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Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect
of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical
arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation
measures used for the so-called aperiodic stochastic resof®Bgscenario does not rely on the cooperative
effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying
signals is more properly interpreted as linearization by noise. Consequently, the broadening of the “resonance
curve” in the multineurorstochastic resonance without tunisgenario can also be explained by this linear-
ization. Computation of the input-output correlation as a function of both signal frequency and noise for the
model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from
stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the
optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can
perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of
a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate
and input signal[S1063-651X%97)01102-]

PACS numbdss): 87.10+e

I. INTRODUCTION multineuron systemgt] has provided additional examples of
circumstances in which neuronal synchronization is en-
“Stochastic resonancesR) is a term which describes the hanced by some level of random fluctuations. In the context
coincidence oftwo time scales in a periodically modulated of harmonically forced neurons, the signal-to-noise ratio
multistable, stochastic system. One time scale is establishd@NR) has typically been used to quantify the noise-induced
by the period of the external stimulus and the other by thesynchronization of the neuron firings to the subthreshold sig-
well-to-well switching rate induced by the stochastic processal. The precise resonant behavior of this SNR as a function
or noise” [1]. By this effect, the synchronization of a non- of noise intensity depends on signal characteristics such as
linear system to a weak periodic signal can be enhanced Byias, frequency, amplitude, as well as on parameters govern-
the presence of random fluctuations. A weak periodic signaing the autonomous neural dynamics and the noise. This im-
is one which cannot by itself produce switchings betweerplies that an optimal response to a signal of varying charac-
wells. The optimum enhancement is obtained at a level oferistics could be maintained if the sensory neuron somehow
noise which produces a maximum cooperatiie.,“reso-  “tunes” or adapts itself accordinglf5].
nance’) effect between the noise-induced transitions be- In a recent paper, Collinst al. [6] showed that a single
tween wells and the frequency of the deterministic periodionoisy neuron can also optimally transduce a subthreshold
signal[2]. Thus, the noise level producing the optimum syn-slowly varying aperiodic signal, such as low-pass filtered
chronization always depends to some extent on the frenoise(see below Their study proposed SR measures appro-
guency of the periodic signal. priate for characterizing this so-called “aperiodic stochastic
It is well known that biological sensory receptors trans-resonance” effectASR). The proposed power norf@, and
form analog quantities such us pressure, temperature, electmormalized power norn€,; measure the quality of the trans-
field, etc., into trains of action potentials or “spikes.” The duction by the correlation between input signal and output
information about the physical stimuli is encoded in the timeinstantaneous firing rate. In this setting, a “resonance curve”
intervals between spikes. All the features of systems exhibef correlation versus noise intensity was obtained which re-
iting SR were found to be present in sensory neurf@js sembled those for SR: with increasing noise, the correlation
which are intrinsically noisy, nonlinear threshold systems. Inrose sharply to a peak, and dropped theredFiy. 4; cf.[6],
such systems the essence of the signal-enhancing effect Bfg. 1). These authors also recognized that for ASR, while
SR can be simply grasped. In the absence of stimuli, thereestrictions on frequency are relaxed due to the use of slowly
are random threshold crossings, each of which results in g@arying signals, it would still be necessary to modulate or
spike. The mean time between crossings decreases as taetively “tune” the noise intensityor other parametersn
noise intensity increases. A weak subthreshold deterministiorder to optimally transduce a signal whose characteristics
modulation will then be best expressed in the output spikésuch as mean level, variance, gtthange with time.
train if its dominant frequency is close to the noise-induced Another recent reporf7] analyzed the extension of the
mean spiking rate in the absence of signal. single neuron ASR property to a population of noisy neurons
Further theoretical and experimental work on single andacting in parallel on the same aperiodic input signal. The
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aforementionedC; was then computed using the signal andthreshold means that the driving signal alone is not of suffi-
the average instantaneous firing rate of these neurons. It wagent amplitude to produce action potentials. The system
shown that this measure asymptotically approaches one witbquations are

increasing number of neurons, whenever the noise level is

above a certain minimurfFig. 6; cf.[7], Fig. 2. This sto- ev=v(v—a)(l—v)—wW+A+S(t)+ (1),
chastic resonance without tunirgffect suggested that popu-
lations of neurons acting in parallel could, apparently, use w=v—w—Db, (2.2

SR and still overcome the tuning problem. In a restricted

sense, the connection to tuning relates to the “time-scalavhereuv(t) is a fast(voltage variable andw(t) is a slow
matching” notion of SR, in which one noise intensity opti- (recovery variable. The parameters are chosen ag6if],
mally transduces a given frequency; hence, high correlationamely,A is a constanftonic) activation set to 0.04unless
over a wide range of noise intensities could transduce atherwise stated e=0.005a=0.5, andb=0.15.5(t) is the
wide-band input signal. In a larger sense, tuning refers t@periodic signal.f(t) is the noise given by an Ornstein-
adjusting all system and noise parameters to optimally detedihlenbeck(OU) stochastic process of the form

a signal; their results would then imply that the noise- ]

averaging property of the summing network makes this tun- L(t)y=—=NZ(t)+NE(Y), (2.2
ing less critical.

These two reports suggest that neurons could use SR where{(t) is Gaussian white noise of zero mean and corre-
optimize their output coherence with weak input signals, relation (&(t)£(s))=2Dé(t—s). The autocorrelation of the
gardless of frequency in the case of a single neuron, and ¢PU process is given by
frequency and noise intensity in the case of summing net-
works. Being the essence of SR, the coincidencevoftime (£(1){(s))=(D/r)exp(—|t—s|/7.) 2.3
scales[1,2], achieving enhancement of the signal by the
noise for a wide range of frequenciése., “aperiodic sto-
chastic resonanceg and/or noise intensitigs.e., “‘stochastic

:T?iss,?r?tz?g?etgtlitgr?.m tuning”implies either a paradox or a We _in_tegrated(with a fixed step size of 0.001 sethe
The aim of this paper is to show, through a simple analy_determ[nlsuc system E@2.1) coupled to the OU process Eq.
sis, that the nhonmonotonic correlation-versus-noise relation(-z.'z? using a fqurth—ordgr Runge-Ku_tta mgthod f°r. the deter-
ship associated with aperiodic stochastic resonance and stgunistic equations, wh.|le the _algorlthm o] provu_ﬂe§ an
chastic resonance without tuning does not rely on thdiceuracy of the noise integration of order 3/2. This integra-

cooperative effect typical of SR. Rather, it is a consequencHOn scheme suffices for our purpose of reproducing Collins

of linearization-by-noise of the transfer function that relatesSt - [6,7] results. However, if the interest is in a more pre-

“mean firing rate” to “activation level.” The match be- cise §o|ution, the integration methods [ib0] are more ap-
tween our theory and the simulations shows that the role Opropg?rlate.d L . hi ise is ob
the noise in ASR with slowly varying inputs is to produce a good approximation to Gaussian white noise is_ob-

positive linear gain for the nonlinear threshold element in aiN€d by choosing, equal to the integration step size. The

region of otherwise quiescent dynamics. Our analysis i©0Silive-going excursions af(t) reaching a minimum am-

based on the same assumption as that for AGRnamely, pIitudg (here set to 0.5 as ifB]) are considered as action
that the time variations of the input signal occur on a timePotentials with the caveats discussed in the next subsection.

scale which is slower than all characteristic times of the neuJ N times of occurrence of the action potentials form a point

ron(s). process Whlgh is mpdele_d as a _traln of equal-amp!ltude
The excitable neuron model, which closely follows that in o-function spikes. This spike train is then convolved with a

[6], is introduced in Sec. Il. Some technical points regardingt0 S€C unit-area symmetric Hanning window in order to ob-

spike detection, relevant in later sections, are also presenté@n @n instantaneous firing rate that varies in time. The con-

in this section. Section 11l is dedicated to replicating the nu-v0lved spike train constitutes the output sigRgt).

merical results ir{6,7] which are relevant to our study. The

fundamental diagram of mean firing rate-versus-noise inten- Spike detection schemes

sity is introduced in Sec. IV. .In Sec. V, expres§ions for_ t_he Adopting the upward threshold crossing oft) as the
expected values of the covariance and correlation coefficieny, |y criterion for spike detection presents a problem for the
in the quasistatic casg.e., for slowly varying inputsare iq 1o-high noise intensities considered in our study. For

derived an_d compa_red with the numerical simulations of Fhefhese intensitiesy (t) can fluctuate rapidly several times
full dynamics. Section VI places the results of the precedmgaround the threshold.

sections in the light of the dependence of the SNR on noise ~,nsider. for instance. the case depicted in paaebf
and frequency for the case of pure harmonic signals. Th%ig. 1, where the time course of(t) is plotted. With the

paper concludes in Sec. VII. aforementioned parameters, no spikes are produced in the
absence of noise. With noise, we find that an action potential
Il. MODEL AND NUMERICAL CONSIDERATIONS is induced starting at around time 1_5_.82 sec, and evolveg for
about 300 msec. There are two additional threshold crossings
We consider the FitzHugh-Nagum¢@~HN) neuronal preceding this action potenti@hdicated by the vertical bars
model driven by a subthreshold signal and ndi8k Sub-  with interspike intervals of 3 and 2 msec. It is known that, in

and its variance i®/7;. The choice of a OU process allows
control over both noise intensitireferred to throughout as
D rather tharD/7,) and correlation timer,=\ 1.
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FIG. 2. Time series of the aperiodic signal used in our simula-
tions.

taneous firing rate; the upper one is calculated from the
scheme without absolute refractory period, while the lower
one disallows spikes closer in time than 400 msec. The dif-
ference in firing rates is striking; these differences increase
with higher noise intensitiegot shown.

Figure Xc) shows the interspike interval histografiin
width of 50 mseg constructed from a simulation of total
time of 26 214.4 sec with the same parameters and constant
input. There are 3157 intervals in the first Bolipped in the
plot). The intervals measured between acceptable action po-

ISI (sec) tentials follow a sharpy-like distribution with a sharp rise at
about 1 sec, and are clearly distinct from those0(5 se¢

FIG. 1. (a) Detailed view of the action potential labeled by an caused by small fluctuations around the threshold. Our
asterisk in pane(b). The apparently single upward threshold cross-choice of the absolute refractory perit@4 se¢ discards the
ing is in fact a close succession of three threshold crossings, eaghg|ge” spikes without affecting the dynamically relevant
marked by a vertical bab) Fast membrane potentialt) (con-  eyents. In the following, we will compare results for simula-
tinuous ling, spikes timegmarked by a vertical barand instanta- tions with and without an absolute refractory period in the
neous firing rategdashed linesas defined in the text. The larger spike-detection scheme. The proper consideration of these

amplitude firing rate is obtained by counting all threshold crossingsfalse spikes changes the conclusions of our baper quantita-
(c) Interspike interval histogram. The intervals smaller than 0.5 Se%ively rgther than gualitatively paper g

are calculated from one or two false spikes. Tithere in segcan

be rescaled to match, e.g., action potential durations in an experi-
mental setting. Ill. REPLICATING ASR AND SR WITHOUT TUNING

counts

In this section, we reproduce the simulations as reported

a model of a nerve fiber of a certain length based on Egby Collinset al.[6,7,13. The aperiodic signab(t) was con-
(2.1), the only threshold crossings that can be detected alongfructed according t§6], that is, an OU process E@2.2)
the fiber are the ones corresponding to the action potentiatith correlation timer,=20 sec passed through a unit-area
[11]. Therefore, an additional criterion is needed to detecsymmetric Hanning window filter of width 10 sec. Note that
only the biologically relevant spikes that propagate andhe Hanning window acts as an additional low-pass filter,
transmit information about the input. Thus, we slightly resulting in a relatively smooth signal. It is important to re-
modify the method i8] by introducing, as if12], an ab- alize that the correlation time of such a signal is much larger
solute refractory period0.4 se¢ wherein no positive-going than any relevant time scale of the dynamical system Eq.
threshold crossing is considered an action potential. In th€2.1). The one realization of the signal we use in all our
context of Fig. 1a) this criterion would assign the time of simulations is shown in Fig. 2. The signal has zero mean, a
occurrence of the action potential to the first crossing rathevariance of 1.5%10°°, and a duration of 262.144 sec, a
than the third, with a negligible error 65 msec. The more value that allows use of the fast Fourier transfoffT)
problematic false spikes are the ones that can occur duringlgorithm.
the action potential downstroke, and are eliminated using this To compare our simulations with those[B], we also use
criterion. the “power norm” C, and the “normalized power norm”

To illustrate the differences between the two spike-C, to measure the coherence between the sigtdland the
detection schemes, Fig(d) shows 32 sec of a simulation of outputR(t). These quantities are defined as
the FHN equations, Eq(2.1). The noise intensity is
D=3x105, and the signal was held constantSat0. The Co=S(D[R(t)—R(t)] (3.0
upward crossings of the firing thresholdet to 0.3 are
marked with vertical lines. The dashed lines draw the instanand
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FIG. 3. Estimation of the covariandgg, and correlation coeffi- 0.25
cient C; betweenS(t) and R(t). C, measures the mean slope, i
indicated by the slanted dashed line, of a hypothetical transfer func- A, 02| ] t]
tion between the inpuB(t) and the output instantaneous firing rate %} 0.15 b
R(t). C;, a measure of the linearity of the transfer function, is ) : _
sensitive to the slope variability around the slanted dasheddee 0.1 s : Py
arcs below and above this lineand to the variance d®(t) and
R(1). 0.05 P@
O = 1 1
0 1 2 3 4 5 6 71 8
Co 6
C, (3.2 10°4D

[SOIAIRM® O} FIG. 4. Ensemble-averaged values and standard errors @the
covarianceC, and(b) correlation coefficien€; versus noise inten-

The quantities in the denominator of E§.2) are the stan- sity D for simulations of the full dynamics Ed@2.1). Circles with

dard deviations Qf the signal and of the instantaneous firing,. o pars showC, and C, values for a spike-detection scheme

rate. Note that,_ in fact, sincg(t) has ze_ro mearCO_and without absolute refractory period. Squares denote values obtained

C, are, respectively, the standard covariance and linear Copy gisallowing any spike that occurs within 400 msec of a previous

relation coefficien{14]. In this senseC, is proportional to  gpike.

the mean slope of a linear regression betwSeandR. C;

measures the linearity of the input-output relationship of th&iod are shown. Even for the noise level at the “resonant

neuron(see Fig. 3, and varies betweert1 and 1, values for peak” in Fig. 4, the distribution ofC; values(and thus of

a perfect linear relationship with, respectively, negative orc ) is extremely broad, always encompassing realizations

positive slopeC, is also proportional ta,, and inversely jith negative correlation between output and input. Subtle-

proportional to the variances & andR. ties like spike-detection scheme do not substantially change
this broad distributiorinot shown. Hence, the standard error

A. Replicating ASR

Figure 4 shows ensemble-averaged values and standard 0.8
errors ofC, andC; at different noise intensitie3d calculated 06 -
using 300 realizations of the full dynamics E@g.1), repro- T
ducing Fig. 1 in[6]. Circles with error bars label results 0.4 il
obtainedwithout an absolute refractory period in the spike- _
detection scheme, whereas squares are for results from the © 0.2
same realizations, but disallowing spikes closer in time than

400 msec. The best correspondence with the results in Fig. 1 0 ;f'i P ; i

of [6] is for the curvesvithoutan absolute refractory period. 0.2 ; ' '

It is interesting that the rapid rise €, to a clear peak with o

subsequent decay is less prominent when considering only 04 L 2 3 a4 5 6 7 8

physiologically relevant spikes. However, this also produces
higher values ofC;.
To understand the full significance of these results, we F|G. 5. IndividualC, values from the 300 runs whose mean and

have also plottec, for all the individual rungFig. 5 used  standard error are shown in Fig. 4. Even in the best case
to calculate the mean and standard errors shown in Fig. 4D=1.5x10"%; see Fig. 4 the spread is extremely large, with oc-

Only the values for simulations with absolute refractory pe-casional realizations where input and output are anticorrelated.

10°%4D
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FIG. 7. Mean firing rate as a function &f determined by solv-
FIG. 6. “SR without tuning.” () C, versusD for different ipg Eq. (2.1 numerically at differenD_vaIues._ Thg instantaneous
numbers of neurons acting in parallel, using the spike-detectiofifing rateR(t) was computed at each integration time step from the
scheme with absolute refractory period. Lines from bottom are foresulting spike train, using a 10 sec Hanning window, taking a
architectures with 1, 10, 50, 100, 300 neurons. Error bars denote tHgfractory period into account. The mean rate was then computed
standard error ofc, for, respectively, 300, 30, 6, 3, and 1 realiza- TOM the time average dR(t). (a) Wide range ofA. A Hopf bifur-

tions. (b) Same as in(@, but without a refractory period in the ~cation occurs for 0.118Ar=0.114. The signal range for the ASR
spike-detection scheme. simulations is indicated by the horizontal bars centered on

A=0.04.(b) Same as ina), but restricted to the range & modu-

(an error bar inversely proportional to the number of realizaJ2ted by the signalkc) Slope of the rate-versus-A curves(inl as a
function of D, determined by linear regression. Minimum noise

tions) of_Co andC; does not give as accurate a picture of theintensities ared—10"7 in (a) (rightmost curve and D = 3x 10-7
correlation as the standard deviation calculated across all re- . . 7 6 :
alizations in (b) (bottom curve, increasing by 10’ up to 10 °, then in steps
: of 5x10°7 up to 3x10°%, and finally in steps of 10° up to
8% 10° (uppermost curvés Error bars in(a) and (b) denote the

B. Replicating “SR without tuning” standard deviatiofmot the standard errprTen sweeps of 157.3 sec
We now reproduce the results reported 7i for neurons ~ Were used for each parameter setan[ten sweeps of 524.3 sec in
in parallel. As in[7], we consider an architecture where the (0]
output of individual neurons, each driven by the same input
signal but a different noise sourcthe noise sources have IV. NEURON TRANSFER FUNCTION

zero cross correlationis averaged before the correlation is  oyr aim in this section is to explain ASR in terms of

measured. The averaged outiiRg(t) is frequency modulation of the mean firing rate by the slowly
LM varying input signal. We begin by computing the behavior of

Ry (t) = _E Ri(t), (3.3 f[he f|r|'ng rate asa function pf tonic acuvaugM and noise
=1 intensityD. This yields a basic transfer function for constant

. signals. The intuition behind our explanation of ASR is that
whereR'(t) denotes the instantaneous firing rate of neurorthe signal, varying on a time scale slower than all character-
i. Figure 6 shows results favi=1, 10, 50, 100, and 300 istic times of the stochastic neurons, produces quasistatic
neurons in parallel and for both spike-detection schemesariations in the parameteéx. Consequently, the firing rate
While in both case€; approaches 1 with increasifg, the  observed near a given value of the input signal can be esti-
case where only physiologically relevant spikes are countethated from the transfer function at the correspondican-
is clearly superior in performance. The close similarity ofstan} value ofA.

Fig. 6 to[7], Fig. 2, again suggests that no refractory period In Fig. 7(a), the mean firing rate for one neuron, governed
was used in their reported simulations. by Eg. (2.1) with S=0, is plotted versusA for D=10""



55 STOCHASTIC RESONANCE IN MODELS OF NEURONA. .. 1803

(rightmost curveéto D=8x10° (leftmost curve. A super-
critical Hopf bifurcation of the deterministig.e., noise-freg
system from a fixed point to an oscillatory state occurs for
0.113<A<0.114 as in6]. These rate curves were obtained
by sampling the instantaneous firing rate from a total of 1573
sec of simulation for each combination 8f and D. The
mean firing rate is seen to always increase with increasing
A and/orD. In the absence of noise, the rate is zero until
A~0.113, then jumps abruptly to a value near 1, and in-
creases almost linearly thereafter. These results are compat-
ible with work in the past decade aimed at characterizing
analytically and numerically such rates of noise-induced fir-
ing for simple excitable systenj45,16.

In the ASR simulationsA is held constant at 0.04, and Qr
the signal varies by-0.01. This range of modulation &
induced by the signdinote thatS andA are added together
in Eqg. (2.1)] is indicated in Fig. 7). For A=0.04, the au-
tonomous deterministic dynamics correspond to fixed point o 1 2 3 4 5 s 7 s
behavior. As the dynamics are excitable, spikes can occur 104D
when the noise drives the state variables to the threshold for . . .
spiking. Our quasistatic description of ASR amounts to con- FIG. 8 Theory and simulation results of tha) covarianceCo

T . - and (b) correlationC; versus noise intensitlp for simulations of
sidering that .the SIOV_V signal modulates the value of this gIO'the full dynamics Eq(2.1). Circles with error bars show the results
bally stable fixed point.

. : . obtained without absolute refractory period, and squares are from
Figure 4b) gives an expanded view of the parameter gy jations with a 400 msec refractory peri@me data as in Fig.

range corresponding to the modula_ttions produced by the Sign . The lines connect values &, and C, computed using the
nal. Conventions are the same as in Fi@),7except that the  ransfer function and Eq¢5.2) and (5.4) (see text

total simulation time is now 5243 sec, andx30 <D

-6 » . . . . . o
=<8X10 °. From these data, the slope of the mean firing ratgensity D, and 7, is a stochastic variable. This relation is
versus activatiorA for all D can be determined by linear gjmijlar ‘to the one used if6], with the substitution

regression. The relationship is almost linear for all CUNVeSR(t))=ApS(t). With the ansatz Eq(5.1), the expected
(correlation coefficient-0.9 forD=5x10"" and>0.95 for value forCy is

0.25 -

0.15

D=8x10"7).
These slopes are plotted as a functionDofn Fig. 7(c). _
This is the basic transfer function of the neuron for constant E[Col=S(t)[ApS(t) + 7p(1)]
and slowly varying signals, as they occur in ASR. The slope =\pvans) (5.2

rapidly rises to a maximum d@=2x10"°, and decreases

slowly thereafter. Within a constant scaling factor, this curveunder the assumption of vanishing correlation between the
perfectly matches that &, in Fig. 4(a). It is obvious from  stochastic variatiomp(t) and the signal. Here va8j means
this curve that there is an optimal value Dffor which the  “variance ofS.” We plotted this relationship for both spike-
slope of the rate-véx relationship, or “gain,” is maximum. detection schemes in Fig(s3. The match is excellent. The
Together with the variance of the firing rate, this gain func-expectedC, values can be derived by taking into account the
tion allows us to predict the expected valuesf andC;  variance of the stochastic variation of the linear transfer
for slow signals. The effect of noise here is to linearize thefunction. Starting again from the linear relationship, Eq.
transfer function. Stochastic resonance, by contrastpi®s  (5.1), and noting that

linearization[17] but a cooperative effect of signal and noise,

wh_en fche time §(_:ale of the signal is commensurate with the var( R)=)\2Dvar(S)+var( D) (5.3
noise-induced firing rate.

it follows that
V. DERIVING Cy AND C; FROM THE TRANSFER

FUNCTION
E[Cy] E[Col
- . =
A. Aperiodic stochastic resonance vanSyvarR)
We now derive the expected values@f andC, for ASR
from the characteristics of the rate-vs-A transfer function Apvan S)
computed in Sec. IV. The shape of the transfer function in = >
the activation range covered by the signal suggests, in the Vvar(S)[Apvar(s) +var(7p)]
context of quasistatic signals, the following linear ansatz: 1
R(t)=NpS(t) + 7p(1), 5.1 - (5.4

( var(7p) ) .
\VA B sy
Apvar(S)

where\ is the gain(slopé of the transfer function for noise
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In order to compare this expression 165 with the values functions(so-called “squashing” functionsused in neural
derived from numerical simulations of the FHN equationsnetworks(see, e.g.[18]). Such functions represent the in-
with signal S(t), it is necessary to estimate vag{). Noting  stantaneous firing raté of a neuron as a function of its
that S=const in Eq.(5.3 yields varR)=var(sp), we can activation or input levek, a quantity similar to the activation
estimate vargp) from simulations with constant signal. level A above. This function goes to zeroas> — o, and to
Consequently, for a given value Bf, var(»np) is computed the maximal firing rate(usually chosen to be opeas
by averaging the sample variance of the instantaneous rate—~>. A frequently used analytical form s
over 0.03<A<0.05. For each value oA, the sample vari- f=[1+exp(—Bx)]"%, a sigmoid whose slope at the origin is
ance of the firing rate was taken from FigbY¥. Figure &b) f’(0)=B. This sigmoid turns into a Heaviside step function
shows the resulting values @, for both spike-detection asB—o. This occurs when the noise levi@k= 82, propor-
schemes. It is clear that the nonmonotonic charact€r,ofs  tional to temperature in the neural network context, goes to
D can be derived from the assumption of a noisy linear rezero. For anyx, the slope is

lationship between firing rate and tonic activation. This is the df

main result of our paper. For lower noise levels, the pre- _ 1 —

dicted values are slightly higher than the ones obtained from &—exp(—x/D)D [1+exp=x/D)]= (5.7
simulating the full dynamics. This is because, in this range of

noise, the assumption of linearity is an approximation, as on&or a given level of activation, this slope, which is similar to
can see from the slight curvature in the transfer functionthat of the curves in Figs.(& and 1b), starts at zero for
Another contributing factor to the discrepancy is the fact thaD =0, goes through a maximum, and decays to zero as
var(np) shows a systematic increase withat low noise. D—. This reproduces the basic behavior seen in Fg. 7
However, the peak in our quasistatic estimateCefas well

as its decrease at higher noise levels are perfectly well ex- B. Neurons in parallel

lain he linear ansatz. . -
plained by the linear ansat The linear ansatz also allows the prediction @f and

It is interesting to note that the Kramer's-type analysis of : ; ;
: C, for multiple neurons in parallel. Taking E¢p.1) together
the crossing rate of 1 :
sShg the FHN model presenteffisupports with Eq. (3.3), we obtain forM neurons

our simple theory. This analysis, which approximates the
escape-to-threshold problem in the two-dimensional FHN 1M 1M

system by a_one-d|mens_|onal one Qlong zbhex§, reI_|es on Ru(t)= _2 RI(t)=ApS(t)+ ME 7h(t), (5.8

the assumption of slow signals. While such adiabatic theories =1 i=1

of stochastic resonance have been propd&eéll the fact that . ) ) )

an adiabatic theory for the transition rates agrees with nuhere thenp(t) are different stochastic variables for each
merical results of course does not imply that the underlyingieuron and have zero cross correlation. We first remark that
phenomenon is stochastic resonance. We begin wittil2y. the expected value dE, is the same for a single neuron as
in [6] for the mean threshold-crossing rate in the presence dpr M neurons in parallel. Assuming then that thyg(t)

the slow aperiodic signad(t): have the same variance vag), it follows that

(R(1))=exp{ — 3[ B3—3B2S(t)]€/D}, (5.5 VamRM):Aévar(SH%\/ar(%), 5.9

whereB=A;—A measures the distance between the signal
mean and the thresholdn [6], Ar is a constant equal to and thus, as for E(5.4),
~0.11, i.e., the bifurcation value found numerically abpve

Plots of (R) as a function of the tonic activatiof for con- " 1

stant signal and constabt are similar to those in Fig.(B), E[Ci]= : (5.10
and also behave similarly &% is changednot shown. The ; /1+ i var(7p)

partial derivative of this rate with respectAothen yields the M )\%var( S)

slope, similar to\p :
We tested the accuracy of this relation fdr=1, 10, 50,
HR) 3\3e ) V3e 3 100, and 300 for both spike-detection schemes. The results
—a *p (ArA)exp -5 (Ar=A)°|. (5.6 are plotted in Fig. 9 together with results from simulations of
the full dynamics. For the same reasons as in the single neu-

Plots of )(R)/dA as a function oD for constantA exhibit 0N case, the predicted values are slightly higher than those
the familiar unimodal Shape seen in F|g(c)? since this from the full simulations fOID<1O_6, but match them very
quantity has an exp(1/D)/D dependence. Further, we see closely for higheD. Also, C, is again higher when a refrac-
that this slope or “gain” goes to zero at very high noise, astory plenodl|s taken Into account.
expected from an extrapolation of the results of Fif)7 This estimate ofC, in Eq. (5.10 in terms of the single
This expression for the slope can then be substituted into Eqieuron parameters vayf) and\p goes to one with increas-
(5.4 which, together with a numerical determination of iIng M for var(»p)/\5>0, i.e., for nonvanishing noise inten-
var(yp) vs D (e.g., a quadratic function i as in[6,7]),  Sity. As the value ofC, for a signal of a given variance fed
can be used to determir®, as differentD values. to M neurons in parallel is determined by the factor
The nonlinearity that underlies ASR can also be intu-var(nD)/(M)\zD), it follows thatC,; can be improved by in-
itively understood using a simple analogy with the transfercreasing\p . Another way to increas€; is to increase the
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FIG. 10. Comparison of rate coding of a slowly varying signal
(solid line) by a single noiseless suprathreshold neuron and a sum-
ming network of subthreshold noisy neurons. The dashed line rep-
resentsRy(t) from the average activity of 300 neuron&=0.04,
D=1.5x10"%, for a total of 14 803 spikgs as in thestochastic
resonance without tuningcenario. The dotted line B(t) from a
single neuron in the suprathreshold reginde=0.125,D=0, 272
spikes. The correlation coefficients a@;=0.96 for the 300 sto-
chastic neurons, and;=0.957 for the single deterministic neuron,
R respectively.

<C;>

true here even though the mean slope of the transfer function
with noise is actually higher than without noise. The reason

why C, is not exactly one for the single neuron is that there

is a slight curvature in the noiseless rate-ver&ugmction.

FIG. 9. “SR without tuning” explained using the transfer func- __1N€ analysis in [6] relies on the assumption
tion in Fig. 7, with (a) and without(b) refractory period. Symbols [S*(t)]?<B, i.e., signal variance is much smaller than
are mean values obtained from simulating the full dynanigee  Signal-to-threshold distance. For larBei.e., for signals near
Fig. 6) (from bottom, for systems with 1, 10, 50, 100, and 300 or above threshold, it may adequately approximate values of
neurony. Lines are theoretical values, calculated from E%10. C;. On the other hand, our transfer function analysis allows
var(np) was estimated as in Fig. 8, i.e., by averaging acrss us in principle to predict, for any value & (and thus, of
values using the data in Fig(ty. B), the value ofC, for one or many neurons driven by a

slowly varying aperiodic input. The accuracy of our predic-
linearity of the transfer function over the relevant range oftjon will be higher if the slope of the transfer function is
A values. It is tempting then to compare simulationsMf  gimost constant across the relevant rangd ofalues. This
neurons in parallel to one with a single neuron operating in ginearity will depend on the minimum and maximum bounds
parameter range where the transfer function deviates veryf ihe signal amplitude, as well as on the particular combi-
little from linearity. Such a parameter range occurs forpation of A andD values used.
D=0 and A close to but above the threshold value s clear that the reduction of the noise variance achieved
~(0.114. In other WordS, a Single neuron could also Optlmlijsmg the Summing network broadens the range of noise in-
its response to a slow aperiodic input by adapting its dynamgensities for whichC) is high. This flattening of thec}!
ics to a higher resting potential, ¢from another point of yersusd curve will however be much more difficult to main-
view) by lowering its threshold. tain asD increases. The theory presented[@] yields an

To illustrate the notion that a single neuron can do as We'hnalytical approximation tcC,. This result has been ex-

as a summing network of neurons operating at a highefonqeq tom neurons by recalculating the normalization fac-
threshold, we compare the performance of 300 neurons, €3¢ N2 in the denominator ofc, [N? is the variance of

with the same dynamical parameters #ne0.04, to a single R(t)]. The result is
neuron with all the same dynamical parameters, except
A=0.125 andD=0. The single neuron now fires periodi-
cally in the absence of input signal and noise, since
A>0.114. The value oA=0.125 is chosen such that the
C, value for the single deterministic neuron equals the maxiwhere brackets denote ensemble averages, overbars denote
mum value obtainable in the noisy summing network,time averages, and®(D) is simply var(yp) used through-
namely, that foD=1.5x10"%. A comparison ofS(t) with ~ out our study. This factor is then used to obtaill [see Eq.

R(t) for the single deterministic neuron in its suprathreshold(3) in [7]]. For largeD, and assuming that the Kramers rate
regime ancdRy (t) for the 300 noisy neurons is shown in Fig. approximation is still valid, this expression goes as
10. Thus, a shift in membrane potential to a region of linear~/M/Da (D). Assuming thats? maintains its quadratic de-

ity also optimally transduces a slow aperiodic signal. This ispendence o, and that the noise sources on the neurons

10% D

NZ=var(Ry)=(R)2—(R)2+ ¢%(D)/M,  (5.1))
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indeed remain uncorrelated, we find ti&lf ~ /M/D?3. This  the results in this section. For comparison with the treatment
implies that, e.g., for a twofold increase in the noise level, af R(t) used in previous sections, phase histograms here can
high value of correlation obtained witM neurons can be be considered equivalent estimates of rate functions over one
maintained by using instead B4 neurons. We note that the cycle, obtained by convolving the spike trains with nonover-
same scaling is obtained using our 8110, in combination lapping rectangular windows of lengffiv100, with results
with Eq. (5.6), since this latter equation yields aDltlepen-  over all cycles folded modulo2 into one cycle. The result-
dence ofAp at largeD. Thus, broadening o€, versusD  ing number of counts in each bin of the cycle histogram is
will occur, but can be quickly overcome by increased noisefyrther divided by the total number of spikes encountered
during the 3200 cycles, producing a normalized cycle histo-
gram. Under these conditions, results in this section can also
be seen as analogous to the ensemble-averaged rate of 3200
neurons in parallel over one stimulus cycle. We note that the
In this section we investigate the correlation of the firingvalue of C, is not affected by the normalization.
rate with subthreshold periodic signals of varying frequency Figures 11 and 12 show the result of our simulations of
for different noise intensities. Our aim is to illustrate that Eq. (2.1) with subthreshold periodic forcing. It is clear that
there are regions in parameter space where linearization Hyigh values of correlation can be seen over the whole range
noise governs the behavior &f;, and others regions where of stimulus periods studied. Let us focus first on the param-
stochastic resonance plays a role. eter values of Fig. 11 which yield “half-wave rectified” his-
The correlationC; was computed between a sinusoid andtograms. These cases occur for the lowest noise intensities
a histogram representation B{t) over one stimulus cycle. and all periods, and for the shortest periods and all noise
This is known in the neurophysiology jargon as a ‘“cycle intensities(in other words, for the cases along tkeor y
histogram,” and representafter proper normalizationthe = axes. For these parameter combinations, there is a higher
probability of occurrence of a spike as a function of theprobability of firing near a given phase of the sinusoidal
phase of the periodic signal. These histograms were comninput, and very little firing over a range of phases~ofr rad.
puted from numerical simulations of E(@.1) as before, ex- As noise or period increases, i.e., as one moves away from
cept that here5(t) is a sinusoid of amplitude 0.0compa- thex ory axes, the histogram resembles more and more the
rable with that of the aperiodic signal used in previoussinus input. This qualitative observation can be confirmed by
section$ and periodT ranging from 20 sec to 0.5 sec. The looking at the respective values 6f. These values o€,
noise intensity ranges from 0<5L0~ % to 8x 1076, shown in Fig. 12, represent the highest value of correlation
For each noise intensity-signal period combination, thebetween the cycle histogram and a sinusoid of pefipthe
firing phases of the spikes were computed from 3200 realphase of which can be varied across ¢f),2As is already
izations of each period, i.e., from 3200 cycles of the signalapparent from visual inspection, the amount of phase shift
The refractory period was taken into account in the detectioheading to this maximal correlation depends on the noise
scheme, as explained in Sec. Il. The histograms were coniatensity and the signal period.
puted by dividing one cycle of the signal into 100 bins. Note We have observed that, for all the parameter values re-
that this criterion of choosing a constant number of binssulting in “rectification” in the cycle histogram, the indi-
should be taken into consideration for the interpretation ofvidual spike trains exhibit the typical “skipping” behavior

VI. LOOKING AT THE FREQUENCY-NOISE INTENSITY
PARAMETER SPACE
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VII. CONCLUSION

In summary, our analysis shows that taperiodic sto-
chastic resonancand stochastic resonance without tuning
scenarios do not rely on the nonlinear cooperative effect of
stochastic resonance, but rather on the noise dependence of a
linearization-by-noise effect. The role of noise in ASR is
simply to linearize the transfer function of the neuron, i.e.,
the fundamental relationship between the input to the neuron,
S(t), and the instantaneous output firing rate of the neuron,
R(t) (Fig. 7). A slowly varying signal increases the neuron
firing rate in proportion to its amplitude, i.e., the neuron
encodes the signal through rate coding. This fact, along with
the transfer function, enabled us to derive expressions for the
expected covarianc€, and correlation coefficienC; be-
tweenS andR. C, is simply the gain of the encoding:,

C, for given values oD andT is measured by first constructing a measures the quality of a straigh_t line ﬁ-t fo the transfer func-
cylcle histogram(i.e., a histogram of firing probability over one fian of the neuror!, and he_nge will be higher the more linear

. S © : , the transfer function is. It is important to stress that the op-
period of the stimulus; see Fig. 11C, is then computed between . - . - .

timal noise level is not exactly the one for which the input-

this cycle histogram and a sinusoid for different phase shifts in fer f ion h he | nin. Rather \

(0,27). C; values plotted here correspond to the maximum corre-OUpUt t_rans er function ‘?S.t e . argest g "5] at. erip

lation across all phase shifts. enters into Eq(5.4), and it is this expression which deter-
mines the maximal value of; as a function ofD. This

] ) o ~determination requires, in our study as[8)7], a numerical
[3], and consequently, multimodal interspike interval histo-getermination of vargp).

grams(not shown. It is important to remark that this is the We have taken special care to reproduce the numerical
hallmark of “a nonlinear cooperative effect whereby the results of previous studiei$,7] in order to carry out our
small signal entrains the noise-induced hopping, so the transtudy of the nonlinearity underlying ASR in single neurons
sitions are surprisingly regular[17] (see alsd2,19)). This  and in summing networks. In particular, we have found that
extreme regularity associated with rectification, i.e., firingsdisallowing false spikes produces more coherence between
occurring only near a given phase of a periodic input, wouldoutput firing rate and input signal. Thus, there is some ben-
prevent a neural ensemble from encoding the full excursionsfit to introducing a refractory period in the simulations, and
of the signal, resulting here in relatively lo@; coefficients. perhaps for the existence of a refractory period in real neu-
This result implies that proper encoding, where the rate foltons. Also, we have found that using the standard deviation
lows every modulation of an aperiodic input signal, requiresrather than the standard error for the estimates of correlation
a relatively larger noise intensitffor a given fixed periofl  gives a better assessment of the degree of correlation. In fact,
than those producing the “surprisingly regular” noise- while the mean value of,; may be positive, typical realiza-
induced hopping, i.e., than those associated with skipping. tions may show negative correlation between output firing
For relatively long signal periods, the behavior®f as a  rate and input signal.
function of D (see Fig. 12 is, not surprisingly, similar to Although the highC! values for the summing networks
what was shown in previous sections for aperiodic signalsdo not rely on stochastic resonance, it is still true that their
Note also, in Fig. 11, the decrease in the amplitude of theaveraging property reduces the variability of the instanta-
sinusoidal modulation of the cycle histogram with increaseneous firing rate. Consequently, tBg-versusb curve does
D. This is due to the nonlinear decrease of the gain witthave a broader maximum, as E§.10 and the analysis in
increasing noise discussed in Sec. IV and V. [6,7] predicts. As a wider range of noises then allows encod-
It is thus clear that, for any frequency, the correlationings of similar quality, the noise does not have to be tuned as
exhibits a clear maximum abB is increased. It is further critically as for optimal ASR in one neurdi®]. It is impor-
observed that for periods corresponding to the slow inputsant to realize, however, that an optin@] for ASR does not
used in ASR, the maximum always occurs near the samenply a tuning of time scales between system and signal,
value of D=D,,,,. However, forT<2 sec, the maximum since the signal evolves on the slowest time scales. We an-
moves to higher values & . This increase D, is a clear ticipate that it will be possible to obtain “true ASR” for
signature of stochastic resonance, and can be understoageriodic signals evolving on time scales where SR occurs,
from the time-scale matching notion of $&7,2,8: a higher i.e., for signals with a higher frequency contdttie left of
noise level produces a higher mean crossing rate, which wilFig. 12).
optimally transduce a subthreshold deterministic signal of A recent study20] of “SR” in threshold systems without
higher frequency. We note that this dependenc®gf,on  dynamics concluded that the effect is more correctly inter-
frequency in the FHN system is more pronounced than fopreted as a special case of dithering, i.e., threshold crossing
the maximum in SNR in the dynamically simpler two-stateaided by noise. This result holds for forcing frequencies
double-well system studied, e.g., t9]. This is probably much lower than the noise bandwidth, and is said to apply to
due to the(slowen time scale associated with the recovery nonperiodic signals as well. For periodic forcing, such sys-
variable in Eq.(2.1). tems have only one time scdliee., the forcing, and thus no

10%4D

FIG. 12. Correlation coefficient as a function of the periodf
the sinusoidal signalseg and the noise intensity. The correlation
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time-scale matching is possible. That work also showed that Linearization by noise in neurons is a well-known effect
a guantity measuring the deviation from linearity of the func-that has been studied both theoretically and experimentally
tion relating averaged output and input goes through a mini¢see, e.g., the superb revig¢@g], as well as those contained
mum as a function of noise, i.e., an optimal noise level besin [24]). The results presented here and[@7] provide a
linearizes the input-output “transfer” function. These behav-theoretical and numerical framework with which to under-
iors are similar to those seen in the present study of ASR iRtand the basis for achieving optimal transduction of slow
the neuron model with slow inputs, even though matching ofnputs through variations in noise intensity. Future work will
deterministic and stochastic time scales is possible in such @jke a closer look at the tuning properties of noisy neurons in

two-dimensional dynamical systef8]. ~light of the conclusions of the present study.
We note that there are also two very recent studies of

ASR. The first is a numerical and theoretical demonstration

of the effect in a bistable system, as well as in an integrate-

and-fire and the Hodgkin-Huxley neuron modgk]. The ACKNOWLEDGMENTS

second is an experimental demonstration of the effect in a This work was supported by NIMH through Grant No.
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