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Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios

Bradley J. Roth
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235

~Received 11 September 1996!

The anisotropic electrical properties of cardiac tissue are described by the bidomain model. In this model,
the ratio of the electrical conductivities parallel to and perpendicular to the myocardial fibers is greater in the
intracellular space than in the extracellular space, resulting in a condition called unequal anisotropy ratios. No
analytical solutions exist in this case. In this paper, we present approximate analytical solutions to the bidomain
equations. The gist of our method is a perturbation expansion in a parameter that is defined as one minus the
ratio of the anisotropy ratios in the extracellular and intracellular spaces. Three applications are considered:
stimulation of the tissue by an electrode, an expanding action potential wave front, and injury currents. In the
first application, the first-order perturbation term of the transmembrane potential depends on orientation by a
second-order Legendre polynomial and induces adjacent regions of depolarization and hyperpolarization. In the
second and third applications, the extracellular potential outside a wave front or an injured region depends on
orientation by a second-order Legendre polynomial and creates regions of positive extracellular potential in the
direction parallel to the fibers.@S1063-651X~97!07102-X#

PACS number~s!: 87.10.1e, 87.22.Jb
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I. INTRODUCTION

A better understanding of the electrical properties of c
diac tissue is essential to a better diagnosis and treatme
heart disease@1#. The bidomain modelis a mathematica
model that is often used to describe the electrical proper
of cardiac tissue@2#. The bidomain equations consist of tw
coupled partial differential equations that govern the elec
cal potential in both the intracellular space~inside the cells!
and the extracellular space~outside the cells!. These equa-
tions are macroscopic, that is, they represent cardiac tissu
a continuum over distances on the order of 1 mm or larg
They do not account for changes of the electrical poten
over microscopic distances on the order of 10mm or less,
which is the spatial scale of heart-muscle cells@3#. The in-
tracellular and extracellular potentials should therefore be
terpreted as averages over many cells, just as the ma
scopic electric and magnetic fields in matter are avera
over many atoms.

The bidomain equations account for anisotropy, an imp
tant characteristic of cardiac tissue. The electrical proper
of cardiac tissue depend on direction because the long,
cardiac cells tend to align themselves with their long a
parallel to each other. Moreover, the cells are coup
through intercellular channels, which tend to have grea
density near the ends of the cells. Thus microscopic anato
cal structure results in macroscopic anisotropy of the elec
cal conductivity, with this conductivity being greater alon
the fiber axis than perpendicular to it. Both the intracellu
and extracellular spaces are anisotropic, but to different
grees@4#. In the intracellular space, the ratio of the condu
tivities parallel to and perpendicular to the fiber axis is ab
10; in the extracellular space the ratio is about 21

2 @5#. This
property of unequal anisotropy ratios leads to many surp
ing and important bioelectrical phenomena@6,7#.

The bidomain equations do not uncouple when the tis
has unequal anisotropy ratios. Therefore, analytical solut
to the bidomain equations exist only under the artificial co
ditions of equal anisotropy ratios. In a preliminary repo
551063-651X/97/55~2!/1819~8!/$10.00
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Goel and Roth@8# proposed a perturbation method that pr
vides approximate analytical solutions to the bidomain eq
tions for a two-dimensional sheet of cardiac tissue with u
equal anisotropy ratios. The gist of their method is
perturbation expansion in a parameter that is defined as
minus the ratio of the anisotropy ratios in the extracellu
and intracellular spaces. In this paper, we extend this met
and apply it to a three-dimensional volume of cardiac tiss
Then we use this technique to study three important pr
lems in cardiac electrophysiology: stimulation by an ele
trode, an expanding action potential wave front, and inju
currents.

II. METHODS

The intracellular potentialFi and the extracellular poten
tial Fe are governed by the bidomain equations

giT
]2F i

]x2
1giT

]2F i

]y2
1giL

]2F i

]z2

5bFGm~F i2Fe!1Cm

]

]t
~F i2Fe!G2I i ~1!

and

geT
]2Fe

]x2
1geT

]2Fe

]y2
1geL

]2Fe

]z2

52bFGm~F i2Fe!1Cm

]

]t
~F i2Fe!G2I e ,

~2!

wheregiT , giL , geT , andgeL are the macroscopic electrica
conductivities of the intracellular~i! and extracellular~e!
spaces in thex andy directions~T, transverse! and in thez
direction ~L, longitudinal! ~S/m!. We assume that the fibe
direction is uniform and that it is aligned in thez direction
such that the conductivity tensors are diagonal.Gm andCm
1819 © 1997 The American Physical Society
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1820 55BRADLEY J. ROTH
are the conductance and capacitance per unit area of the
membrane~S/m2 and F/m2! andb is the ratio of membrane
surface area to tissue volume~1/m!. For the moment, we
assume thatGm is a constant~passive tissue!. I i and I e are
the externally applied currents per unit volume in the int
cellular and extracellular spaces~A/m3!; they represent the
effect of an electrode passing current into the tissue. Eq
tions ~1! and ~2! arise from the continuity of current an
from Ohm’s law@2,4#.

In order to develop our perturbation technique, we m
modify Eqs.~1! and~2!. First, we replacex, y, andz with the
dimensionless coordinatesX, Y, andZ, where

X5
x

lT
, Y5

y

lT
, Z5

z

lL
~3!

and the length constants in the longitudinal and transve
directionslL andlT are defined as

lL5A giLgeL
~giL1geL!bGm

, lT5A giTgeT
~giT1geT!bGm

.

~4!

We also replace the timet by the dimensionless variableT,
where

T5
t

t
, t5

Cm

Gm
. ~5!

Next, we introduce two new variablesFm andC to replace
Fi andFe ,

Fm5F i2Fe , C5F i1
geL
giL

Fe . ~6!

We can invert these relationships to determineFi andFe in
terms ofFm andC:

F i5
giL

giL1geL
S C1

geL
giL

FmD , ~7!

Fe5
giL

giL1geL
~C2Fm!. ~8!

The transmembrane potentialFm is the potential difference
across the cell membrane. The transmembrane potenti
important in cardiac electrophysiology because proteins
bedded in a cell’s membrane respond to the transmemb
potential by changing the membrane’s conductance. This
havior is responsible for the nonlinear behavior of card
tissue, such as the propagation of action potentials.@Equa-
tions ~1! and ~2! contain a constant value of the membra
conductance and therefore do not include this nonlinear
havior. These equations can be generalized to model ac
cardiac tissue by replacing the termGm (F i2Fe) with a
more complicated and more realistic representation of
membrane behavior.# C is an auxiliary potential with no
simple physical interpretation.

Now we define two dimensionless constantsa and«,

a5
giL
geL

, «512
geL /geT
giL /giT

, ~9!
ell

-

a-

t

se
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-
ne
e-
c

e-
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e

and introduce the rescaled source terms

g i5
I i

bGm
, ge5

I e
bGm

. ~10!

When the product of (giT/geT) and Eq.~2! is subtracted from
Eq. ~1!, we obtain

]2Fm

]X2 1
]2Fm

]Y2 1
]2Fm

]Z2
2Fm2

]Fm

]T

52
a«

11a~12«!

]2C

]Z2
1

a~12«!ge2g i

11a~12«!
.

~11!

When Eq.~2! is added to Eq.~1!, we obtain

S 21a~12«!1
1

a~12«! D S ]2C

]X2 1
]2C

]Y2 D
1S 21a1

1

a D ]2C

]Z2

5«S11
1

a~12«! D S ]2Fm

]X2 1
]2Fm

]Y2 D2S 11a

a D ~g i1ge!.

~12!

Equations~11! and~12! represent a general formulation o
the bidomain equations. The introduction of the paramete«
is particularly useful. When«50, the tissue has equal aniso
ropy ratios. In this case, Eqs.~11! and ~12! uncouple:

]2Fm

]X2 1
]2Fm

]Y2 1
]2Fm

]Z2
2Fm2

]Fm

]T
5

age2g i

11a
~13!

and

]2C

]X2 1
]2C

]Y2 1
]2C

]Z2
52S 1

11a D ~g i1ge!. ~14!

Equation~13! is the diffusion equation forFm , with an ad-
ditional term proportional toFm that arises from the mem
brane conductance@in electrophysiological terms, Eq.~13! is
the three-dimensional cable equation#. For steady-state situ
ations ~]Fm/]t50!, Eq. ~13! is the Helmholtz equation
Equation~14! is Poisson’s equation forC. Now we can see
the motivation for our definition ofC: it leads to the com-
plete uncoupling of the bidomain equations when«50.
~Hooke et al. @9# discuss the relative merits of other line
combinations ofFi andFe resulting in alternative formula-
tions of the bidomain equations. None lead to the comp
uncoupling of the bidomain equations for«50.!

The simple form of the bidomain equations for equal a
isotropy ratios motivates us to perform a perturbation exp
sion ofFm andC in powers of«,

Fm5Fm01«Fm11«2Fm21••• , ~15!

C5C01«C11«2C21••• . ~16!

When these expansions are substituted into Eqs.~11! and
~12! and terms with like powers of« are collected, we obtain
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¹2Fm02Fm02
]Fm0

]T
5

age2g i

11a
, ~17!

¹2C052S 1

11a D ~g i1ge!, ~18!

¹2Fm12Fm12
]Fm1

]T
52

a

11a

]2C0

]Z2
2

a

~11a!2

3~ge1g i !, ~19!

¹2C152S 12a

11a D S ]2C0

]X2 1
]2C0

]Y2 D
1S 1

11a D S ]2Fm0

]X2 1
]2Fm0

]Y2 D , ~20!

¹2Fm22Fm22
]Fm2

]T
52S a

11a D 2 ]2C0

]Z2
2S a

11a D ]2C1

]Z2

2
a2

~11a!3
~ge1g i !, ~21!

¹2C252S 12a

11a D S ]2C1

]X2 1
]2C1

]Y2 D
1S 1

11a D S ]2Fm1

]X2 1
]2Fm1

]Y2 D1S 1

11a D 2
3S ]2Fm0

]X2 1
]2Fm0

]Y2 2
]2C0

]X2 2
]2C0

]Y2 D . ~22!

Equations~17!–~22! demonstrate a way to obtain approx
mate analytical solutions to the bidomain equations when
solutions for equal anisotropy ratios are known. We will no
use these equations to examine three important problem
cardiac electrophysiology.

III. RESULTS

A. Point source stimulation

1. Extracellular stimulation

As our first example, we will calculate the transmembra
potential distribution produced by a steady-state, extrace
lar point current source:

g i50, ge5g0]~X!]~Y!]~Z!, ~23!

whereg0 is the source strength and] represents the Dirac
delta function. This example corresponds physically to u
polar stimulation by an extracellular electrode carrying
steady current. A positive value ofg0 corresponds to anoda
stimulation and a negative value ofg0 corresponds to
cathodal stimulation. The zeroth-order solutions to the pr
lem,Fm0 andC0 , correspond to equal anisotropy ratios.Fm0
is the solution to the Helmholtz equation for a point sour

Fm052g0

a

11a

e2R

4pR
, ~24!
e

in

e
u-

i-

-

whereR25X21Y21Z2. C0 is the solution to Poisson’s
equation for a point source

C05g0

1

11a

1

4pR
. ~25!

These solutions are equivalent to those derived previou
@10,11#.

Of particular interest is the first-order term of the tran
membrane potential,Fm1, because this term contains the e
fect of unequal anisotropy ratios to lowest order. There
two source terms on the right-hand side of Eq.~19! for Fm1.
One containsge and gives a solution with the same spat
distribution asFm0. The other source term is proportional
]2C0/]Z

2. When expressed in spherical coordinates, the
ter source term is equal to

2
a

~11a!2
g0

2pR3 P2~cosQ!, ~26!

whereQ5tan21(AX21Y2/Z) and P2~cosQ! is the second-
order Legendre polynomial~3 cos2Q21!/2. The Helmholtz
equation with these source terms can be solved analytic
and the solution is

Fm15
a

~11a!2
g0

6p H e2R

R
1F 3R3 2

e2R

R

3S 11
3

R
1

3

R2D GP2~cosQ!J . ~27!

The first term amounts to a correction to the amplitude
Fm0 @Fig. 1~a!#. The second term depends onQ and gives
rise to regions of both positive and negative transmembr
potential near the point source@Fig. 1~b!#. At large values of
R, Fm0 and the first and last terms in the expression forFm1
go to zero exponentially, so that the 1/R3 term inFm1 domi-
nates. In that case, forg0 positive~anodal stimulation!, Fm is
positive forQ equal to 0 orp ~parallel to the fibers! and
negative forQ equal top/2 ~perpendicular to the fibers! @Fig.
1~c!#. This behavior is qualitatively similar to the result of
numerical calculation performed by Sepulveda, Roth, a
Wikswo of the transmembrane potential in a tw
dimensional sheet of cardiac tissue@11#. A similar trans-
membrane potential distribution around a unipolar stimu
ing electrode has been observed experimentally@12–14#.
The presence of adjacent depolarized and hyperpolarized
gions, implied by theP2~cosQ! dependence ofFm , has im-
portant implications for the mechanism of stimulation@15#,
the shape of the virtual cathode@16#, the strength-interval
curve @17#, and the induction of reentry and arrhythmia
@18#.

One advantage of an analytical solution~albeit an ap-
proximate one! over a numerical calculation is that we ca
easily determine how the solution depends upon the par
eters of the problem. For instance, the solution forFm0 in
Eq. ~24! depends ona through the leading factora/~11a!,
whereasFm1 has a leading factor ofa/~11a!2. Because the
ratio Fm1/Fm0 is proportional to 1/~11a!, we expect the
effect of unequal anisotropy ratios to be greatest whena is
small.

The first-order correction toC is
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FIG. 1. Transmembrane potential induced by a point extracellular current source. The electrode is at the center of the plot.
direction andZ axis are horizontal. The bar denotes two space units and contours are drawn every 10 mV.«5

3
4, a51, andg05156 V

~corresponding to 1-mA stimulation!. Contours for very large potentials near the electrode are not drawn.~a! Fm0 @Eq. ~24!# plus the part of
Fm1 that is independent ofQ @Eq. ~27!#, ~b! the part ofFm1 that is proportional toP2~cosQ! @Eq. ~27!#, and~c! Fm01Fm1.
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C152
g0

6p

12a

~11a!2 F 1R1
1

2R
P2~cosQ!G1

g0

6p

a

~11a!2

3H 2
e2R

R
1F2

3

R3 1
e2R

R S 11
3

R
1

3

R2D G
3P2~cosQ!J . ~28!

The first term in this equation has the same spatial distr
tion asC0 and it therefore provides a first-order correction
the amplitude. The second term is more interesting beca
of theQ dependence. At large values ofR, this term contrib-
utes significantly toC1, but becauseC0 does not vanish, the
term supplies only a first-order correction to the behavior
C. For large values ofR and through first order,Fm falls off
as 1/R3, whereasC falls off as 1/R. Therefore,C@Fm at
large values ofR, andFi andFe are nearly proportional to
C. For equal anisotropy ratios,Fi and Fe would have
spherical isocontours at large values ofR ~they would be
elliptical if plotted as functions ofx, y, andz!. C1 causes the
contours to deviate from this spherical shape, but this
first-order deviation and it is therefore small.

2. Intracellular stimulation

Intracellular stimulation, which is possible by means
microelectrodes, corresponds to

g i52g0]~X!]~Y!]~Z!, ge50. ~29!

The minus sign in this expression ensures that a pos
value ofg0 will correspond to hyperpolarization of the tissu
~negativeFm! under the electrode. The solution forFm and
C is analogous to our previous result:

Fm052g0

1

11a

e2R

4pR
, ~30!

C052g0

1

11a

1

4pR
, ~31!

Fm152
a

~11a!2
g0

6p H e2R

R
1F 3R3 2

e2R

R

3S 11
3

R
1

3

R2D GP2~cosQ!J , ~32!
-

se

f

a

f

e

and

C15
g0

6p

12a

~11a!2 F 1R1
1

2R
P2~cosQ!G1

g0

6p

1

~11a!2

3H 2
e2R

R
1F2

3

R3 1
e2R

R S 11
3

R
1

3

R2D G
3P2~cosQ!J . ~33!

Note thatFm0 does not change signs when going from e
tracellular to intracellular stimulation, butFm1 does. For in-
tracellular stimulation that hyperpolarizes the tissue near
electrode, there are regions of depolarization in the direc
perpendicular to the fiber axis~as opposed to regions of de
polarization parallel to the fiber axis caused by extracellu
stimulation!.

Sepulveda, Roth, and Wikswo@11# considered the case i
which intracellular and extracellular stimulation were bo
applied at the same position with equal and oppos
strength:

g i52g0]~X!]~Y!]~Z!, ge5g0]~X!]~Y!]~Z!. ~34!

The solution follows from superposition of our two previou
results:

Fm052g0

e2R

4pR
, ~35!

C050, ~36!

Fm150, ~37!

C15
g0

6p

1

~11a!2 H 2
e2R

R
1F2

3

R3 1
e2R

R

3S 11
3

R
1

3

R2D GP2~cosQ!J . ~38!

C1 has no 1/R term and has a spatial distribution similar
that ofFm for intracellular stimulation.

To first order,Fm is spherically symmetric. An angula
dependence is present in the second-order term for the tr
membrane potential. The full solution forFm2 is rather com-
plicated, but one term dominates atR@1:
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Fm252g0

6

p

a2

~11a!3
1

R5 P4~cosQ!, ~39!

where P4~cosQ! is the fourth-order Legendre polynomia
~35 cos4Q230 cos2Q13!/8. During cathodal stimulation
~g0,0!, Fm2 causes hyperpolarized regions in the directio
that are approximately 45° from the fiber axis and depo
ized regions in the directions parallel to and perpendicula
the fiber axis. These conclusions are consistent with the
merical calculations of Sepulveda, Roth, and Wikswo@11#
~see their Fig. 8!.

B. Expanding wave front

Another important problem in cardiac electrophysiolo
is the calculation of the extracellular potential that is p
duced by an expanding action-potential wave front. Ma
cardiac arrhythmias are caused by abnormal propagatio
wave fronts through the heart and often the clinician need
determine the path of propagation before deciding on
appropriate therapy. Although the transmembrane poten
contains the most useful information about wave-fro
propagation, the extracellular potential is much easier
measure. Often the clinician desires to learn aboutFm from
measurements ofFe .

We will now consider a spherical wave front~ellipsoidal
in x, y, and z coordinates! that is propagating outward. In
this example, there are no applied sources; therefore,gi and
ge are equal to zero.~We will not concern ourselves with
how this wave front originated; we will assume that t
sources that initiated it are no longer active!. The membrane
is not passive and the active ion channels in the memb
provide the source of the extracellular potential. We can
solve this problem completely with the passive theory dev
oped above. However, we can make some progress by
izing that the leading edge of a cardiac wave front~the ‘‘de-
polarization’’ front! is very thin and the tissue is near
passive both in front of it and behind it.~The cardiac action
potential has a rise time of about 1 ms, followed by a plate
lasting over 100 ms.!

We will assume that the wave front can be treated a
step function; therefore, the transmembrane potential is z
ahead of the wave front andV0 behind it. Consequently, we
take the zeroth-order expansion of the transmembrane po
tial to be

Fm05 HV0 ,
0,

R,R0

R.R0 .
~40!

Because there are no applied sources,C050 everywhere. We
see from Eq.~19! that both source terms forFm1 are equal to
zero. Thus unequal anisotropy ratios does not lead to a fi
order correction to our assumed wave front~Fm150!. The
second source term in Eq.~20! for C1 is not equal to zero,
however. In this case, Eq.~20! can be solved analytically
yielding

C15
1

11a

2

3
V03H 1, R,R0

SR0

R D 3P2~cosQ!, R.R0 .
~41!
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The extracellular potential is given in terms ofFm andC
in Eq. ~8!. We can write the extracellular potential, to fir
order in«, as~see Fig. 2!

Fe5
a

11a
V03H 211«

2

3

1

11a
, R,R0

«
1

11a

2

3 SR0

R D 3P2~cosQ!, R.R0 .

~42!

If the tissue had equal anisotropy ratios~«50!, the extracel-
lular potential outside a closed, expanding wave front wo
vanish. ~This phenomenon corresponds to the ‘‘unifor
double layer’’ model often referred to in the electrocardio
ogy literature@19#.! But unequal anisotropy ratios induce
part of the extracellular potential that has the spatial dis
bution of a second-order Legendre polynomial. In the dir
tions parallel to the fibers~Q50°,180°!, the extracellular po-
tential outside the wave front is positive; in the directio
perpendicular to the fibers~Q590°,270°!, the extracellular
potential is negative. This distribution of extracellular pote
tial has been computed numerically@20# and observed ex-
perimentally@21,22#.

The second-order correction term to the transmembr
potentialFm2 does not vanish@Eq. ~21!#. The entire solution
to theFm2 problem is rather difficult, but a particular solu
tion Fm2* can be readily calculated

Fm2* 5
a

~11a!2
8V0

R0
2 3H 0, R,R0

SR0

R D 5P4~cosQ!, R.R0 .

~43!

Because the homogeneous solution to Eq.~21! rapidly falls
off in space, the particular solution should make the dom
nant contribution toFm2 at more than a few length constan
from the wave front~uR2R0u@1!. The angular dependenc

FIG. 2. Extracellular potential~accurate to first order! induced
by an expanding action potential wave front@Eq. ~42!#. The position
of the wave front corresponds to the bold circle. The fiber direct
and theZ axis are horizontal. Contours are drawn every 2 mV.«5
3
4, a51, V05100 mV, andR054.
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FIG. 3. Extracellular potential induced by a
injured region@Eqs.~52! and ~55!#. The fiber di-
rection and theZ axis are horizontal. Contours
are drawn every millivolt.«5

3
4, a51,E550 mV,

G54, andR0510. ~a! Fe0 plus the part ofFe1
that is independent ofQ, ~b! the part ofFe1 that
is proportional toP2~cosQ!, and~c! Fe01Fe1.
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of P4~cosQ! implies thatFm2 is positive atQ50°, 90°, 180°,
and 270°. It is negative along the diagonal directions~at
Q545°, 135°, 225°, and 315°!. Because the effect is secon
order in «, the magnitude ofFm2 is small. In addition, the
magnitude ofFm2 falls off as 1/R0

2, making this effect larger
for highly curved wave fronts and smaller for nearly fl
wave fronts~R0@1!. Using a numerical calculation, Pollard
Hooke, and Henriquez@23# predicted regions of hyperpolar
ization leading an outwardly propagating wave front in t
directions 45° from the fiber axis. Our results are in quali
tive agreement with their prediction.

C. Injury currents

A third significant problem in cardiac electrophysiology
the response of the heart to a localized region of tissue w
abnormal electrical properties~i.e., ‘‘injured’’ tissue!. If the
injured region remains coupled to the surrounding tiss
steady-state currents~‘‘injury currents’’! can arise between
the injured and the normal tissue. The same idea applie
healthy tissue that has a local modification of the cell me
brane’s electrical properties~e.g., response to local applica
tion of a neurotransmitter!. This problem is also importan
when we consider the response of smooth muscle to tr
mitter secretion. Poznanski@24# has studied this problem us
ing the bidomain model, but only for the case of equal a
isotropy ratios. We can use our perturbation technique
generalize his result to unequal anisotropy ratios.

We start with the bidomain equations@Eqs. ~1! and ~2!#
but we add an additional term to represent a region of le
membrane. We assume that the tissue is in steady stat
applied currents exist (g i5ge50), the leaky region lies
within a sphere of radiusR0 centered at the origin~within an
ellipsoid inx, y, andz coordinates!, the leaky membrane ha
a conductance per unit area ofGm* in parallel with the normal
membrane conductanceGm , and the leaky membrane con
ductanceGm* has a reversal potential ofE. ~In our previous
calculations, we neglected the resting potential, which is
steady-state potential difference of about280 mV that exists
between the intracellular and extracellular space in norm
resting cardiac tissue. If we had included the resting pot
tial, thenE would represent the difference between the re
ing potential within the cell and the ground outside the c
In other words, the leaky membrane represents the effec
non-selective pores in the membrane that tend to reduce
resting potential toward zero.!

With these assumptions, we can write the bidomain eq
tions as
-

th

e,

to
-

s-

-
to

y
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e

l,
n-
t-
l.
of
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a-

]2Fm

]X2 1
]2Fm

]Y2 1
]2Fm

]Z2
2Fm

52
a«

11a~12«!

]2C

]X2 1H~R,R0!
Gm*

Gm
~Fm2E! ~44!

and

S 21a~12«!1
1

a~12«! D S ]2C

]X2 1
]2C

]Y2 D
1S 21a1

1

a D ]2C

]Z2

5«S 11
1

a~12«! D S ]2Fm

]X2 1
]2Fm

]Y2 D , ~45!

where

H~R,R0!5 H1, R,R0

0, R.R0 .
~46!

Using G5Gm* /Gm and performing our perturbation expan
sion, we get

¹2Fm02~11GH!Fm052GHE, ~47!

¹2C050, ~48!

¹2Fm12~11GH!Fm152
a

11a

]2C0

]Z2
, ~49!

¹2C15S 1

11a D S ]2Fm0

]X2 1
]2Fm0

]Y2 D , ~50!

¹2Fm22~11GH!Fm252S a

11a D ]2C1

]Z2
. ~51!

The solution to Eq.~47! for Fm0 is @see Fig. 3~a!#

Fm05
G

11G
E3H 11A

sinh~RA11G!

R
, R,R0

B
e2R

R
, R.R0.

~52!

The constantsA andB can be determined from the continu
ity of Fm0 and its radial derivative atR5R0 ,
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A52
R0

sinh~R0A11G!
F 1

12@12A11GR0coth~R0A11G!#/~11R0!
G , ~53!

B5
R0

e2R0 F 1

12~11R0!/@12A11GR0coth~R0A11G!#
G . ~54!

The solutions to Eq.~48! for C0 and Eq.~49! for Fm1 vanish~there is no first-order correction term to the transmembr
potential!. The solution to Eq.~50! for C1 is @see Fig. 3~b!#
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R D 3P2~cosQ!,

~55!
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whereC is given by

C511
3

R0
2

G

11G

3
1

1/~11R0!21/@A11GR0coth~R0A11G!#
.

~56!

At large values ofR ~R2R0@1!, the only term that contrib-
utes significantly toC1 is the last term, which has
P2~cosQ! angular dependence@Fig. 3~c!#. Thus extracellular
potentials measured outside the injured tissue will hav
distinctive directional dependence, similar to that obser
outside an expanding wave front. This directional dep
dence needs to be taken into account when extracellular
tential measurements are used to deduce the transmem
potential distribution@25#.

By analogy with the expanding wave-front problem, the
will be a nonzeroFm2 that has aP4~cosQ! angular depen-
dence. Because theFm2 contribution is second order, it wil
be small in relation toFm0, except atR@R0 .

IV. DISCUSSION

In this paper, we developed a perturbation technique
studying the electrical properties of cardiac tissue, with
emphasis on the tissue anisotropy. Perturbation methods
similar multiscale techniques are not new to theoretical c
diac electrophysiology. Neu and Krassowska@3# used a mul-
tiscale method to derive the bidomain equations from a
croscopic model of the tissue’s cellular structure. Kee
@26# and Colli-Franzone, Guerri, and Rovida@27# used mul-
tiscale techniques to derive eikonal equations that govern
speed of propagation of action potential wave fronts. Th
previous studies differ from ours in a fundamental way. T
difference can best be appreciated by examining the ‘‘sm
parameter’’ used in the perturbation theory. Neu and Kr
sowska used a small parameter equal to the ratio of the
a
d
-
o-
ane

r
n
nd
r-

i-
r

he
e
e
ll
-
ell

diameter to the tissue length constant and examined eff
arising from the discrete cellular nature of the tissue. Ke
er’s and Colli-Franzone, Guerri, and Rovida’s small para
eter arose from assuming that the conductivity of card
tissue changed slowly over distances on the order of the
polarization wave-front thickness. They also examin
changes in propagation velocity with fiber curvature and
tation. All three of these methods examine changes in tis
properties in space~inhomogeneities!, on either a large or a
small spatial scale. Our perturbation method, on the ot
hand, examines the electrical behavior of a continuous,
mogeneous tissue. Our small parameter« arises from the
inherent nature of the tissue anisotropy, not from any in
mogeneity. It gives rise to effects that are completely diff
ent from those found during previous studies of cardiac
sue using perturbation methods.

One virtue of our perturbation method is that it elucida
which properties of cardiac tissue arise from unequal ani
ropy ratios and which do not. First-order effects include a
jacent regions of depolarization and hyperpolarization ne
stimulating electrode and directional dependence of the
tracellular potential outside an expanding action poten
wave front or a region of injury. The first two of these effec
have been observed experimentally.

The key parameter in our analysis is«, which is equal to
one minus the ratio of the anisotropy ratios in the extrac
lular and intracellular space. For our perturbation analysis
be most useful,« should be small. Experiments indicat
however, that« has a value of about 0.75, which is not e
ceptionally small@5#. Thus, while first-order terms in ou
perturbation expansion provide great insight into the qual
tive electrical behavior of cardiac tissue, a quantitative ana
sis may require the inclusion of higher-order terms in t
expansion.
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