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Stochastic resonance in models of neuronal ensembles

Dante R. Chialvo,1,3 André Longtin,2 and Johannes Mu¨ller-Gerking1
1Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona 85724
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Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect
of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical
arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation
measures used for the so-called aperiodic stochastic resonance~ASR! scenario does not rely on the cooperative
effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying
signals is more properly interpreted as linearization by noise. Consequently, the broadening of the ‘‘resonance
curve’’ in the multineuronstochastic resonance without tuningscenario can also be explained by this linear-
ization. Computation of the input-output correlation as a function of both signal frequency and noise for the
model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from
stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the
optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can
perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of
a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate
and input signal.@S1063-651X~97!01102-1#

PACS number~s!: 87.10.1e
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I. INTRODUCTION

‘‘Stochastic resonance~SR! is a term which describes th
coincidence oftwo time scales in a periodically modulate
multistable, stochastic system. One time scale is establis
by the period of the external stimulus and the other by
well-to-well switching rate induced by the stochastic proc
or noise’’ @1#. By this effect, the synchronization of a non
linear system to a weak periodic signal can be enhance
the presence of random fluctuations. A weak periodic sig
is one which cannot by itself produce switchings betwe
wells. The optimum enhancement is obtained at a leve
noise which produces a maximum cooperative~i.e.,‘‘reso-
nance’’! effect between the noise-induced transitions
tween wells and the frequency of the deterministic perio
signal@2#. Thus, the noise level producing the optimum sy
chronization always depends to some extent on the
quency of the periodic signal.

It is well known that biological sensory receptors tran
form analog quantities such us pressure, temperature, ele
field, etc., into trains of action potentials or ‘‘spikes.’’ Th
information about the physical stimuli is encoded in the tim
intervals between spikes. All the features of systems ex
iting SR were found to be present in sensory neurons@3#,
which are intrinsically noisy, nonlinear threshold systems
such systems the essence of the signal-enhancing effe
SR can be simply grasped. In the absence of stimuli, th
are random threshold crossings, each of which results
spike. The mean time between crossings decreases a
noise intensity increases. A weak subthreshold determin
modulation will then be best expressed in the output sp
train if its dominant frequency is close to the noise-induc
mean spiking rate in the absence of signal.

Further theoretical and experimental work on single a
551063-651X/97/55~2!/1798~11!/$10.00
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multineuron systems@4# has provided additional examples o
circumstances in which neuronal synchronization is
hanced by some level of random fluctuations. In the cont
of harmonically forced neurons, the signal-to-noise ra
~SNR! has typically been used to quantify the noise-induc
synchronization of the neuron firings to the subthreshold s
nal. The precise resonant behavior of this SNR as a func
of noise intensity depends on signal characteristics suc
bias, frequency, amplitude, as well as on parameters gov
ing the autonomous neural dynamics and the noise. This
plies that an optimal response to a signal of varying char
teristics could be maintained if the sensory neuron someh
‘‘tunes’’ or adapts itself accordingly@5#.

In a recent paper, Collinset al. @6# showed that a single
noisy neuron can also optimally transduce a subthresh
slowly varying aperiodic signal, such as low-pass filter
noise~see below!. Their study proposed SR measures app
priate for characterizing this so-called ‘‘aperiodic stochas
resonance’’ effect~ASR!. The proposed power normC0 and
normalized power normC1 measure the quality of the trans
duction by the correlation between input signal and out
instantaneous firing rate. In this setting, a ‘‘resonance curv
of correlation versus noise intensity was obtained which
sembled those for SR: with increasing noise, the correla
rose sharply to a peak, and dropped thereafter~Fig. 4; cf. @6#,
Fig. 1!. These authors also recognized that for ASR, wh
restrictions on frequency are relaxed due to the use of slo
varying signals, it would still be necessary to modulate
actively ‘‘tune’’ the noise intensity~or other parameters! in
order to optimally transduce a signal whose characteris
~such as mean level, variance, etc.! change with time.

Another recent report@7# analyzed the extension of th
single neuron ASR property to a population of noisy neuro
acting in parallel on the same aperiodic input signal. T
1798 © 1997 The American Physical Society
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55 1799STOCHASTIC RESONANCE IN MODELS OF NEURONAL . . .
aforementionedC1 was then computed using the signal a
the average instantaneous firing rate of these neurons. It
shown that this measure asymptotically approaches one
increasing number of neurons, whenever the noise leve
above a certain minimum~Fig. 6; cf. @7#, Fig. 2!. This sto-
chastic resonance without tuningeffect suggested that popu
lations of neurons acting in parallel could, apparently, u
SR and still overcome the tuning problem. In a restric
sense, the connection to tuning relates to the ‘‘time-sc
matching’’ notion of SR, in which one noise intensity op
mally transduces a given frequency; hence, high correla
over a wide range of noise intensities could transduc
wide-band input signal. In a larger sense, tuning refers
adjusting all system and noise parameters to optimally de
a signal; their results would then imply that the nois
averaging property of the summing network makes this t
ing less critical.

These two reports suggest that neurons could use S
optimize their output coherence with weak input signals,
gardless of frequency in the case of a single neuron, an
frequency and noise intensity in the case of summing n
works. Being the essence of SR, the coincidence oftwo time
scales@1,2#, achieving enhancement of the signal by t
noise for a wide range of frequencies~i.e., ‘‘aperiodic sto-
chastic resonance’’! and/or noise intensities~i.e., ‘‘stochastic
resonance without tuning’’! implies either a paradox or
misinterpretation.

The aim of this paper is to show, through a simple ana
sis, that the nonmonotonic correlation-versus-noise relat
ship associated with aperiodic stochastic resonance and
chastic resonance without tuning does not rely on
cooperative effect typical of SR. Rather, it is a conseque
of linearization-by-noise of the transfer function that rela
‘‘mean firing rate’’ to ‘‘activation level.’’ The match be-
tween our theory and the simulations shows that the role
the noise in ASR with slowly varying inputs is to produce
positive linear gain for the nonlinear threshold element in
region of otherwise quiescent dynamics. Our analysis
based on the same assumption as that for ASR@6#, namely,
that the time variations of the input signal occur on a tim
scale which is slower than all characteristic times of the n
ron~s!.

The excitable neuron model, which closely follows that
@6#, is introduced in Sec. II. Some technical points regard
spike detection, relevant in later sections, are also prese
in this section. Section III is dedicated to replicating the n
merical results in@6,7# which are relevant to our study. Th
fundamental diagram of mean firing rate-versus-noise in
sity is introduced in Sec. IV. In Sec. V, expressions for t
expected values of the covariance and correlation coeffic
in the quasistatic case~i.e., for slowly varying inputs! are
derived and compared with the numerical simulations of
full dynamics. Section VI places the results of the preced
sections in the light of the dependence of the SNR on no
and frequency for the case of pure harmonic signals.
paper concludes in Sec. VII.

II. MODEL AND NUMERICAL CONSIDERATIONS

We consider the FitzHugh-Nagumo~FHN! neuronal
model driven by a subthreshold signal and noise@8#. Sub-
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threshold means that the driving signal alone is not of su
cient amplitude to produce action potentials. The syst
equations are

e v̇5v~v2a!~12v !2w1A1S~ t !1z~ t !,

ẇ5v2w2b, ~2.1!

wherev(t) is a fast~voltage! variable andw(t) is a slow
~recovery! variable. The parameters are chosen as in@6,7#,
namely,A is a constant~tonic! activation set to 0.04~unless
otherwise stated!, e50.005,a50.5, andb50.15.S(t) is the
aperiodic signal.z(t) is the noise given by an Ornstein
Uhlenbeck~OU! stochastic process of the form

ż~ t !52lz~ t !1lj~ t !, ~2.2!

wherej(t) is Gaussian white noise of zero mean and cor
lation ^j(t)j(s)&52Dd(t2s). The autocorrelation of the
OU process is given by

^z~ t !z~s!&5~D/tc!exp~2ut2su/tc! ~2.3!

and its variance isD/tc . The choice of a OU process allow
control over both noise intensity~referred to throughout as
D rather thanD/tc) and correlation timetc5l21.

We integrated~with a fixed step size of 0.001 sec! the
deterministic system Eq.~2.1! coupled to the OU process Eq
~2.2! using a fourth-order Runge-Kutta method for the det
ministic equations, while the algorithm in@9# provides an
accuracy of the noise integration of order 3/2. This integ
tion scheme suffices for our purpose of reproducing Coll
et al. @6,7# results. However, if the interest is in a more pr
cise solution, the integration methods in@10# are more ap-
propriate.

A good approximation to Gaussian white noise is o
tained by choosingtc equal to the integration step size. Th
positive-going excursions ofv(t) reaching a minimum am-
plitude ~here set to 0.5 as in@8#! are considered as actio
potentials with the caveats discussed in the next subsec
The times of occurrence of the action potentials form a po
process which is modeled as a train of equal-amplitu
d-function spikes. This spike train is then convolved with
10 sec unit-area symmetric Hanning window in order to o
tain an instantaneous firing rate that varies in time. The c
volved spike train constitutes the output signalR(t).

Spike detection schemes

Adopting the upward threshold crossing ofv(t) as the
only criterion for spike detection presents a problem for
mid-to-high noise intensities considered in our study. F
these intensities,v(t) can fluctuate rapidly several time
around the threshold.

Consider, for instance, the case depicted in panel~a! of
Fig. 1, where the time course ofv(t) is plotted. With the
aforementioned parameters, no spikes are produced in
absence of noise. With noise, we find that an action poten
is induced starting at around time 15.82 sec, and evolves
about 300 msec. There are two additional threshold cross
preceding this action potential~indicated by the vertical bars!
with interspike intervals of 3 and 2 msec. It is known that,
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1800 55CHIALVO, LONGTIN, AND MÜLLER-GERKING
a model of a nerve fiber of a certain length based on
~2.1!, the only threshold crossings that can be detected a
the fiber are the ones corresponding to the action pote
@11#. Therefore, an additional criterion is needed to det
only the biologically relevant spikes that propagate a
transmit information about the input. Thus, we sligh
modify the method in@8# by introducing, as in@12#, an ab-
solute refractory period~0.4 sec! wherein no positive-going
threshold crossing is considered an action potential. In
context of Fig. 1~a! this criterion would assign the time o
occurrence of the action potential to the first crossing rat
than the third, with a negligible error of'5 msec. The more
problematic false spikes are the ones that can occur du
the action potential downstroke, and are eliminated using
criterion.

To illustrate the differences between the two spik
detection schemes, Fig. 1~b! shows 32 sec of a simulation o
the FHN equations, Eq.~2.1!. The noise intensity is
D5331026, and the signal was held constant atS50. The
upward crossings of the firing threshold~set to 0.5! are
marked with vertical lines. The dashed lines draw the inst

FIG. 1. ~a! Detailed view of the action potential labeled by a
asterisk in panel~b!. The apparently single upward threshold cros
ing is in fact a close succession of three threshold crossings,
marked by a vertical bar.~b! Fast membrane potentialv(t) ~con-
tinuous line!, spikes times~marked by a vertical bar!, and instanta-
neous firing rates~dashed lines! as defined in the text. The large
amplitude firing rate is obtained by counting all threshold crossin
~c! Interspike interval histogram. The intervals smaller than 0.5
are calculated from one or two false spikes. Time~here in sec! can
be rescaled to match, e.g., action potential durations in an ex
mental setting.
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taneous firing rate; the upper one is calculated from
scheme without absolute refractory period, while the low
one disallows spikes closer in time than 400 msec. The
ference in firing rates is striking; these differences incre
with higher noise intensities~not shown!.

Figure 1~c! shows the interspike interval histogram~bin
width of 50 msec! constructed from a simulation of tota
time of 26 214.4 sec with the same parameters and cons
input. There are 3157 intervals in the first bin~clipped in the
plot!. The intervals measured between acceptable action
tentials follow a sharpg-like distribution with a sharp rise a
about 1 sec, and are clearly distinct from those (,0.5 sec!
caused by small fluctuations around the threshold. O
choice of the absolute refractory period~0.4 sec! discards the
‘‘false’’ spikes without affecting the dynamically relevan
events. In the following, we will compare results for simul
tions with and without an absolute refractory period in t
spike-detection scheme. The proper consideration of th
false spikes changes the conclusions of our paper quan
tively rather than qualitatively.

III. REPLICATING ASR AND SR WITHOUT TUNING

In this section, we reproduce the simulations as repor
by Collinset al. @6,7,13#. The aperiodic signalS(t) was con-
structed according to@6#, that is, an OU process Eq.~2.2!
with correlation timetc520 sec passed through a unit-ar
symmetric Hanning window filter of width 10 sec. Note th
the Hanning window acts as an additional low-pass filt
resulting in a relatively smooth signal. It is important to r
alize that the correlation time of such a signal is much lar
than any relevant time scale of the dynamical system
~2.1!. The one realization of the signal we use in all o
simulations is shown in Fig. 2. The signal has zero mean
variance of 1.531025, and a duration of 262.144 sec,
value that allows use of the fast Fourier transform~FFT!
algorithm.

To compare our simulations with those in@6#, we also use
the ‘‘power norm’’ C0 and the ‘‘normalized power norm’’
C1 to measure the coherence between the signalS(t) and the
outputR(t). These quantities are defined as

C05S~ t !@R~ t !2R~ t !# ~3.1!

and

-
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c
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FIG. 2. Time series of the aperiodic signal used in our simu
tions.
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55 1801STOCHASTIC RESONANCE IN MODELS OF NEURONAL . . .
C15
C0

@S2~ t !#1/2$@R~ t !2R~ t !#2%1/2
. ~3.2!

The quantities in the denominator of Eq.~3.2! are the stan-
dard deviations of the signal and of the instantaneous fi
rate. Note that, in fact, sinceS(t) has zero mean,C0 and
C1 are, respectively, the standard covariance and linear
relation coefficient@14#. In this sense,C0 is proportional to
the mean slope of a linear regression betweenS andR. C1
measures the linearity of the input-output relationship of
neuron~see Fig. 3!, and varies between21 and 1, values for
a perfect linear relationship with, respectively, negative
positive slope.C1 is also proportional toC0, and inversely
proportional to the variances ofS andR.

A. Replicating ASR

Figure 4 shows ensemble-averaged values and stan
errors ofC0 andC1 at different noise intensitiesD calculated
using 300 realizations of the full dynamics Eq.~2.1!, repro-
ducing Fig. 1 in @6#. Circles with error bars label result
obtainedwithout an absolute refractory period in the spik
detection scheme, whereas squares are for results from
same realizations, but disallowing spikes closer in time th
400 msec. The best correspondence with the results in F
of @6# is for the curveswithoutan absolute refractory period
It is interesting that the rapid rise ofC0 to a clear peak with
subsequent decay is less prominent when considering
physiologically relevant spikes. However, this also produ
higher values ofC1.

To understand the full significance of these results,
have also plottedC1 for all the individual runs~Fig. 5! used
to calculate the mean and standard errors shown in Fig
Only the values for simulations with absolute refractory p

FIG. 3. Estimation of the covarianceC0 and correlation coeffi-
cient C1 betweenS(t) and R(t). C0 measures the mean slop
indicated by the slanted dashed line, of a hypothetical transfer f
tion between the inputS(t) and the output instantaneous firing ra
R(t). C1, a measure of the linearity of the transfer function,
sensitive to the slope variability around the slanted dashed line~see
arcs below and above this line!, and to the variance ofS(t) and
R(t).
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riod are shown. Even for the noise level at the ‘‘resona
peak’’ in Fig. 4, the distribution ofC1 values~and thus of
C0) is extremely broad, always encompassing realizati
with negative correlation between output and input. Sub
ties like spike-detection scheme do not substantially cha
this broad distribution~not shown!. Hence, the standard erro

c-

FIG. 4. Ensemble-averaged values and standard errors of th~a!
covarianceC0 and~b! correlation coefficientC1 versus noise inten-
sity D for simulations of the full dynamics Eq.~2.1!. Circles with
error bars showC0 and C1 values for a spike-detection schem
without absolute refractory period. Squares denote values obta
by disallowing any spike that occurs within 400 msec of a previo
spike.

FIG. 5. IndividualC1 values from the 300 runs whose mean a
standard error are shown in Fig. 4. Even in the best c
(D51.531026; see Fig. 4! the spread is extremely large, with oc
casional realizations where input and output are anticorrelated.
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1802 55CHIALVO, LONGTIN, AND MÜLLER-GERKING
~an error bar inversely proportional to the number of reali
tions! of C0 andC1 does not give as accurate a picture of t
correlation as the standard deviation calculated across a
alizations.

B. Replicating ‘‘SR without tuning’’

We now reproduce the results reported in@7# for neurons
in parallel. As in@7#, we consider an architecture where t
output of individual neurons, each driven by the same in
signal but a different noise source~the noise sources hav
zero cross correlation!, is averaged before the correlation
measured. The averaged outputRM(t) is

RM~ t !5
1

M (
i51

M

Ri~ t !, ~3.3!

whereRi(t) denotes the instantaneous firing rate of neu
i . Figure 6 shows results forM51, 10, 50, 100, and 300
neurons in parallel and for both spike-detection schem
While in both casesC1 approaches 1 with increasingM , the
case where only physiologically relevant spikes are coun
is clearly superior in performance. The close similarity
Fig. 6 to @7#, Fig. 2, again suggests that no refractory per
was used in their reported simulations.

FIG. 6. ‘‘SR without tuning.’’ ~a! C1 versusD for different
numbers of neurons acting in parallel, using the spike-detec
scheme with absolute refractory period. Lines from bottom are
architectures with 1, 10, 50, 100, 300 neurons. Error bars denot
standard error onC1 for, respectively, 300, 30, 6, 3, and 1 realiz
tions. ~b! Same as in~a!, but without a refractory period in the
spike-detection scheme.
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IV. NEURON TRANSFER FUNCTION

Our aim in this section is to explain ASR in terms
frequency modulation of the mean firing rate by the slow
varying input signal. We begin by computing the behavior
the firing rate as a function of tonic activationA and noise
intensityD. This yields a basic transfer function for consta
signals. The intuition behind our explanation of ASR is th
the signal, varying on a time scale slower than all charac
istic times of the stochastic neurons, produces quasis
variations in the parameterA. Consequently, the firing rate
observed near a given value of the input signal can be e
mated from the transfer function at the corresponding~con-
stant! value ofA.

In Fig. 7~a!, the mean firing rate for one neuron, govern
by Eq. ~2.1! with S50, is plotted versusA for D51027

n
r
he

FIG. 7. Mean firing rate as a function ofA determined by solv-
ing Eq. ~2.1! numerically at differentD values. The instantaneou
firing rateR(t) was computed at each integration time step from
resulting spike train, using a 10 sec Hanning window, taking
refractory period into account. The mean rate was then comp
from the time average ofR(t). ~a! Wide range ofA. A Hopf bifur-
cation occurs for 0.113<AT<0.114. The signal range for the ASR
simulations is indicated by the horizontal bars centered
A50.04.~b! Same as in~a!, but restricted to the range ofA modu-
lated by the signal.~c! Slope of the rate-versus-A curves in~b! as a
function of D, determined by linear regression. Minimum noi
intensities areD51027 in ~a! ~rightmost curve! andD5331027

in ~b! ~bottom curve!, increasing by 1027 up to 1026, then in steps
of 531027 up to 331026, and finally in steps of 1026 up to
83106 ~uppermost curves!. Error bars in~a! and ~b! denote the
standard deviation~not the standard error!. Ten sweeps of 157.3 se
were used for each parameter set in~a! @ten sweeps of 524.3 sec i
~b!#.
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55 1803STOCHASTIC RESONANCE IN MODELS OF NEURONAL . . .
~rightmost curve! to D5831026 ~leftmost curve!. A super-
critical Hopf bifurcation of the deterministic~i.e., noise-free!
system from a fixed point to an oscillatory state occurs
0.113<A<0.114 as in@6#. These rate curves were obtaine
by sampling the instantaneous firing rate from a total of 15
sec of simulation for each combination ofA and D. The
mean firing rate is seen to always increase with increas
A and/orD. In the absence of noise, the rate is zero u
A'0.113, then jumps abruptly to a value near 1, and
creases almost linearly thereafter. These results are com
ible with work in the past decade aimed at characteriz
analytically and numerically such rates of noise-induced
ing for simple excitable systems@15,16#.

In the ASR simulations,A is held constant at 0.04, an
the signal varies by60.01. This range of modulation ofA
induced by the signal@note thatS andA are added togethe
in Eq. ~2.1!# is indicated in Fig. 7~a!. For A50.04, the au-
tonomous deterministic dynamics correspond to fixed po
behavior. As the dynamics are excitable, spikes can oc
when the noise drives the state variables to the threshold
spiking. Our quasistatic description of ASR amounts to c
sidering that the slow signal modulates the value of this g
bally stable fixed point.

Figure 7~b! gives an expanded view of the parame
range corresponding to the modulations produced by the
nal. Conventions are the same as in Fig. 7~a!, except that the
total simulation time is now 5243 sec, and 331027<D
<831026. From these data, the slope of the mean firing r
versus activationA for all D can be determined by linea
regression. The relationship is almost linear for all curv
~correlation coefficient.0.9 forD>531027 and.0.95 for
D>831027).

These slopes are plotted as a function ofD in Fig. 7~c!.
This is the basic transfer function of the neuron for const
and slowly varying signals, as they occur in ASR. The slo
rapidly rises to a maximum atD5231026, and decrease
slowly thereafter. Within a constant scaling factor, this cu
perfectly matches that ofC0 in Fig. 4~a!. It is obvious from
this curve that there is an optimal value ofD for which the
slope of the rate-vs-A relationship, or ‘‘gain,’’ is maximum.
Together with the variance of the firing rate, this gain fun
tion allows us to predict the expected values ofC0 andC1
for slow signals. The effect of noise here is to linearize
transfer function. Stochastic resonance, by contrast, isnot a
linearization@17# but a cooperative effect of signal and nois
when the time scale of the signal is commensurate with
noise-induced firing rate.

V. DERIVING C0 AND C1 FROM THE TRANSFER
FUNCTION

A. Aperiodic stochastic resonance

We now derive the expected values ofC0 andC1 for ASR
from the characteristics of the rate-vs-A transfer funct
computed in Sec. IV. The shape of the transfer function
the activation range covered by the signal suggests, in
context of quasistatic signals, the following linear ansatz

R~ t !5lDS~ t !1hD~ t !, ~5.1!

wherelD is the gain~slope! of the transfer function for noise
r
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intensityD, andhD is a stochastic variable. This relation
similar to the one used in@6#, with the substitution
^R(t)&5lDS(t). With the ansatz Eq.~5.1!, the expected
value forC0 is

E@C0#5S~ t !@lDS~ t !1hD~ t !#

5lDvar~S! ~5.2!

under the assumption of vanishing correlation between
stochastic variationhD(t) and the signal. Here var(S) means
‘‘variance ofS.’’ We plotted this relationship for both spike
detection schemes in Fig. 8~a!. The match is excellent. The
expectedC1 values can be derived by taking into account t
variance of the stochastic variation of the linear trans
function. Starting again from the linear relationship, E
~5.1!, and noting that

var~R!5lD
2 var~S!1var~hD! ~5.3!

it follows that

E@C1#5
E@C0#

Avar~S!var~R!

5
lDvar~S!

Avar~S!@lD
2 var~S!1var~hD!#

5
1

AS 11
var~hD!

lD
2 var~S!

D
. ~5.4!

FIG. 8. Theory and simulation results of the~a! covarianceC0

and ~b! correlationC1 versus noise intensityD for simulations of
the full dynamics Eq.~2.1!. Circles with error bars show the resul
obtained without absolute refractory period, and squares are f
simulations with a 400 msec refractory period~same data as in Fig
4!. The lines connect values ofC0 and C1 computed using the
transfer function and Eqs.~5.2! and ~5.4! ~see text!.
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In order to compare this expression forC1 with the values
derived from numerical simulations of the FHN equatio
with signalS(t), it is necessary to estimate var(hD). Noting
that S5const in Eq.~5.3! yields var(R)5var(hD), we can
estimate var(hD) from simulations with constant signa
Consequently, for a given value ofD, var(hD) is computed
by averaging the sample variance of the instantaneous
over 0.03,A,0.05. For each value ofA, the sample vari-
ance of the firing rate was taken from Fig. 7~b!. Figure 8~b!
shows the resulting values ofC1 for both spike-detection
schemes. It is clear that the nonmonotonic character ofC1 vs
D can be derived from the assumption of a noisy linear
lationship between firing rate and tonic activation. This is
main result of our paper. For lower noise levels, the p
dicted values are slightly higher than the ones obtained f
simulating the full dynamics. This is because, in this range
noise, the assumption of linearity is an approximation, as
can see from the slight curvature in the transfer functi
Another contributing factor to the discrepancy is the fact t
var(hD) shows a systematic increase withA at low noise.
However, the peak in our quasistatic estimate ofC1 as well
as its decrease at higher noise levels are perfectly well
plained by the linear ansatz.

It is interesting to note that the Kramer’s-type analysis
the crossing rate of the FHN model presented in@6# supports
our simple theory. This analysis, which approximates
escape-to-threshold problem in the two-dimensional F
system by a one-dimensional one along thev axis, relies on
the assumption of slow signals. While such adiabatic theo
of stochastic resonance have been proposed@17#, the fact that
an adiabatic theory for the transition rates agrees with
merical results of course does not imply that the underly
phenomenon is stochastic resonance. We begin with Eq.~12!
in @6# for the mean threshold-crossing rate in the presenc
the slow aperiodic signalS(t):

^R~ t !&}exp$2A3@B323B2S~ t !#e/D%, ~5.5!

whereB[AT2A measures the distance between the sig
mean and the threshold~in @6#, AT is a constant equal to
'0.11, i.e., the bifurcation value found numerically abov!.
Plots of ^R& as a function of the tonic activationA for con-
stant signal and constantD are similar to those in Fig. 7~b!,
and also behave similarly asD is changed~not shown!. The
partial derivative of this rate with respect toA then yields the
slope, similar tolD :

]^R&
]A

}
3A3e

D
~AT2A!2expF2

A3e

D
~AT2A!3G . ~5.6!

Plots of ]^R&/]A as a function ofD for constantA exhibit
the familiar unimodal shape seen in Fig. 7~c!, since this
quantity has an exp(21/D)/D dependence. Further, we se
that this slope or ‘‘gain’’ goes to zero at very high noise,
expected from an extrapolation of the results of Fig. 7~b!.
This expression for the slope can then be substituted into
~5.4! which, together with a numerical determination
var(hD) vs D ~e.g., a quadratic function inD as in @6,7#!,
can be used to determineC1 as differentD values.

The nonlinearity that underlies ASR can also be in
itively understood using a simple analogy with the trans
te
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functions ~so-called ‘‘squashing’’ functions! used in neural
networks~see, e.g.,@18#!. Such functions represent the in
stantaneous firing ratef of a neuron as a function of its
activation or input levelx, a quantity similar to the activation
levelA above. This function goes to zero asx→2`, and to
the maximal firing rate~usually chosen to be one! as
x→`. A frequently used analytical form is
f5@11exp(2bx)#21, a sigmoid whose slope at the origin
f 8(0)5b. This sigmoid turns into a Heaviside step functio
asb→`. This occurs when the noise levelD[b21, propor-
tional to temperature in the neural network context, goes
zero. For anyx, the slope is

d f

dx
5exp~2x/D !D21@11exp~2x/D !#22. ~5.7!

For a given level of activation, this slope, which is similar
that of the curves in Figs. 7~a! and 7~b!, starts at zero for
D50, goes through a maximum, and decays to zero
D→`. This reproduces the basic behavior seen in Fig. 7~c!.

B. Neurons in parallel

The linear ansatz also allows the prediction ofC0 and
C1 for multiple neurons in parallel. Taking Eq.~5.1! together
with Eq. ~3.3!, we obtain forM neurons

RM~ t !5
1

M (
i51

M

Ri~ t !5lDS~ t !1
1

M (
i51

M

hD
i ~ t !, ~5.8!

where thehD
i (t) are different stochastic variables for ea

neuron and have zero cross correlation. We first remark
the expected value ofC0 is the same for a single neuron a
for M neurons in parallel. Assuming then that thehD

i (t)
have the same variance var(hD), it follows that

var~RM !5lD
2 var~S!1

1

M
var~hD!, ~5.9!

and thus, as for Eq.~5.4!,

E@C1
M#5

1

A11
1

M

var~hD!

lD
2 var~S!

. ~5.10!

We tested the accuracy of this relation forM51, 10, 50,
100, and 300 for both spike-detection schemes. The res
are plotted in Fig. 9 together with results from simulations
the full dynamics. For the same reasons as in the single n
ron case, the predicted values are slightly higher than th
from the full simulations forD,1026, but match them very
closely for higherD. Also,C1 is again higher when a refrac
tory period is taken into account.

This estimate ofC1 in Eq. ~5.10! in terms of the single
neuron parameters var(hD) andlD goes to one with increas
ingM for var(hD)/lD

2 .0, i.e., for nonvanishing noise inten
sity. As the value ofC1 for a signal of a given variance fe
to M neurons in parallel is determined by the fact
var(hD)/(MlD

2 ), it follows thatC1 can be improved by in-
creasinglD . Another way to increaseC1 is to increase the
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55 1805STOCHASTIC RESONANCE IN MODELS OF NEURONAL . . .
linearity of the transfer function over the relevant range
A values. It is tempting then to compare simulations ofM
neurons in parallel to one with a single neuron operating
parameter range where the transfer function deviates
little from linearity. Such a parameter range occurs
D50 and A close to but above the threshold valu
'0.114. In other words, a single neuron could also optim
its response to a slow aperiodic input by adapting its dyna
ics to a higher resting potential, or~from another point of
view! by lowering its threshold.

To illustrate the notion that a single neuron can do as w
as a summing network of neurons operating at a hig
threshold, we compare the performance of 300 neurons,
with the same dynamical parameters andA50.04, to a single
neuron with all the same dynamical parameters, exc
A50.125 andD50. The single neuron now fires period
cally in the absence of input signal and noise, sin
A.0.114. The value ofA50.125 is chosen such that th
C1 value for the single deterministic neuron equals the ma
mum value obtainable in the noisy summing netwo
namely, that forD51.531026. A comparison ofS(t) with
R(t) for the single deterministic neuron in its suprathresh
regime andRM(t) for the 300 noisy neurons is shown in Fi
10. Thus, a shift in membrane potential to a region of line
ity also optimally transduces a slow aperiodic signal. This

FIG. 9. ‘‘SR without tuning’’ explained using the transfer fun
tion in Fig. 7, with ~a! and without~b! refractory period. Symbols
are mean values obtained from simulating the full dynamics~see
Fig. 6! ~from bottom, for systems with 1, 10, 50, 100, and 3
neurons!. Lines are theoretical values, calculated from Eq.~5.10!.
var(hD) was estimated as in Fig. 8, i.e., by averaging acrosA
values using the data in Fig. 7~b!.
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true here even though the mean slope of the transfer func
with noise is actually higher than without noise. The reas
why C1 is not exactly one for the single neuron is that the
is a slight curvature in the noiseless rate-versus-A function.

The analysis in @6# relies on the assumption
@S2(t)#1/2!B, i.e., signal variance is much smaller tha
signal-to-threshold distance. For largeB, i.e., for signals near
or above threshold, it may adequately approximate value
C1. On the other hand, our transfer function analysis allo
us in principle to predict, for any value ofA ~and thus, of
B), the value ofC1 for one or many neurons driven by
slowly varying aperiodic input. The accuracy of our pred
tion will be higher if the slope of the transfer function
almost constant across the relevant range ofA values. This
linearity will depend on the minimum and maximum boun
of the signal amplitude, as well as on the particular com
nation ofA andD values used.

It is clear that the reduction of the noise variance achie
using the summing network broadens the range of noise
tensities for whichC1

M is high. This flattening of theC1
M

versusD curve will however be much more difficult to main
tain asD increases. The theory presented in@6# yields an
analytical approximation toC1. This result has been ex
tended toM neurons by recalculating the normalization fa
tor N2 in the denominator ofC1 @N2 is the variance of
R(t)#. The result is

NM
2 [var~RM !5^R&22^R̄&21s2~D !/M , ~5.11!

where brackets denote ensemble averages, overbars d
time averages, ands2(D) is simply var(hD) used through-
out our study. This factor is then used to obtainC1

M @see Eq.
~3! in @7##. For largeD, and assuming that the Kramers ra
approximation is still valid, this expression goes
AM /Ds(D). Assuming thats2 maintains its quadratic de
pendence onD, and that the noise sources on the neuro

FIG. 10. Comparison of rate coding of a slowly varying sign
~solid line! by a single noiseless suprathreshold neuron and a s
ming network of subthreshold noisy neurons. The dashed line
resentsRM(t) from the average activity of 300 neurons (A50.04,
D51.531026, for a total of 14 803 spikes!, as in thestochastic
resonance without tuningscenario. The dotted line isR(t) from a
single neuron in the suprathreshold regime (A50.125,D50, 272
spikes!. The correlation coefficients areC150.96 for the 300 sto-
chastic neurons, andC150.957 for the single deterministic neuron
respectively.
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FIG. 11. ‘‘Cycle histo-
grams’’ for different noise inten-
sities and signal periods. Eac
box represents a histogram com
puted for values of noise inten
sity and signal period indicated
on the axes. In each box the fir
ing probability ~full scale corre-
sponds toP between 0 and 0.15!
is plotted versus the phase~full
scale corresponds to phases fro
0 to 2p) of the periodic signal.
Histograms depicted here wer
used to compute the correlatio
coefficients plotted in Fig. 12.
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indeed remain uncorrelated, we find thatC1
M'AM /D3. This

implies that, e.g., for a twofold increase in the noise leve
high value of correlation obtained withM neurons can be
maintained by using instead 64M neurons. We note that th
same scaling is obtained using our Eq.~5.10!, in combination
with Eq. ~5.6!, since this latter equation yields a 1/D depen-
dence oflD at largeD. Thus, broadening ofC1 versusD
will occur, but can be quickly overcome by increased noi

VI. LOOKING AT THE FREQUENCY-NOISE INTENSITY
PARAMETER SPACE

In this section we investigate the correlation of the firi
rate with subthreshold periodic signals of varying frequen
for different noise intensities. Our aim is to illustrate th
there are regions in parameter space where linearizatio
noise governs the behavior ofC1, and others regions wher
stochastic resonance plays a role.

The correlationC1 was computed between a sinusoid a
a histogram representation ofR(t) over one stimulus cycle
This is known in the neurophysiology jargon as a ‘‘cyc
histogram,’’ and represents~after proper normalization! the
probability of occurrence of a spike as a function of t
phase of the periodic signal. These histograms were c
puted from numerical simulations of Eq.~2.1! as before, ex-
cept that hereS(t) is a sinusoid of amplitude 0.01~compa-
rable with that of the aperiodic signal used in previo
sections! and periodT ranging from 20 sec to 0.5 sec. Th
noise intensity ranges from 0.531026 to 831026.

For each noise intensity-signal period combination,
firing phases of the spikes were computed from 3200 r
izations of each period, i.e., from 3200 cycles of the sign
The refractory period was taken into account in the detec
scheme, as explained in Sec. II. The histograms were c
puted by dividing one cycle of the signal into 100 bins. No
that this criterion of choosing a constant number of b
should be taken into consideration for the interpretation
a

.

y
t
by

-

e
l-
l.
n
-

s
f

the results in this section. For comparison with the treatm
of R(t) used in previous sections, phase histograms here
be considered equivalent estimates of rate functions over
cycle, obtained by convolving the spike trains with nonov
lapping rectangular windows of lengthT/100, with results
over all cycles folded modulo 2p into one cycle. The result-
ing number of counts in each bin of the cycle histogram
further divided by the total number of spikes encounte
during the 3200 cycles, producing a normalized cycle his
gram. Under these conditions, results in this section can
be seen as analogous to the ensemble-averaged rate of
neurons in parallel over one stimulus cycle. We note that
value ofC1 is not affected by the normalization.

Figures 11 and 12 show the result of our simulations
Eq. ~2.1! with subthreshold periodic forcing. It is clear tha
high values of correlation can be seen over the whole ra
of stimulus periods studied. Let us focus first on the para
eter values of Fig. 11 which yield ‘‘half-wave rectified’’ his
tograms. These cases occur for the lowest noise intens
and all periods, and for the shortest periods and all no
intensities~in other words, for the cases along thex or y
axes!. For these parameter combinations, there is a hig
probability of firing near a given phase of the sinusoid
input, and very little firing over a range of phases of'p rad.
As noise or period increases, i.e., as one moves away f
thex or y axes, the histogram resembles more and more
sinus input. This qualitative observation can be confirmed
looking at the respective values ofC1. These values ofC1,
shown in Fig. 12, represent the highest value of correlat
between the cycle histogram and a sinusoid of periodT, the
phase of which can be varied across (0,2p). As is already
apparent from visual inspection, the amount of phase s
leading to this maximal correlation depends on the no
intensity and the signal period.

We have observed that, for all the parameter values
sulting in ‘‘rectification’’ in the cycle histogram, the indi
vidual spike trains exhibit the typical ‘‘skipping’’ behavio
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55 1807STOCHASTIC RESONANCE IN MODELS OF NEURONAL . . .
@3#, and consequently, multimodal interspike interval his
grams~not shown!. It is important to remark that this is th
hallmark of ‘‘a nonlinear cooperative effect whereby t
small signal entrains the noise-induced hopping, so the t
sitions are surprisingly regular’’@17# ~see also@2,19#!. This
extreme regularity associated with rectification, i.e., firin
occurring only near a given phase of a periodic input, wo
prevent a neural ensemble from encoding the full excursi
of the signal, resulting here in relatively lowC1 coefficients.
This result implies that proper encoding, where the rate
lows every modulation of an aperiodic input signal, requi
a relatively larger noise intensity~for a given fixed period!
than those producing the ‘‘surprisingly regular’’ nois
induced hopping, i.e., than those associated with skippin

For relatively long signal periods, the behavior ofC1 as a
function of D ~see Fig. 12! is, not surprisingly, similar to
what was shown in previous sections for aperiodic sign
Note also, in Fig. 11, the decrease in the amplitude of
sinusoidal modulation of the cycle histogram with increa
D. This is due to the nonlinear decrease of the gain w
increasing noise discussed in Sec. IV and V.

It is thus clear that, for any frequency, the correlati
exhibits a clear maximum asD is increased. It is further
observed that for periods corresponding to the slow inp
used in ASR, the maximum always occurs near the sa
value ofD[Dmax. However, forT,2 sec, the maximum
moves to higher values ofD. This increase inDmax is a clear
signature of stochastic resonance, and can be unders
from the time-scale matching notion of SR@17,2,8#: a higher
noise level produces a higher mean crossing rate, which
optimally transduce a subthreshold deterministic signal
higher frequency. We note that this dependence ofDmax on
frequency in the FHN system is more pronounced than
the maximum in SNR in the dynamically simpler two-sta
double-well system studied, e.g., in@19#. This is probably
due to the~slower! time scale associated with the recove
variable in Eq.~2.1!.

FIG. 12. Correlation coefficient as a function of the periodT of
the sinusoidal signal~sec! and the noise intensity. The correlatio
C1 for given values ofD andT is measured by first constructing
cycle histogram~i.e., a histogram of firing probability over on
period of the stimulus; see Fig. 11!. C1 is then computed betwee
this cycle histogram and a sinusoid for different phase shifts
(0,2p). C1 values plotted here correspond to the maximum co
lation across all phase shifts.
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VII. CONCLUSION

In summary, our analysis shows that theaperiodic sto-
chastic resonanceand stochastic resonance without tunin
scenarios do not rely on the nonlinear cooperative effec
stochastic resonance, but rather on the noise dependence
linearization-by-noise effect. The role of noise in ASR
simply to linearize the transfer function of the neuron, i.
the fundamental relationship between the input to the neu
S(t), and the instantaneous output firing rate of the neur
R(t) ~Fig. 7!. A slowly varying signal increases the neuro
firing rate in proportion to its amplitude, i.e., the neuro
encodes the signal through rate coding. This fact, along w
the transfer function, enabled us to derive expressions for
expected covarianceC0 and correlation coefficientC1 be-
tweenS andR. C0 is simply the gain of the encoding.C1

measures the quality of a straight line fit to the transfer fu
tion of the neuron, and hence will be higher the more line
the transfer function is. It is important to stress that the o
timal noise level is not exactly the one for which the inpu
ouput transfer function has the largest gainlD . Rather,lD
enters into Eq.~5.4!, and it is this expression which dete
mines the maximal value ofC1 as a function ofD. This
determination requires, in our study as in@6,7#, a numerical
determination of var(hD).

We have taken special care to reproduce the numer
results of previous studies@6,7# in order to carry out our
study of the nonlinearity underlying ASR in single neuro
and in summing networks. In particular, we have found t
disallowing false spikes produces more coherence betw
output firing rate and input signal. Thus, there is some b
efit to introducing a refractory period in the simulations, a
perhaps for the existence of a refractory period in real n
rons. Also, we have found that using the standard devia
rather than the standard error for the estimates of correla
gives a better assessment of the degree of correlation. In
while the mean value ofC1 may be positive, typical realiza
tions may show negative correlation between output fir
rate and input signal.

Although the highC1
M values for the summing network

do not rely on stochastic resonance, it is still true that th
averaging property reduces the variability of the instan
neous firing rate. Consequently, theC1-versus-D curve does
have a broader maximum, as Eq.~5.10! and the analysis in
@6,7# predicts. As a wider range of noises then allows enc
ings of similar quality, the noise does not have to be tuned
critically as for optimal ASR in one neuron@6#. It is impor-
tant to realize, however, that an optimalC1 for ASR does not
imply a tuning of time scales between system and sign
since the signal evolves on the slowest time scales. We
ticipate that it will be possible to obtain ‘‘true ASR’’ for
aperiodic signals evolving on time scales where SR occ
i.e., for signals with a higher frequency content~the left of
Fig. 12!.

A recent study@20# of ‘‘SR’’ in threshold systems without
dynamics concluded that the effect is more correctly int
preted as a special case of dithering, i.e., threshold cros
aided by noise. This result holds for forcing frequenc
much lower than the noise bandwidth, and is said to apply
nonperiodic signals as well. For periodic forcing, such s
tems have only one time scale~i.e., the forcing!, and thus no
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1808 55CHIALVO, LONGTIN, AND MÜLLER-GERKING
time-scale matching is possible. That work also showed
a quantity measuring the deviation from linearity of the fun
tion relating averaged output and input goes through a m
mum as a function of noise, i.e., an optimal noise level b
linearizes the input-output ‘‘transfer’’ function. These beha
iors are similar to those seen in the present study of ASR
the neuron model with slow inputs, even though matching
deterministic and stochastic time scales is possible in su
two-dimensional dynamical system@8#.

We note that there are also two very recent studies
ASR. The first is a numerical and theoretical demonstrat
of the effect in a bistable system, as well as in an integra
and-fire and the Hodgkin-Huxley neuron models@21#. The
second is an experimental demonstration of the effect i
mechanoreceptor@22#. As the conditions on the relative tim
scales of signal and system used in these studies are
scribed to be the same as in@6,7#, we anticipate that the
results of our study are equally relevant to those findings
e
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Linearization by noise in neurons is a well-known effe
that has been studied both theoretically and experiment
~see, e.g., the superb review@23#, as well as those containe
in @24#!. The results presented here and in@6,7# provide a
theoretical and numerical framework with which to unde
stand the basis for achieving optimal transduction of sl
inputs through variations in noise intensity. Future work w
take a closer look at the tuning properties of noisy neuron
light of the conclusions of the present study.
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