal and transverse

directions\, and\; are defined as 1 e R
Ny = [ GiLGeL N [ GitQer
= e — = — 2
- (giL+geL)BGm T (giT"'geT),BGm 124 o+ i g
(4) al 9Z?
We also replace the timeby the dimensionless variable 1 22D 2P 1+ a
where = m m_ :
e|1+ a(l—s))( axZ + 0~,Y2 ) ( (7|+')’e)
t Cm (12
T— ;, T= G_m (5)

Equationg11) and(12) represent a general formulation of

Next, we introduce two new variablel,, and ¥ to replace the bidomain equations. The introduction of the parameter

®. and® is particularly useful. Wher=0, the tissue has equal anisot-
: e ropy ratios. In this case, Eqél1) and(12) uncouple:

P,=b,— D, Wzd)ﬁ%(be. (6) a2q>m+(92c1>m+azq>m o Pm_arven .
- X2 T E Tz T gy T, 9
We can invert these relationships to determineand®,, in
terms of®,, and : and
9 ( el ) PV . PV . PV 1 (70 14
= | V+— |, 7 2 2 2= YiT Ye)-
Y gLt 0eL gL @ A G4 1t+a
9L Equation(13) is the diffusion equation fo,, with an ad-
(I)e:—' (VP—®,,). (8) ditional term proportional teb,, that arises from the mem-
9iLtGeL brane conductandén electrophysiological terms, E¢L3) is

the three-dimensional cable equafioRor steady-state situ-

The transmembrane potentidl,, is the potential difference ions (3®,/3t=0), Eq. (13) is the Helmholtz equation.

across the cell membrane. The transmembrane potential : . ! , .
important in cardiac electrophysiology because proteins e _quatlo_n(14) Is Poisson s_eq_uatlon fo[r Now we can see
bedded in a cell's membrane respond to the transmembrarliee motivation for our defln!tlon O_ﬂ" It Iea(_js to the com-
potential by changing the membrane’s conductance. This pdlete uncoupling of the bidomain equations wherO.

havior is responsible for the nonlinear behavior of cardiac(HOOke et al. [9] discuss the relative merits of other linear

tissue, such as the propagation of action potentf&gua- qombinations_oﬂ)i a.ndCIDe re'sulting in alternative formula-
tions (1) and (2) contain a constant value of the membrane!ions of the bidomain equations. None lead to the complete

conductance and therefore do not include this nonlinear bé‘—'nCOUp“ng of the bidomain equations fer-0)

havior. These equations can be generalized to model active The S|mple forrr_l of the bidomain equations for_equal an-
cardiac tissue by replacing the ter@y, (®;—®.) with a isotropy ratios motivates us to perform a perturbation expan-
| €.

more complicated and more realistic representation of the'on of &, and¥ in powers ofe,

membrane behavidr.¥ is an auxiliary potential with no D =P te® ot el® ot - 15
simple physical interpretation. m= im0 E 8 m T E Em2 ’ 13
Now we define two dimensionless constaatandze, V=Wt oW, +62Wyt--- | (16)
gt g Jer/Ger (99 When these expansions are substituted into Et. and

 Oel ¢ gi/git’ (12) and terms with like powers af are collected, we obtain
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) 1
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b a 92 o
2 o . m1:_ 0_
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1_CY (92\1,0 192\1,0
2y
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where R>=X?+Y2+7% W, is the solution to Poisson’s
equation for a point source

1 1

Yo=v0 15, a7R"

(25

These solutions are equivalent to those derived previously
[10,11.

Of particular interest is the first-order term of the trans-
membrane potentiafp,,;, because this term contains the ef-
fect of unequal anisotropy ratios to lowest order. There are
two source terms on the right-hand side of ELp) for ®,,.

One containsy, and gives a solution with the same spatial
distribution asd,,5. The other source term is proportional to
#Vy/9Z%. When expressed in spherical coordinates, the lat-
ter source term is equal to

7 p,(co® 26

(1+a)2 27TR3 z(CO )1 ( )
where © =tan 1(X?+Y?/Z) and P,(co®) is the second-
order Legendre polynomialB co$0®—1)/2. The Helmholtz
equation with these source terms can be solved analytically
and the solution is

a yo[e‘R [i e R

P arer | R TR R
3
X 1+§+§2 Pz(cos(a)]. (27)

The first term amounts to a correction to the amplitude of
®, [Fig. 1(@)]. The second term depends @hand gives
rise to regions of both positive and negative transmembrane

Equations(17)—(22) demonstrate a way to obtain approxi- potential near the point sourggig. 1(b)]. At large values of
mate analytical solutions to the bidomain equations when th&, ®,,o and the first and last terms in the expressiondigy
solutions for equal anisotropy ratios are known. We will nowgo to zero exponentially, so that theRPterm in®,,; domi-
use these equations to examine three important problems Irates. In that case, fgx positive(anodal stimulatiop @, is

cardiac electrophysiology.

IIl. RESULTS
A. Point source stimulation

1. Extracellular stimulation

positive for ® equal to 0 orw (parallel to the fibepsand
negative for® equal ton/2 (perpendicular to the fibergFig.
1(c)]. This behavior is qualitatively similar to the result of a
numerical calculation performed by Sepulveda, Roth, and
Wikswo of the transmembrane potential in a two-
dimensional sheet of cardiac tiss{il]. A similar trans-
membrane potential distribution around a unipolar stimulat-

As our first example, we will calculate the transmembraneing electrode has been observed experimentgly—14.
potential distribution produced by a steady-state, extracelluThe presence of adjacent depolarized and hyperpolarized re-

lar point current source:

¥i=0, Ye=70d(X)d(Y)d(Z), (23

gions, implied by theP,(co$)) dependence ob,,, has im-
portant implications for the mechanism of stimulatidb],
the shape of the virtual cathod&6], the strength-interval
curve [17], and the induction of reentry and arrhythmias

where y, is the source strength antrepresents the Dirac [1g].

delta function. This example corresponds physically to uni-

One advantage of an analytical soluti¢albeit an ap-

polar stimulation by an extracellular electrode carrying aproximate ong over a numerical calculation is that we can
steady current. A positive value g corresponds to anodal easily determine how the solution depends upon the param-
stimulation and a negative value of, corresponds 10 eters of the problem. For instance, the solution dgy, in
cathodal stimulation. The zeroth-order solutions to the probgq. (24) depends onr through the leading factow/(1+a),

lem, ®,,, andW¥, correspond to equal anisotropy ratidg,,

whereasb,,; has a leading factor of/(1+a)?. Because the

is the solution to the Helmholtz equation for a point sourceratio @,/ is proportional to Ifl+a), we expect the

a eR

Pmo="Y0 157, 27R’

(24

effect of unequal anisotropy ratios to be greatest wheg
small.
The first-order correction t& is
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FIG. 1. Transmembrane potential induced by a point extracellular current source. The electrode is at the center of the plot. The fiber
direction andZ axis are horizontal. The bar denotes two space units and contours are drawn every & Iv=1, and y,=156 V
(corresponding to 1-mA stimulatignContours for very large potentials near the electrode are not dfay,,,q [Eq. (24)] plus the part of
®,,; that is independent d [Eq. (27)], (b) the part of®,,; that is proportional tdP,(cos®) [Eq. (27)], and(c) ® g+ P 1-

vo l—«a 1 Yo a and
V1= e a2 |R T 2R PO | T 5o a2 ve l—a [1 1 Yo
R 3 oR/ 3 3 1= 6n (1+a)? |R 2R DO | F G )
N\ -mt—mt R 1+§+¥”
X Pz(cosﬁ)} . (28)
X Pz(co)] . (33

The first term in this equation has the same spatial distribu-

tion as¥, and it therefore provides a first-order correction to Ngte thatd,,,, does not change signs when going from ex-
the amplitude. The second term is more interesting becausgacellular to intracellular stimulation, bet,,, does. For in-

of the ® dependence. At large valuesRf this term contrib-  tracellular stimulation that hyperpolarizes the tissue near the
utes significantly tol;, but becaus&, does not vanish, the  glectrode, there are regions of depolarization in the direction
term supplies only a first-order corre_ction to the behavior Ofperpendicular to the fiber axigs opposed to regions of de-
. For large values oR and through first orderPr, falls off - hojarization parallel to the fiber axis caused by extracellular
as 1R3 whereasV falls off as 1R. Therefore, #>®,, at stimulation.

large values oR, and®; and ®, are nearly proportional to  sepulveda, Roth, and Wikswa1] considered the case in
W. For equal anisotropy ratiosp; and @, would have \yhich intracellular and extracellular stimulation were both

elliptical if plotted as functions of, y, andz). ¥, causes the  gtrength:

contours to deviate from this spherical shape, but this is a

first-order deviation and it is therefore small. ¥i==Yd(X)A(Y)AZ), ye=y0d(X)(Y)IZ). (34
2. Intracellular stimulation The solution follows from superposition of our two previous
Intracellular stimulation, which is possible by means ofreSUItS: R
microelectrodes, corresponds to e
Pmo==% 55 (39
Yi=~v0d(X)(Y)d(Z), ye=0. (29)
The minus sign in this expression ensures that a positive Wo=0, (36)
value of y, will correspond to hyperpolarization of the tissue b =0 37)
(negatived,,) under the electrode. The solution fér, and mi
¥ is analogous to our previous result: v _ % 1 ~ 1R+ ~ 3 . iR
o 1 eR 20 176w (1+a)? R R3
m0= " Y0 T4 & 27R’ (30) 5
y 1 1 . X 1+§+@ }Pz(co@)]. (39
0T Y01 4 44R’ @D e
R V¥, has no 1R term and has a spatial distribution similar to
o= @ Yo e_+ i_ e that of @, for intracellular stimulation.
mT (1+a)? 67| R RP R To first order,®,, is spherically symmetric. An angular
3 3 dependence is present in the second-order term for the trans-
membrane potential. The full solution fdr,,, is rather com-
X1+ =+ = , . m2
TRt R PZ(COS@)]’ 32 plicated, but one term dominatesR#1:
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6 a® 1
Dmo=—70 7 1+ a2l R P4(co), (39

where P,(cod)) is the fourth-order Legendre polynomial
(35 co8®—30 co20®+3)/8. During cathodal stimulation
(v0<0), @, causes hyperpolarized regions in the directions
that are approximately 45° from the fiber axis and depolar-
ized regions in the directions parallel to and perpendicular to
the fiber axis. These conclusions are consistent with the nu-
merical calculations of Sepulveda, Roth, and Wiks\d]
(see their Fig. 8

B. Expanding wave front

Another important problem in cardiac electrophysiology

is the calculation of the extracellular potential that is pro- k|G, 2. Extracellular potentialaccurate to first ordginduced
duced by an expanding action-potential wave front. Manyby an expanding action potential wave fr¢&t. (42)]. The position
cardiac arrhythmias are caused by abnormal propagation ef the wave front corresponds to the bold circle. The fiber direction
wave fronts through the heart and often the clinician needs tand thez axis are horizontal. Contours are drawn every 2 ra¥.
determine the path of propagation before deciding on the, a=1, V,=100 mV, andR,=4.

appropriate therapy. Although the transmembrane potential

contains the most useful information about wave-front The extracellular potential is given in terms®f, and¥

propagation, the extracellular potential is much easier tgn Eq. (8). We can write the extracellular potential, to first
measure. Often the clinician desires to learn allbytfrom  orger ine, as(see Fig. 2

measurements b, .
We will now consider a spherical wave fro(dllipsoidal

in X, y, andz coordinatey that is propagating outward. In _ E 1
. . 1+8 , R RO
this example, there are no applied sources; therefgrand D= a VX 3l+a
7. are equal to zero(We will not concern ourselves with € 1+ 'O 1 2(Rg\®
how this wave front originated; we will assume that the € 17a3 | R, P2lco®), R>Ro.
sources that initiated it are no longer acjivehe membrane (42)

is not passive and the active ion channels in the membrane
provide the source of the extracellular potential. We canno} . . .

solve this problem completely with the passive theory devel-f the tissue had equal anisotropy rat(0$:0), the extracel-
oped above. However, we can make some progress by re(,lp_lar potential outside a closed, expanding wave front would

izing that the leading edge of a cardiac wave fréthe “de- vanish. (This phenomenon corresponds to the “unifo_rm
polarization” frony is very thin and the tissue is nearly double layer” model often referred to in the electrocardiol-

passive both in front of it and behind ifThe cardiac action ©9Y literature[19].) But unequal anisotropy ratios induce a

potential has a rise time of about 1 ms, followed by a platea art of the extracellular potential that has the spatial distri-
lasting over 100 m$ ' ution of a second-order Legendre polynomial. In the direc-

We will assume that the wave front can be treated as gong parallgl to the fiberé@zO°,}80‘), '.[he extracellul_ar po-
step function; therefore, the transmembrane potential is zer‘i’fnt'al o_utS|de the wave front |s°p05|t|ve, in the directions
ahead of the wave front arid, behind it. Consequently, we perpendicular to the fiberd®=90°,2709, the extracellular

take the zeroth-order expansion of the transmembrane poteﬂgtential is negative. This distribution of extracellular poten-
tial has been computed numerica[l0] and observed ex-

tial to be .
perimentally[21,22.
Vo, R<R, The second-order correction term to the transmembrane
Dyo= 0, R>R,. (400 potential®,,, does not vanishEq. (21)]. The entire solution

to the ®,, problem is rather difficult, but a particular solu-

. % :
Because there are no applied sour@s=0 everywhere. We tion @y, can be readily calculated

see from Eq(19) that both source terms fdp,,; are equal to

zero. Thus unequal anisotropy ratios does not lead to a first- 0, R<Rq
order correction to our assumed wave frgf,,;=0). The PF =— _— %
. . m2 2 o2 0
second source term in EGO) for ¥, is not equal to zero, (1+a)® Ry R/ Palcod), R>Ro.
however. In this case, Eq20) can be solved analytically, (43)
yielding
1 R<R Because the homogeneous solution to &4) rapidly falls
1 2 R 3< 0 off in space, the particular solution should make the domi-
Wy=—2VpX 0 (41)  nant contribution tab,,, at more than a few length constants
— >Ry. m2
1tas R) Pa(co®),  R>Ry from the wave front|R—Ry>1). The angular dependence
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FIG. 3. Extracellular potential induced by an
injured region[Egs.(52) and (55)]. The fiber di-
rection and theZ axis are horizontal. Contours
are drawn every millivolte=32, a=1, E=50 mV,
G=4, andR;=10. (a) ®, plus the part ofd,,
that is independent dd, (b) the part ofd,, that
is proportional toP,(co9), and(c) @ o+ Pe;-

of P,(co®) implies that®,, is positive at®=0°, 90°, 180°,  52® . P, *D,,

and 270°. It is negative along the diagonal directidas 5z + 3z T 72 —dn
®=45°, 135°, 225°, and 31h°Because the effect is second

order ine, the magnitude ofb,,, is small. In addition, the ae PR m
magnitude ofP,, falls off as 1R3, making this effect larger T 1ta(l-e) aX2 +H(R,R) G, (Pn—E) (44
for highly curved wave fronts and smaller for nearly flat

wave fronts(Ry>1). Using a numerical calculation, Pollard, gng

Hooke, and Henrique23] predicted regions of hyperpolar-

*

ization leading an outwardly propagating wave front in the 1 EZAN YA\ )
directions 45° from the fiber axis. Our results are in qualita- 2+a(l-g)+ a(l—s))( ax2t (?YZ)
tive agreement with their prediction.
1\ &*¥
+ ( 2+a+ ; ﬁ
C. Injury currents
2 2
A third significant problem in cardiac electrophysiology is :8( 1+ 1 )(ﬁ q)zm + J q)zm), (45)
the response of the heart to a localized region of tissue with a(l—g)/\ aX Y

abnormal electrical propertigse., “injured” tissue. If the
injured region remains coupled to the surrounding tissueWhere
steady-state curren{§injury currents”) can arise between
the injured and the normal tissue. The same idea applies tq :{11 R<Ro
: o (R,Ro) (46)
healthy tissue that has a local modification of the cell mem- 0, R>Ro.
brane’s electrical propertig®g.g., response to local applica-
tion of a neurotransmittgr This problem is also important Using G=G{/G, and performing our perturbation expan-
when we consider the response of smooth muscle to transion, we get
mitter secretion. Poznansk4] has studied this problem us-
ing the bidomain model, but only for the case of equal an- V20— (1+GH)® o= — GHE, 47
isotropy ratios. We can use our perturbation technique to

2 =
generalize his result to unequal anisotropy ratios. Vi¥o=0, (48)
We start with the bidomain equatiofggs. (1) and (2)] , a PV,
but we add an additional term to represent a region of leaky Vi@ —(1+GH) Py =~ 7 52 (49

membrane. We assume that the tissue is in steady state, no

applied currents existy(=7y,=0), the leaky region lies 5 1\ [Py PP

within a sphere of radiuR, centered at the origitwithin an Vo, = 1+a)( X2 T2 ) (50)
ellipsoid inx, y, andz coordinatey the leaky membrane has

a conductance per unit area®}, in parallel with the normal ) a |\ PV,
membrane conductandg,,,, and the leaky membrane con- Vil = (1+ GH) P o= — 1+al 972 (52)
ductanceG}, has a reversal potential &. (In our previous

calculations, we neglected the resting potential, which is the The solution to Eq(47) for 0 is [see Fig. 8a)]
steady-state potential difference of abet80 mV that exists

between the intracellular and extracellular space in normal, sinh( RV1+G)

resting cardiac tissue. If we had included the resting poten- G A — R R<R,
tial, thenE would represent the difference between the rest- ¢ _ = E X _R

ing potential within the cell and the ground outside the cell. 1+G B e R>R

In other words, the leaky membrane represents the effect of R’ o

non-selective pores in the membrane that tend to reduce the (52

resting potential toward zero.
With these assumptions, we can write the bidomain equa¥he constant® andB can be determined from the continu-
tions as ity of &, and its radial derivative dR=R,,



55 APPROXIMATE ANALYTICAL SOLUTIONS TO THE . .. 1825

- Ro 1

" SiNRoY1+G) | 1—[1— 1+ GRycoth Ryv1+G)J/(1+Ry) |’ 53
Ry 1 -
e 1 (1+Ry)/[1— V1+ GRycoth Ryv1+G)]]

The solutions to Eq(48) for ¥, and Eq.(49) for ®,,; vanish(there is no first-order correction term to the transmembrane
potentia). The solution to Eq(50) for V¥, is [see Fig. &)]

- 21 G E
1"31+a 1+G
sinRy1+G) A 1+G 3 3V1+G
A i +1- + =3 |sinh(Ry1+G)— ——— cosiRy1+G) |P,(coMW)
« R 1+G R R R 55
s 5 (143 3)p s®+cR°3P 5C) >
R R R R2 Z(CO ) R Z(CO )!
|
whereC is given by diameter to the tissue length constant and examined effects
arising from the discrete cellular nature of the tissue. Keen-
3 G er's and Colli-Franzone, Guerri, and Rovida’s small param-
C=1+ R1+G eter arose from assuming that the conductivity of cardiac
0 tissue changed slowly over distances on the order of the de-
1 polarization wave-front thickness. They also examined
X ] changes in propagation velocity with fiber curvature and ro-
1/(1+Rpy) —1[V1+GRycoth Ryy1+G)] tation. All three of these methods examine changes in tissue
properties in spac@nhomogeneities on either a large or a
(56)

small spatial scale. Our perturbation method, on the other
_ hand, examines the electrical behavior of a continuous, ho-
At large values oR (R—Rg>1), the only term that contrib-  yggeneous tissue. Our small parametearises from the
utes significantly toWw; is the last term, which has a jnherent nature of the tissue anisotropy, not from any inho-
P,(cos®) angular dependend€ig. 3(c)]. Thus extracellular  mogeneity. It gives rise to effects that are completely differ-
potentials measured outside the injured tissue will have @nt from those found during previous studies of cardiac tis-
distinctive directional dependence, similar to that observe&ue using perturbation methods.
outside an expanding wave front. This directional depen- One virtue of our perturbation method is that it elucidates
dence needs to be taken into account when extracellular pavhich properties of cardiac tissue arise from unequal anisot-
tential measurements are used to deduce the transmembreanopy ratios and which do not. First-order effects include ad-
potential distributior25]. jacent regions of depolarization and hyperpolarization near a
By analogy with the expanding wave-front problem, therestimulating electrode and directional dependence of the ex-
will be a nonzerod,, that has aP,(co®) angular depen- tracellular potential outside an expanding action potential
dence. Because thk,,, contribution is second order, it will Wwave front or a region of injury. The first two of these effects

be small in relation tab,,, except alR>R,. have been observed experimentally.
The key parameter in our analysisdswhich is equal to

one minus the ratio of the anisotropy ratios in the extracel-
IV. DISCUSSION lular and intracellular space. For our perturbation analysis to
e most usefulg should be small. Experiments indicate,
owever, that has a value of about 0.75, which is not ex-
ptionally small[5]. Thus, while first-order terms in our
rturbation expansion provide great insight into the qualita-

In this paper, we developed a perturbation technique foE
studying the electrical properties of cardiac tissue, with ar,
emphasis on the tissue anisotropy. Perturbation methods a?fi

similar multiscale techniques are not new to theoretical cargy e glectrical behavior of cardiac tissue, a quantitative analy-
diac electrophysiology. Neu and Krassow$Baused a mul-  gis may require the inclusion of higher-order terms in the
tiscale method to derive the bidomain equations from a Migxpansion.
croscopic model of the tissue’s cellular structure. Keener

[26] and Colli-Franzone, Guerri, and Rovifia7] used mul-

tiscale techniques to derive eikonal equations that govern the We thank Barry Bowman for a critical reading of the
speed of propagation of action potential wave fronts. Thesenanuscript and Vivek Goel for his assistance in developing a
previous studies differ from ours in a fundamental way. Thepreliminary version of this work. This research was sup-
difference can best be appreciated by examining the “smalported by the Whitaker Foundation; the American Heart
parameter” used in the perturbation theory. Neu and KrasAssociation—Tennessee Affiliate; and the College of Arts &

sowska used a small parameter equal to the ratio of the cecience, Vanderbilt University.
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