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Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches

D. J. Durian*
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

~Received 10 September 1996!

By focusing on entire gas bubbles, rather than soap films or vertices, a microscopic model was recently
developed for the macroscopic deformation and flow of foam in which dimensionality, energy storage, and
dissipation mechanisms, polydispersity, and the gas-liquid ratio all can be varied easily@D. J. Durian, Phys.
Rev. Lett.75, 4780~1995!#. Here, a more complete account of the model is presented, along with results for
linear rheological properties as a function of the latter two important physical parameters. It is shown that the
elastic character vanishes with increasing liquid content in a manner that is consistent with rigidity percolation
and that is almost independent of polydispersity. As the melting transition is approached, the bubble motion
becomes increasingly nonaffine and the relaxation time scale appears to diverge. Results are also presented for
nonlinear behavior at large applied stress, and for the sudden avalanchelike rearrangements of bubbles from
one tightly packed configuration to another at small applied strain rates. The distribution of released energy is
a power law for small events, but exhibits an exponential cutoff independent of system size. This is in accord
with multiple light scattering experiments, but not with other simulations predicting self-organized criticality.
@S1063-651X~97!14002-8#

PACS number~s!: 82.70.Rr, 83.70.Hq, 05.40.1j
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I. INTRODUCTION

Aqueous foams consist of a random dispersion of
bubbles in a much smaller volume of liquid@1,2#. If the
solution contains enough stabilizing surfactants, or ot
surface-active agents, then the structure formed by the
lection of bubbles can be essentially constant over t
scales ranging from minutes to hours. One can then rea
ably ask about the mechanical, or rheological, properties
the foam as a material. The response of aqueous foam
externally applied forces is striking@3–5#. Even though they
consist mainly of gas and relatively little liquid, foams ca
support small shear forces like an ordinary solid. The ori
of this elasticity is in the increase in gas-liquid surface ar
and the corresponding energy cost given by the surface
sion, as the tightly packed bubbles distort under applica
of shear. If the applied forces are sufficiently small, then
response is linear and the shear modulus is given by
stress per unit strain whether the experiment is perform
under controlled stress or controlled strain conditions. As
applied stress or the imposed strain is gradually increa
the behavior becomes increasingly complex. In the cas
applied stress, for example, the response first changes
linear to nonlinear. Next, the response becomes irrevers
as topological changes are induced in which a few bubble
a finite region suddenly change neighbors. As the app
stress is increased further, more and more rearrangem
occur but the resulting strain remains finite. Finally, wh
the applied stress exceeds a ‘‘yield’’ stress, the system fl
indefinitely at nonzero strain rate by a never-ending serie
neighbor-switching rearrangements. If the strain rate is l
the rearrangements are discrete avalanchelike events; b
the strain rate is high the deformation is more homogene
and continuous, as in a simple viscous liquid.

*Electronic address: durian@physics.ucla.edu
551063-651X/97/55~2!/1739~13!/$10.00
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The purpose of this paper is to explore, via compu
simulation, the connection between the complex mac
scopic rheological behavior of foams and the underlying m
croscopic structure and dynamics of the tightly packed
bubbles. Special attention will be paid to the role of k
structural parameters such as gas volume fraction and
bubble size distribution. These issues are of intrinsic inter
not only because the range of behavior is rich and unus
but also since foams are familiar from everyday life and
useful as materials in a broad range of applications. Stud
foams may also shed light on related systems where t
packing of discrete objects is crucial, such as concentra
emulsions and colloids, as well as granular media. Furth
more, theoretical study is especially timely since the adv
of multiple-light-scattering techniques is permitting new a
as-yet unexplained experimental insights into bubble-sc
dynamics@6–11#.

Since foams are naturally disordered, and since the bu
rearrangement dynamics are nonlinear and collective, c
puter simulation is an important tool for theoretical stud
Analytical calculation is possible only for periodic system
@5,12,13,37#, or for linear rheological features@14#. While
such work can provide important insights, it cannot capt
the full range of behavior. The first simulations of foam rh
ology were by Weaire and co-workers for two-dimension
foams with zero liquid content, where the packing of bubb
can be described entirely by the continuous network of t
structureless soap films that separate adjacent bub
@15,16#. The geometry and topology of this network a
highly constrained, as specifically accounted for in Weair
approach. For instance, the vertices at which films meet
all three-fold coordinated; if a film shrinks to zero lengt
leaving an unstable fourfold vertex, then a neighb
switching topological rearrangement is implemented. T
only degrees of freedom are the end points and curvatur
each film; these are adjusted to minimize total interfac
area for the given topology subject to the constraint that
1739 © 1997 The American Physical Society
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1740 55D. J. DURIAN
area of each bubble be fixed and the curvature be cons
along each film. This is done in a ‘‘quasistatic’’ fashion sin
dissipation mechanisms are not included; consequently, t
are no viscous stresses, and the network structure is alw
in static mechanical equilibrium@17,18#.

For three-dimensional foams, this general program is o
now starting to be implemented, largely because descrip
of the network of soap films is significantly more difficul
Geometrically, the soap films have two different radii of cu
vature that are neither constant nor independent; only
total curvature, and hence Laplace pressure across the i
face, is constant. Topologically, the only stable junction
films is threefold coordinated, and these so-called Plat
borders are curves that are not necessarily confined
plane; the only stable junction of Plateau borders is fourf
coordinated. Yet another difficulty is that foams in natu
usually contain enough liquid that the vertices, Plateau b
ders, and films all develop further structure that cannot
ignored. It is proving possible to account for some of th
complexity by using the surface evolver program develop
by Brakke@19#. Such efforts have concentrated on dry pe
odic systems@20,21#, though randomness and nonzero liqu
content are being pursued@22#. As in Weaire’s original ap-
proach, this is restricted to static phenomena since diss
tion effects cannot be included.

For two-dimensional foams, Weaire’s group has ma
significant progress in accounting for the effects of nonz
liquid content@23–27#. This permits study of how the strik
ing elastic character vanishes, or melts, as the liquid con
is increased and the bubbles become able to translate, r
than distort, in response to imposed strain. Incorporation
liquid is achieved by decorating the Plateau borders at wh
three films meet with a small amount of liquid and by usi
Laplace’s law to insure that the pressure is the same thro
out all borders and uniform within each bubble. Further a
proximations, besides quasistatic dynamics, are~1! the soap
films are structureless and straight outside the Plateau
ders, which implies that the pressure is incorrectly the sa
inside each bubble, and~2! liquid is not conserved but rathe
is created locally as needed in order to satisfy Laplace’s l
Perhaps because of such approximations, this appro
breaks down for foams wetter than about 89% gas con
and precludes definitive quantitative study of the melt
transition near 84% gas content.

In a separate effort, important advances have also b
made recently by Kawasaki and co-workers in accounting
the effects of realistic dissipation mechanisms in dry tw
dimensional foams@28–30#. This permits simulation of shea
at nonzero rates and of the transition from plastic to fl
behavior as the shear rate is increased. Of the many pos
dissipation mechanisms@31–33#, the dominant one for dry
foams is shear flow of the infinitesimal amount of visco
liquid within the Plateau borders as a film is stretched
shrunk@34#. To incorporate this mechanism most readily, t
films are approximated as straight line segments. Equat
of motion are then generated for the Plateau borders w
three films meet by balancing dissipation forces with surf
tension forces according to Newton’s second law for a ma
less object. These are then solved subject to the const
that each bubble has constant area, and with suitable rule
topology change when a film shrinks to zero length. This
nt
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called the ‘‘vertex’’ model@28–30#, since the Plateau bor
ders in a two-dimensional dry foam are structureless poi
Since ‘‘vertices’’ are the fundamental structural unit in th
approach, it is not applicable either for foams with nonze
liquid content or for foams in three dimensions.

The models described above are all either at, or are es
tially expansions about, the dry foam limit where g
bubbles are nearly polyhedra separated by thin curved s
films. All are based on different uncontrolled approximatio
and have different limited ranges of applicability. Th
makes it nearly impossible to reconcile conflicting pred
tions, as, for instance, in the case of the avalanchelike r
rangements to be discussed later. Furthermore, none alo
able to capture the full range of behavior seen in natu
Perceiving the need for a simpler, more all-encompass
framework for considering how disorder, dimensionali
and microscopic phenomena individually influence foa
rheology, I recently introduced a ‘‘bubble’’ model based o
a physical picture of pairwise interactions between entire
bubbles@35#. It is essentially an expansion about the w
foam limit, where the gas bubbles are nearlyd-dimensional
spheres that are hence simple to describe. As do the prev
models, this approach also rests upon uncontrolled appr
mations; however, its parameters can be varied much m
widely. In particular, it has the unique advantage of simul
neously incorporating interaction anddissipationeffects for
foams of arbitrarydisorder, liquid content, anddimensional-
ity. Its most serious flaw is that it does not explicitly accou
for bubble shapes and liquid degrees of freedom, and he
does not possess a dry foam limit where the osmotic pres
diverges to maintain the gas fraction below one. Otherw
the bubble model successfully reproduces the known qu
tative features of static and dynamic foam rheology, in ma
instances quantitatively@35,36#. Therefore, this approach
provides an important complement to the previous mod
and can serve as a basis for developing physical intui
about the particular influence of various microscopic ing
dients, for exploring new phenomena, and for reconciling
other simulations approaches with each other and with
periment. Here, I will first recapitulate more fully the con
struction and implementation of the bubble model and th
present new results for the influence of polydispersity on
melting transition and for the nonlinear behavior at fin
stress levels and strain rates.

II. BUBBLE MODEL

In a very wet foam, the gas bubbles are all spherical a
the only structural quantities are their radii$Ri% and the time-
dependent position vectors$rW i% of their centers. The imme
diate goal is to develop equations of motion for the$rW i% by
considering all the pairwise interactions between neighb
ing gas bubbles. No explicit degrees of freedom will be
cluded for bubble shapes or for flow within the continuo
liquid phase. Physically, then, imagine what occurs if tw
actual gas bubbles are gradually brought into contact at
finitesimal rate in an otherwise empty sea of liquid. Bo
bubbles will remain spherical and experience no forces u
essentially touching, since the ranges of the van der W
force~attractive, originating from the dielectric mismatch b
tween gas and liquid! and of the electric double-layer forc



p

ce
i
ta
r
n

ro

In
le
a
g
te

n
ce

al

nt

it

:

es

pa
di
he
be
sm
am
hi

or
id
su
om
o
e
-
tio

r-
is
as

ves

le

ing
e
pli-

ge

ely,
ans-
ly
ul
sive
el
First,
d
ll
ns
of
me
ge
of
re
uc-
ns,
an
rior
lly
n-
ted
s,
on
em-

om
r-
ting

een
di-

mo-
r
cale
f
cts

55 1741BUBBLE-SCALE MODEL OF FOAM MECHANICS: . . .
~repulsive, originating from the adsorbed surfactants! are
typically less than 100 nm, which is much less than the ty
cal gas bubble size of more than 20mm. If pushed into
geometrical contact, such that the center-to-center distan
less than the sum of their radii, the two gas bubbles w
distort in shape rather than coalesce. The region of con
will then flatten out into a soap film with a thickness dete
mined by the combination of applied, van der Waals, a
double-layer forces. This and the concomitant increase
total surface area give rise to a mutually repulsive force p
portional to the gas-liquid surface tension,sgl . This repul-
sive force is nearly harmonic@25,36–39#, that is, propor-
tional to the size of the deformationj5(Ri1Rj )2urW i2rW j u.
In two dimensions this is an excellent approximation.
three dimensions, numerical calculation of the detai
bubble shapes shows that the interaction potential rises
proximately asja, wherea ranges from 2.1 to 2.6, dependin
on the bubble coordination number, which is slightly fas
than harmonic@36,39#.

For simulations of the bubble model presented earlier@35#
and to be carried further here, the repulsive force is take
be perfectly harmonic as follows. The effective spring for
for each bubble scales as the Laplace pressure,sgl/Ri , since
large bubbles are more easily deformed. For two mutu
repulsing bubbles,urW i2rW j u,(Ri1Rj ), the individual springs
are added in series such that the effective spring consta
F0/(Ri1Rj ); physically, the force constantF0 plays the role
of surface tension but with units of force; for a real foam
would be on the order ofF0>sgl^R&, where^R& is the aver-
age bubble radius.. The repulsive forceFW i j

r acting on the
center of bubblei due to bubblej is then given by the spring
constant multiplied by the compression and a unit vector

FW i j
r 5

F0

~Ri1Rj !
@~Ri1Rj !2urW i2rW j u#

~rW i2rW j !

urW i2rW j u

5F0F 1

urW i2rW j u
2

1

~Ri1Rj !
G~rW i2rW j !. ~1!

This force is taken to be strictly repulsive; if the two bubbl

do not overlap, thenFW i j
r is set to zero.

The second key ingredient in the bubble model is dissi
tion. When a foam is strained at nonzero rate, energy is
sipated due to shear flow of the viscous liquid within t
soap films and Plateau borders, by flow within the adsor
surfactants films, and by a variety of other such mechani
@33#. The simplest assumption, given a description of fo
structure entirely by bubble positions and radii, is that t
produces a drag force on bubblei from neighboring bubblej
in proportion to their velocity difference:

FW i j
v 52b~vW i2vW j !. ~2!

The proportionality constantb is assumed to be the same f
all pairs of bubbles. To see that this is reasonable, cons
an actual foam where the bubbles are packed together
that their shapes are all of comparable distortion away fr
spherical. The intervening soap films are similarly all
comparable area, of order^R&2 as set by the typical bubbl
size, and of comparable thicknessl as set by the liquid con
tent and the competition of surface tension and interac
i-
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forces. When two interacting bubbles move with speedV
relative to one another, the viscous liquid within the inte
vening soap film remains of roughly fixed thickness and
sheared at rateV/ l . The drag force per unit area then h
magnitudeF i j

v /^R&25hV/ l , whereh is the liquid viscosity.
This shows that Eq.~2! has the proper form if shear within
the films is the dominant dissipation mechanism, and gi
an estimate for the constant asb5h^R&2/ l .

To find the time evolution of the center position of bubb
i , the contributions of Eqs.~1! and ~2! for the repulsive and
drag forces must simply be summed over all the neighbor
bubblesj . Since inertial effects are negligible, this total forc
must add to zero according to Newton’s second law. Sim
fying for the velocity of bubblei gives the following equa-
tion of motion:

vW i5^vW j&1
F0

b (
j

F 1

urW i2rW j u
2

1

Ri1Rj
G~rW i2rW j !1

FW i
a

b
, ~3!

where only neighboring bubbles contribute to the avera
velocity ^vW j& and the sum of repulsive forces. If bubblei is

an edge bubble, then an applied forceFW i
a may be imposed

with normal and tangential components that, respectiv
give the local pressure and shear stress, as would be tr
mitted from a wall. Bubble motion will be generated strict
according to Eq.~3! throughout this paper, though usef
variations can be made to details of the viscous and repul
@36# ingredients. This simple, physically motivated mod
has several key advantages over previous approaches.
since Eq.~3! is a vector equation, it can be implemente
easily in any numberd of spatial dimensions keeping a
other ingredients constant. By contrast, prior simulatio
were all based on dimension-specific topological features
the bubble-packing structure. Second, the gas-liquid volu
fraction can be varied arbitrarily over the entire ran
0,f,1 simply through choice of size and number
bubbles per unit volume. By contrast, prior simulations we
all based on approximate decoration of the topological str
ture, and have been restricted to relatively high gas fractio
well above the melting point. And third, stress relaxation c
be studied and the strain rate can be varied. By contrast, p
simulations were all either quasistatic, or else intrinsica
limited to two-dimensional foams with gas fraction of ide
tically one. The bubble model of foam rheology represen
by Eq. ~3! is the first in which the effects of randomnes
dimensionality, liquid content, and microscopic interacti
and dissipation effects can all be accounted for and syst
atically explored.

One important consequence immediately apparent fr
Eq. ~3! is that bubble motion is highly overdamped. Furthe
more, for a given set of bubbles, the only parameter affec
this dynamics is a microscopic time scale,td5b^R&/F0 , set
by the average bubble size and the competition betw
mechanisms for storing and dissipating energy. The in
vidual values ofb and F0 are not relevant. Physically,td
represents the exponential relaxation time constant for
tion of a typical bubble toward equilibrium while all othe
bubbles are held fixed, and thus gives the shortest time s
for the duration of a topological rearrangement event. O
course, as will be discussed in detail later, collective effe
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1742 55D. J. DURIAN
involving the simultaneous motion of many bubbles c
cause complete relaxation to last significantly longer; the
timate relaxation time may even depend on system s
Even though Eqs.~1! and ~2! merely approximate the tru
effects of surface tension and viscosity, respectively,
even though other storage and dissipation mechanisms
be important, Eq.~3! should reasonably be expected to ca
ture the essential behavior since there will always be a c
acteristic microscopic time scale and since the dynamics
always be overdamped. It is thus to be hoped that the gen
approach of the bubble model has applicability beyond
assumptions made in its derivation.

III. SIMULATION DETAILS

It is straightforward to integrate numerically the equatio
of motion in Eq.~3! to find the response of a given system
bubbles to various applied forces. Before results are p
sented in the next several sections, I first outline comm
technical details for how systems are actually chosen, h
forces are applied, and how the numerical integration is p
formed.

As in the previous simulations@35#, the results presente
here are all for two-dimensionalN3N systems of bubbles
confined to a square of edge lengthL. The top-N and
bottom-N edge bubbles are held at fixed height and relat
positions, as though stuck to movable plates, while perio
boundary conditions are imposed to the left and right. T
bubble radii are taken from a triangular distribution th
peaks at̂ R& and vanishes at (16w)^R&. To investigate the
effects of polydispersity, the widthw of the distribution is set
either tow50.75, for a polydisperse size distribution simil
to that which naturally arises from coarsening by gas dif
sion, orw50.10, for a more monodisperse foam as may
specially constructed. With such a distribution, the aver
bubble area iŝA&5p^R&2[11w2/6] and the gas volume
fraction is given by the total bubble area, ignoring overla
asf5N2^A&/L25pN2^R/L&2[11w2/6]. The value of̂ R&
is thereby chosen in units of the system edge length acc
ing to the desired gas fraction. Bubble radii are then dra
randomly from this distribution, and the very last one is ch
sen such that the gas fraction is identically as specified
this last, required, radius lies outside the triangular distri
tion, or if the width of the realized set of bubbles is off b
more than 0.1%, then another set is drawn. This procedu
employed separately for bubbles along both top and bot
edges, as well as in the bulk.

Before rheology simulations can begin, the chosen sys
of bubbles must first be equilibrated. This is done in tw
separate tasks. The first is to construct rigid walls from theN
top andN bottom edge bubbles. These bubbles are initia
spread evenly along straight lines, to which they will be fo
ever confined. Their positions along the lines are then rep
edly updated according to the equation of motion, Eq.~3!,
until the total force on each bubble from the sum of its tw
edge neighbors is zero. Both the applied force and the a
age neighbor velocity terms in Eq.~3! are set to zero; the
latter is required to break translational symmetry and da
out the motion. After this is accomplished, the relative po
tions of the edge bubbles are held fixed in order to form ri
walls that may be slid with respect to one another a
l-
e.

d
ay
-
r-
ill
ral
e

s

e-
n
w
r-

e
ic
e
t

-
e
e

,

d-
n
-
If
-

is
m

m

y
-
t-

r-

p
-
d
d

thereby shear the intervening bubbles. The second equili
tion process is to relax theN222N bulk bubbles, initially
placed on a triangular lattice, with respect to both each ot
and also the top and bottom walls. It is crucial that this
done carefully in order to observe linear rheological beh
ior, where the shear modulus, for example, is independen
the sign and magnitude of the strain. At successive ti
steps, the position of each bulk bubble is adjusted accord
to Eq. ~3! from the repulsive spring forces it experienc
from all its neighbors, both in the bulk and within the top
bottom walls. As in the first equilibration process, the a
plied force and average neighbor velocity terms are se
zero. Also at each time step, the top and bottom edge bub
are slid as a rigid unit according to the parallel componen
the total repulsive spring forces exerted from all the neig
boring bulk bubbles. This is repeated until the total force
each bulk bubble, and the total lateral force on the top and
the bottom walls, are all zero.

Standard techniques are employed in order to make b
the equilibration and the subsequent rheology simulati
efficient and accurate. First, instead of comparing e
bubble with all others to determine the existence of a spr
force, only fairly close neighbors are examined by means
a linked list @40#. This reduces the number of pairs o
bubbles to be compared at each time step from orderN2 to
order N. Second, instead of employing a forward~Euler!
finite differencing scheme to generate the change in bub
positions in a time intervalDt, rW i(t1Dt)5rW i(t)1vW i(t)Dt,
wherevW i(t) is given explicitly by the right-hand side of Eq
~3!, a semi-implicit scheme is used in which steps are g
erated from information that is more symmetrical across
time interval~Ref. @41#, Chap. 15!. In particular, new posi-
tions are taken as rW i(t1Dt)5rW i(t)1

1
2@vW i(t)

1vW i(t1Dt)#Dt, wherevW i(t1Dt) is estimated in terms o
positions and velocities at timet from the matrix of partial
derivatives of the right-hand side of Eq.~3! with respect to
positions. This permits the time step to be made as larg
Dt50.2td without noticeably affecting the results. By con
trast, the Euler scheme is unstable and requires thatDt be
infinitesimal in terms oftd .

One final point is that for all the simulation results pr
sented here and in Ref.@35#, the average velocity term in th
right-hand side of Eq.~3! is taken aŝvW j&5ġyi x̂, whereġ is
the imposed shear strain rate,yi is the coordinate of bubblei ,
andx̂ is the unit vector in the imposed flow direction. This
done mainly for computational simplicity, since then th
right-hand side of Eq.~3! gives the velocity of each bubblei
exclusively in terms of the bubble positions, but has oth
benefits as well. TakinĝvW j& as a literal average would re
quire that the equations of motion for all bubbles be sim
taneously solved for the bubble velocities prior to integ
tion; this entails the inversion of a large sparse matrix at e
time step, and also significantly complicates the use of
plicit finite differencing. However, note that^vW j&5ġyi x̂ is
actually a reasonable approximation if the typical bubble
ordination number is very large. Furthermore, it is the corr
description of the viscous interaction of an isolated bubble
a viscous liquid undergoing shear, and is therefore supe
to a literal average in the limit of small gas area fraction.

Whatever its pros and cons, the choice adopted here
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55 1743BUBBLE-SCALE MODEL OF FOAM MECHANICS: . . .
^vW j& cannot affect equilibrium configurations or static elas
properties. It can, however, affect other phenomena to
studied here such as bubble dynamics under steady shea
stress relaxation following step strain. Work is now
progress@42# that will examine empirically the sensitivity to
details of the interactions assumed in Eq.~3!. Until this is
completed, some insight can be gained by treatment o
one-dimensional, periodic version of the bubble model. C
sider, then, a chain of massless beads connected by spr
each with force constantk. The equations of motion for the
bead positions,xn , can be written as

05k@xn111xn2122xn#1b1@ ẋn111 ẋn2122ẋn#2b2ẋn
~4!

where two terms involving time derivatives represent t
distinct viscous interactions. In the context of foams, theb1
term represents dissipation due to relative motion of adjac
bubbles as caused, for example, by shear of the interve
liquid. This corresponds to a literal computation of^vW j& in
Eq. ~3!, which would not vanish during relaxation. Theb2
term represents dissipation due to absolute motion of bub
with respect to the continuous fluid phase, as happens
example, at very low gas fractions or during relaxation fro
a state with more fluid on one side of the sample than
other. This corresponds to the choice^vW j&5ġyi x̂ adopted
here for Eq.~3!, which vanishes during relaxation. For th
periodic one-dimensional model, the relaxation spectrum
be found easily keeping both terms. Modes of wave vectok
relax exponentially as exp~2vt!, where

v~k!5k~12coska!/@b1~12coska!1 1
2b2# ~5!

anda is the equilibrium bead separation. For the special c
b250, all modes relax at the same rate,v~k!5k/b1. In gen-
eral, however, the fastest modes are at short waveleng
ka>p/2, and relax with ratev~k!>k/~b11

1
2b2!, whereas the

slowest modes are at long wavelengths,ka!1, and relax
with ratev~k!>k(ka)2/b2 independent ofb1. The longest
possible relaxation time thus varies with the square of
system size. Such length-scale-dependent dynamics ma
expected for a real foam, where the collective relaxation
bubble shapes is accompanied by the flow of liquid throu
out the entire interconnected porous geometry between
tightly packed bubbles. Theb2 term, corresponding to the
choice ^vW j&5ġyi x̂ adopted here for simulations using E
~3!, is needed to capture this behavior.

IV. STEP-STRAIN RESULTS

In this section, results are given for the linear response
two-dimensional square samples ofN3N bubbles subjected
to a step strain. Attention will be restricted toN520 since
previous work@35# showed this to be sufficiently large tha
the variance between different realizations of bubbles d
not obscure trends.

A. Stress relaxation

After thorough equilibration, the rheology simulations b
gin with the instantaneous imposition of an affine step stra
of sizeg, in which thex coordinate of each bubble center
shifted tox1gy. Note that such a deformation is consiste
e
and

a
-
gs,

nt
ng

es
or

e

n

e

hs,

e
be
f
-
he

of

s

-
,

t

with Eq. ~3! for brief application of shear at a very larg
shear rateġ, where the viscous forces completely domina
the repulsive spring forces. Next, the bulk bubbles are
lowed to move according to Eq.~3!, with ^vW j&5ġyi x̂50,
until mechanical equilibrium is achieved, all the while kee
ing the edge bubbles fixed. This relaxation process is mo
tored via the total energy stored in the springs and the t
shear stress on the walls. The total energy is defined as
sum over all pairs of interacting bubbles as one-half of
spring constant times the square of the compression;
shear stresss is defined as the average lateral force per ed
bubble. Typical results for a step strain ofg51025 are shown
in Fig. 1 for four configurations of bubbles with gas fractio
of f51 ~dry! and f50.84 ~wet! and with triangular size
distributions of widthsw50.75 ~polydisperse! andw50.10
~monodisperse!. The top plot in Fig. 1 displays the differenc
in energy from the final value normalized so that the dec
starts at one. The data all exhibit nonexponential relaxati
that span many decades in time ranging from about 1%
0.01td to full decay at~200–5000!td , consistent with the
presence of many length-scale-dependent relaxation ti
predicted by the periodic one-dimensional version of
model. The bottom plot in Fig. 1 displays the stress rel
ation divided by the magnitude of the imposed step stra
These data all exhibit nonexponential relaxations, as for
energy, but that are not necessarily monotonic due to
choice^vW j&5ġyi x̂50. The final value for the decay is non
zero, since the system is strained, and gives the shear m
lus asG5limt→` s~t!/g. Note thatG is greater for the dry
foams and that the total relaxation time is greater for the
foams, independent of polydispersity. For all the examp
given here, the response is linear in thatG is independent of
strain, and no new springs are formed or existing sprin
broken, for step strains up to roughlyugu,1023.

The equilibrium bubble configurations for the four pa
ticular foams just discussed are shown two ways in the n
figures. Figure 2 displays both the bubbles, as dotted circ

FIG. 1. Energy and stress relaxation as a function of time
lowing an imposed step strain ofg51025 for four 20320 systems
of bubbles. The different line codes indicate gas fractionf and the
relative width of the bubble size distribution as labeled.
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1744 55D. J. DURIAN
and the spring network, as solid lines between the center
pairs of repulsing bubbles. A spring is thus drawn only wh
the circles representing two bubbles happen to over
where actual bubbles would distort in shape away fr
spherical and hence repel each other. The overlaps are
enough to be visible in Fig. 2 only for the dry foams. No
that by contrast with other studies of random spring n
works, the springs shown in Fig. 2 are all compressed; n
is stretched. Inspection shows that the networks are spa
for the wetter foams, as expected, since bubbles are the
average further apart and interact with fewer nearest ne
bors. In fact, all bubbles are involved in the network for t
dry foams, but occasional isolated bubbles occur in the
foams. In both cases, the networks of compressed spring
Fig. 2 all percolate not just from top to bottom, as required
support static shear, but across the entire sample. Ano
feature apparent in Fig. 2 is that the networks are more
dered for monodisperse foams, since in two dimensions id
tical spheres tend to crystallize when packed. The wet mo
disperse foam is not as highly ordered as the dry since
bubbles are only barely packed together.

The motion of bubbles that occurs during relaxation f
lowing sudden step strain is shown next in Fig. 3, for t
same four foams. Both the magnitude and direction of
motion are indicated by a small line segment through
center of each bubble given by (rW i2rW i

e)/gyi times a con-
stant; rW i is the new position of bubblei after stress relax-
ation,rW i

e is its equilibrium position before the step strain w
imposed, and the scaling constant is chosen so that the a

FIG. 2. Equilibrium bubble configurations for the four system
examined in Fig. 1. The top two and bottom two have gas fracti
of f51.0 and 0.84, respectively; the left two and right two ha
distribution widths ofw50.75 and 0.10, respectively. Note that th
top and bottom edge bubbles are fixed to a horizontal plate, w
periodic boundary conditions are imposed to the left and right
solid line is drawn between the centers of adjacent bubbles if t
overlap and hence, physically, repel one another by a spring fo
These repulsive spring networks percolate across the system
give the foam shear rigidity.
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age segment size is smaller than the average bubble d
eter. According to this scheme, regions within the foam t
undergo affine shear deformation, (xi ,yi)→(xi1gyi ,yi),
such as in the edge bubbles of Fig. 3 or in a periodic netw
free of defects, therefore all have horizontal line segment
equal size. The response of bulk bubbles thus displaye
Fig. 3 is evidently neither homogeneous nor affine. Nev
theless, large correlated regions in which the motion
nearly affine exist, inside of which the line segments are
of comparable size and direction. The trend apparent in
3 is that these uniformly elastic regions are more preva
for drier more monodisperse foams. The motion is least
fine for the wet polydisperse foam, where the size and dir
tion of the line segments are the least spatially correlated
can, in fact, vary wildly between neighboring bubbles.

The line segments displayed in Fig. 3, depicting ho
stress is relaxed following step strain, allow visualization
the motion that would occur in linear response to oscillato
strain. If sinusoidal strain is imposed at a frequencyv that is
small in comparison with the reciprocal of the longest rela
ation time, tr , as seen Fig. 1, then viscous forces can
neglected and the spring forces on each bubble will sum
zero throughout the entire strain cycle. The motion is he
quasistatic, and each bubble will move sinusoidally with a
plitude and direction prescribed by the line segments in F
3. As the oscillation frequency increases, however, the
cous forces will become more important, and the bubble m
tion will eventually become affine in the limitv@t r

21.
The line segments in Fig. 3 also support a recent mo

for the anomalous viscous dissipation observed in thr
dimensional, random, monodisperse emulsions@14#. There,
an extraAiv contribution to the complex dynamic she
modulus,G* ~v!, was observed and attributed to a distrib
tion of ‘‘weak’’ regions in which bubbles can shift their rela

s

le

y
e.
nd

FIG. 3. The same configuration of bubbles shown in Fig. 2, n
with lines through the centers that depict the direction and ma
tude of motion during relaxation after an imposed step strain
described in the text. This motion becomes increasingly nonaf
for greater liquid content and polydispersity.
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tive positions rather than distort elastically. These shifts
proposed to occur where several bubbles are packed tog
in such a way that they can be sheared in certain ‘‘ea
directions with a smaller elastic penalty than in others. T
Aiv contribution then arises, in both two and three dime
sions, from the fact that mechanical energy is dissipa
rather than stored, in regions where bubbles shift and fr
the assumption that the sample is isotropic on average, e
though it is locally anisotropic due to the presence of e
directions. The simulation data in Fig. 3 are consistent w
this picture. Areas in which the deformation is roughly affi
can be identified as the ‘‘strong’’ regions, where energy
predominantly stored; and areas where the deformatio
especially inhomogeneous can be identified as the ‘‘wea
regions, where energy is predominantly dissipated. Furt
more, the relaxation results in Fig. 1 may also be consis
with this model and the emulsion experiments. Since
complex dynamic shear modulus and the stress relaxa
modulus are related by Fourier transform, aAiv contribution
to G* ~v! corresponds to 1/At behavior in the stress relax
ation. This is consistent with the gradual relaxation obser
in Fig. 1, and the fact that the exponential cutoff moves
for larger systems@35#. Further simulations are required bo
to test decisively the model of Liuet al. and to distinguish
the relative importance of the random packing geome
from the choice of viscous dynamics in Eq.~3! on the
gradual stress relaxation.

B. Melting transition

Consider now the trends in linear rheological properties
a function of liquid content. In particular, consider the natu
of the melting transition as the liquid content is increas
and the bubbles become free to move around one ano
without any elastic distortion. This transition is tracked fo
ways in Fig. 4 for sequences of polydisperse~widthw50.75!
and monodisperse~w50.10! foams subjected to instanta
neous step strains of magnitudeg51025. The four quantities
displayed as a function of gas fractionf are the shear modu
lusG, the average normal force per edge bubble or pres
P, the coordination number, or mean number of spr
forces per bulk bubbleZ, and the relaxation timetr , defined
here as the time constant for the final exponential relaxa
of the total spring energy following step strain, as seen,
example, in Fig. 1. Before examining the meaning of the
data, first note that an entirely new realization of bubbles
constructed for each gas fraction. The scatter in the f
quantities shown in Fig. 4 is therefore purely statistical, a
is much greater than the accuracy with which any of th
quantities is determined for a given realization; indeed,
results in Ref.@35# showed how the scatter from realizatio
to realization decreases as a function of system size.
approach is more time consuming, but avoids introduc
systematic artifacts in the quantitativef dependence of rheo
logical parameters that would result if, instead, the gas fr
tion were adjusted more simply by scaling the radii of all t
bubbles in a single configuration. Also, note that there is
dry foam limit as the gas fraction approaches 1. There,
real foam, the pressure should diverge@43,26,39# and the
shear modulus should reach its limiting value with zero slo
@24,25,27#. The behavior of the bubble model nearf51 is
e
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therefore not indicative of very dry foams, but rather of mo
typical ones with greater, nonzero liquid content.

Outside the dry foam regime, consider the results in Fig
for the static quantities,G, P, and Z as a function off.
These all decrease as the liquid content is increased,
simultaneously vanish below a critical gas fraction that d
pends slightly on polydispersity,fc50.83560.005 for
w50.75, andfc50.84560.005 forw50.10. The simulation
approach based on approximate decoration of Plateau
ders gives roughly the same critical gas fraction,fc50.84 in
Refs. @23, 25, 27# and most recentlyfc50.82 in Ref.@26#,
by extrapolation from data forf.fc10.05. Here, since data
are obtained on both sides of the transition, extrapolatio
unnecessary and the uncertainty infc is set only by statisti-
cal scatter from different bubble configurations. Dense r
dom packings of hard disks with a wide variety of size d
tributions @44# also give the same critical fraction
fc50.8460.01; furthermore, they give a mean coordinati
number ofZc53.7560.10 that is identical to the simulatio
results displayed in Fig. 4. Note that this coordination nu
ber is defined by bubble-bubble contacts, not by a Voro
construction of nearest neighbors.

Empirically, the increase ofG above the melting transi
tion can be described as a power law,G}(f2fc)

u, where

FIG. 4. The melting of polydisperse~widthw50.75! and mono-
disperse~w50.10! foams vs gas fractionf. The static shear modu
lus G, pressureP, and coordination number~average number of
spring contacts per bubble! Z, all vanish, while the stress relaxatio
time tr diverges, at aboutf50.84. Each point represents an entire
different 20320 realization of bubbles.
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1746 55D. J. DURIAN
the exponent is less than 1 but depends noticeably on p
dispersity, u50.560.1 for w50.75, and u50.760.2 for
w50.10. These power-law fits are shown as the solid
dashed curves, respectively, and are based on data spa
one decade in~f2fc!. This contrasts with experiments o
three-dimensional, random, monodisperse emulsions@38#,
whereG rises almost linearly in~f2fc!. Based on a varia-
tion of the repulsive force law in Eq.~3! according to nu-
merical calculation of bubble shapes, such behavior was
tributed in Ref. @36# to disorder plus anharmonicity
However, the increase ofu found here for decreasing poly
dispersity suggests that details of the narrow size distribu
in the emulsion experiments may also play a role.

The quantitative increase of bothG andP abovefc can
be understood in terms of thef dependence of the coordina
tion number. Physically, the pressure must be proportiona
both the average number of spring contacts per bubble
their average compression, and must thus scale
P}Z(f2fc). Indeed, this form provides an excellent d
scription, independent of polydispersity, as shown by
solid and dashed curves through the pressure data in Fi
This gives a linear increase withf2fc , in agreement with
exact calculation for periodic systems@43,39#. The behavior
of the shear modulus cannot be explained by a simila
simple argument. The crucial observation, shown in Fig. 5
that to within statistical uncertaintyG is proportional to
Z2Zc over the entire range. Such behavior is observed
two-dimensional percolation phenomena@45#, and supports
the contention first made in Ref.@23# that the melting of
foams is an example of rigidity percolation. In the usu
percolation problem, springs in a random network are p
gressively cut until rigidity is lost. Here, by contrast, sprin
are effectively lost with increasing liquid content as pairs
bubbles are given room to push each other apart. The di
ence is that the topology of the usual random spring netw
is fixed and the springs may be stretched as well as c
pressed, whereas here, the springs represent bubble-b
repulsion, and so cannot be stretched. Furthermore, the
work of compressed springs is not fixed but is rather de
mined by minimizing the total spring energies according
the equation of motion of Eq.~3!. If the percolation picture
holds, then the repulsive spring networks should become
creasingly fractal on approach to the melting transitio

FIG. 5. Shear modulus vs coordination number. The data of
4, thus replotted, show a linear relationship supporting the rigid
percolation picture of melting.
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While the networks shown in Fig. 2 certainly become spar
nearfc , the system sizes are far too small for a serious
of fractal character. In any case, the simulation results p
sented here show that the coordination number plays a
tral role in determining the static elastic properties of foam
independent of polydispersity.

Now that statics have been addressed, consider the re
in Fig. 4 for the stress relaxation timetr as a function of
volume fraction. While the shear modulus and pressure b
vanish atfc , the relaxation time reaches a maximum, risi
sharply as the transition is approached from either abov
below. This behavior is seen for both the polydisperse a
monodisperse systems. Presumably,tr would actually di-
verge atfc for arbitrarily large samples. This suggests t
presence of a diverging length scale, and is thus further c
sistent with the rigidity percolation picture where the corr
lation length, beyond which the spring network is homog
neous and below which it is fractal, grows as the transition
approached. This also shows how the transition may be
ficult to observe experimentally, both because the time sc
become long and because the nature of the rheology is
markedly different on the two sides of the transition. Abov
it is a viscoplastic solid with infinitesimal shear modulu
below, it is a viscoelastic liquid with zero shear modulus;
both sides, the transient storage of elastic energy is very l
lived and dominates the behavior.

V. CONSTANT STRESS RESULTS

While Sec. IV dealt with linear response as a function
liquid content, this section and the next deal, respective
with nonlinear behavior at large strain amplitudes and dur
flow. An alternative approach to static rheology is to co
sider the strain produced by a given applied stress, as
posed earlier to finding the stress required to support a g
imposed step strain. After thorough equilibration, the sim
lations now begin with the application of a very small she
stress to the bubbles within the top and bottom edge pla
The bulk bubbles are then allowed to move according to
~3! with ^nW j&50, and the edge plates are allowed to mo
independently as a rigid unit according to the sum of appl
and spring forces from neighboring bulk bubbles. Even
ally, the resulting strain becomes large enough that the t
applied force is balanced by the shear elasticity of the s
tem; when all motion stops, the final strain is recorded. T
applied stress is then increased slightly and the proces
repeated. Simulation results for two such runs are displa
in Fig. 6, both for the same 12312 system of bubbles with
gas fractionf51, but with shear forces applied in opposi
directions. Raw data are displayed in the inset, and the
plied stress divided by resulting strain,s/g, are displayed in
the main plot. Figure 6, first of all, demonstrates thats/g is
constant at sufficiently small applied stress, independen
sign. This is the regime of linear response characterized b
shear modulus,G5lims→0s/g.

As the applied stress is steadily incremented, the respo
eventually becomes nonlinear, and then irreversible but
static; for even greater applied stress, continuous flow
occur. Figure 6 shows that the linear regime lasts up to ab
ugu'1023, beyond whichs/g rises above the value ofG. In
spite of this nonlinearity, mechanical equilibrium at a

g.
y
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55 1747BUBBLE-SCALE MODEL OF FOAM MECHANICS: . . .
strains throughout the range 0,ugu,0.03 can be achieved b
suitable choice of applied stress, and the motion is fully
versible; for example, if the applied stress is set to zero t
the system will relax back to a strain of zero. Beyond t
point, however, a small increment in stress can produc
dramatically large, irreversible, increase in strain. As the
plied stress passes a threshold, the strain in some regio
the foam becomes so large that a pair, or pairs, of bubbles
pushed past one another; when this occurs, their repul
interactions no longer counteract the applied shear but in
aid it. Flow thus ensues, and the spring network rearran
until a stiffer bubble configuration arises that is able to s
port the higher level of applied stress. The strain thus
vances considerably at nearly the same stress, as show
the dashed lines in Fig. 6 between points of static mechan
equilibrium. Note that once flow has occurred, the mot
can no longer be reversed: cessation of applied shear wil
result in a return to zero strain. New configurations of m
chanical stability, in turn, eventually give way as the appl
stress is further increased. Finally, the applied stress beco
too great to support any bubble arrangement, and the sy
flows indefinitely. For the example foam studied in Fig.
the largest static strains observed are between 1 and 1
magnitude; the simulation was stopped when the flow
ceeded a strain of 10 under the assumption that static
chanical equilibrium would never again be achieved. T
corresponding yield stress required to produce indefinite fl
is slightly less than 0.013, comparable to the shear modu
It is worth emphasizing that the onset of irreversibilit
where topological rearrangements first occur, is nearly
orders of magnitude below this point.

The behavior during indefinite flow can be studied und
conditions of constant applied stress, but not easily since
strain rate is fairly constant only when the stress is mu
greater than the yield stress. As the yield stress is approa
from above, the motion becomes increasingly nonunifo
slowing down as stiff bubble arrangements arise and sp
ing up as they are broken. Very long runs are then neede
ascertain the average strain rate, which will vary dram

FIG. 6. The straing at which mechanical equilibrium is
achieved with the imposed stresss, for a 12312 system of bubbles
with gas fractionf51 and distribution widthw50.75. Data points
were obtained by successively increasings from zero, in both posi-
tive and negative directions, and recording the strain once s
equilibrium was reestablished. Irreversible slips, where a large
tion was caused by a small stress increment, are denoted by da
lines.
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cally very close to the yield stress. This can be seen cle
in the following simple physical picture of the dynamic
Suppose in static mechanical equilibrium that the stress
creases linearly with strain all the way up to the yield poi
drops immediately to zero, and then repeats periodically.
shear modulus is then given by the yield stress and y
strain asG5sy/gy . The equation of motion for the strain a
a function of time in response to a given applied stresssy is
then

05sA2Gg2mdg/dt, ~6!

wherem is the so-called plastic viscosity of the system, sin
the applied, elastic, and viscous forces must sum to z
This equation can be transformed into the empirical Bin
ham plastic relation found for actual foams@4,5# simply by
replacing the elasticGg term by the yield stress, as though
a random foam the elastic stress is always at the yield po
and by assuming that the strain rate is constant in time. F
periodic foam, Eq.~6! can be integrated over one strain cyc
to obtain the period, which in turn gives the average str
rate as

^ġ&52
sy

m ln@12sy /sA#
. ~7!

In the limit of very large applied stress,sA@sy , the elastic
Gg term in Eq.~6! is negligible and Eq.~7! predicts a vis-
cous response at nearly uniform rate,^ġ&→sA/m. As the
stress is lowered, the average strain rate decreases an
increasingly greater fraction of the strain cycle is spe
creeping up to the yield strain. To produce arbitrarily sm
strain rates, the applied stress must be made infinitesim
greater than the yield stress. In constant-stress comp
simulations this is difficult because the yield stress is
known in advance and is difficult to locate accurately,
seen in Fig. 6. A practical solution might be to simulate
system with large enough aspect ratio that the strain
becomes uniform, never deviating far from the avera
value.

VI. STEADY STRAIN-RATE RESULTS

Rather than simulate flow behavior under conditions
constant applied stress, it is simpler to impose cons
strain-rate conditions and then characterize the resul
time-dependent stresses. The behavior under steady st
rate flow is the subject of the remainder of this paper. Af
thorough equilibration, the simulations thus proceed by a
ries of small time steps in which the top and bottom ed
walls are translated according to the desired strain rate w
the bulk bubbles are simultaneously allowed to move acco
ing to Eq.~3!, with ^vW j&5ġyi x̂.

A. Bingham-plastic behavior

Results for a 636 system were shown previously in Re
@35#. Here, analogous results for a single 12312 system with
gas fractionf51 are shown in Fig. 7, always for the sam
initial equilibrated bubble configuration. The inset depic
raw data for the shear stress on the walls as a function
strain for several different strain rates, labeled according
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Deborah number,ġtd , where td5b^R&/F0 is the micro-
scopic relaxation time constant defined earlier. In all cas
the stress initially increases and then undergoes a serie
fluctuations about some well-defined average. As the st
rate is increased, the inset shows how the average leve
shear stress also increases while the frequency and rel
size of the stress fluctuations decrease. Such behavior is
marized in the main plot by the average and maximum str
tabulated over the range 0,g,10, versus Deborah numbe
error bars denote the rms size of fluctuations about the a
age, not statistical uncertainty. As the strain rate increa
the relative size of the fluctuations is clearly seen to shr
while the maximum eventually becomes indistinguisha
from the average. In the opposite direction, as the strain
decreases, the stress versus strain and strain rate appro
limiting behavior, as seen both in the inset and in the lev
ing off of the maximum and average in the main plot.

Physically, the simulated stress versus strain and st
rate behavior depicted in Fig. 7 can be understood as
lows. First, at high strain rates, the viscous dissipation te
^vW j&5ġyi x̂ in Eq. ~3! is much larger than the repulsiv
spring interactions. Accordingly, the instantaneous veloc
of each bulk bubble approaches the average value of a
neighbors,vW i→^vW j&5ġyi x̂, and the deformation of the sys
tem becomes affine. In this limit, where the source of el
ticity is negligible, the response of the foam is exactly li
that for a purely viscous liquid undergoing shear. In the o
posite limit, of very small strain rates, the viscous intera
tions in Eq.~3! are essentially negligible and the bubble co
figuration is therefore almost always in mechanic
equilibrium with the applied shear forces. Thus, the str
versus strain rate approaches a limiting behavior that is
dependent of strain rate. The source of fluctuations is
course, the irreversible rearrangement of bubbles from
tightly packed configuration to another. As seen in the in
of Fig. 7, and also in the constant-stress simulation result
Fig. 6, this first occurs at a strain of around 3%. An exam
of such a rearrangement is shown in Fig. 8 and will be d
cussed in detail later; for now, note only that viscous int
actions cannot be ignored during rearrangement, even tho

FIG. 7. Average and maximum shear stress vs imposed s
rate, ġtd , for a 12312 system of bubbles with gas fractionf51
and distribution widthw50.75. Error bars denote rms fluctuation
about the average, and the solid curve is a fit of the maximum
Bingham-plastic behavior. Raw stress vs strain data are show
the inset for several dimensionless strain rates as labeled.
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they are otherwise negligible at low strain rates, and that
fastest time scale in the rearrangement motion is set bytd .
The characteristic time scale that separates the low strain
behavior from the viscous high strain rate behavior is u
mately also set by this microscopic time,td . The former
regime is achieved only when rearrangements are disc
and come to completion before noticeable macroscopic s
occurs, and the latter regime is achieved only when re
rangements are induced at such a high rate that they m
together into continuous uniform motion.

The simulation results shown in Fig. 7 can be compa
quantitatively with expectations for real foams. Experien
@3–5# shows that the typical stress versus strain rate relat
ship is roughly that of a Bingham plastic,s5sy1mpġ. A
reasonably good fit of this form to the maximum stress d
is shown in Fig. 7, where the yield stress issy50.01 and
plastic viscosity ismp510td . As found previously@35#, the
plastic viscosity is set by the stress relaxation time and c
firms the above expectation regarding the crossover t
scale. Note that the rise of the maximum stress data a
from the low strain rate limit is slightly more gradual tha
the Bingham plastic form, and is significantly more gradu
for the average stress data. The prediction of Eq.~7! is even
worse in this respect. This is not a crucial issue, howev
since real foams are nonequilibrium systems that are abl
relax elastic stresses via time evolution, causing the stres
drop to zero for very small strain rates. The important po
is that the model presented here for bubble dynamics i
flowing foam successfully reproduces the apparent Bingh
plastic behavior seen for real foams at strain rates larg
comparison with evolution time scales. The only other sim
lations that include dissipation effects to achieve finite ra
of shear are of Kawasaki’s vertex model, in which the v
cous force between two vertices scales as their relative
locity raised to the power of23 @28–30#. This model also
produces results consistent with Bingham-plastic beha
for stresses slightly larger than the yield stress. However,

in

to
in

FIG. 8. Bubble configurations before~dotted circles! and after
~solid circles! a sudden topological rearrangement that occurred
an infinitesimal strain rate ofġtd51025; bubble-center trajectories
are also shown. This particular event released more elastic en
from the spring network than any other observed in the 12312
simulation run; nevertheless, the topology change involved on
few bubbles.
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TABLE I. Rearrangement event statistics at a uniform imposed strain rateġtd51025 and gas fractionf51. The number of bubbles is
N3N, with the top and bottomN bubbles fixed to the edge plates, and the total shear strain suffered during the run isgm . The resulting
number of events isNe ; the event rate expressed as the number per bulk bubble per unit strain isRe5Ne/(N

222N)gm ; the average energy
release in units of the average bubble energy is^DE&/Eb , with standard deviation as given; and the median energy release in units o
average bubble energy isDEm/Eb .

N gm Ne Re ^DE&/Eb Standard dev. DEm/Eb

6 116 1510 0.542 1.77 2.49 0.469
12 40.0 1763 0.376 2.22 3.45 0.510
18 22.8 1953 0.297 2.36 3.89 0.554
30 11.2 2050 0.218 2.41 4.22 0.550
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very large strain rates where viscous forces completely do
nate, it is hard to see how stress could be proportiona
strain rate when the viscous force between neighbors is
sumed not to be proportional to their velocity difference.

B. Avalanches

Attention is finally turned to the nature of the sudd
avalanchelike topological rearrangements that occur whe
foam is sheared slowly. This has been simulated previou
by Okuzono and Kawasaki using their vertex model fo
perfectly dry, two-dimensional system of over 1000 bubb
contained in a square cell and subjected to shear at dim
sionless rate of 1024 @30#. They measure the size of eac
rearrangement event by the drop in total elastic energy t
gered unexpectedly by a small increment in strain. A bro
spectrum of events is found, such that the probability of
currence decreases as a power law of size with an expo
of 23

2. This was based on almost 10 000 events spread
a total strain increase of 20, giving an average of about
event per bubble per unit strain. Such behavior is claime
be a deterministic example of self-organized criticality
which events, or avalanches, occur in all sizes ranging fr
a few bubbles to all in the system. This is supported
figures showing large-scale circulatory flows that sudde
start then stop. Avalanche statistics have also been repo
by Hutzler, Weaire, and Bolton for a two-dimensional sy
tem of 50 bubbles subjected to quasistatic extension@27#.
Rather than tabulate energy drops, they measure avala
size by the number of changes in nearest-neighbor con
that must be performed simultaneously in order to rest
mechanical equilibrium. Histograms for this number a
sharply peaked for dry foams, but become broader and
pear to develop a power-law tail with exponent of21 as the
liquid content increases toward the melting point. It is n
clear how to reconcile these two sets of observations gi
the significant differences in the models, in the quantit
tabulated, and in system sizes and the level of statistics
consistent qualitative feature, however, is that the flow
foam is accomplished intermittently by a series of sudd
avalanchelike topological rearrangement events with a br
distribution of sizes, seemingly consistent with se
organized criticality.

Experimentally, the sudden rearrangement events indu
in a slowly sheared three-dimensional foam with gas fract
0.92 have been observed recently by Gopal and myself u
diffusing-wave spectroscopy, a noninvasive multiple-lig
scattering technique@9#. We find that macroscopically homo
geneous shear deformation is accomplished by sudden lo
i-
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ized rearrangement events, without noticeable accumula
of affine shear strain. We also find that the distribution
the number of bubbles involved per avalanche must
peaked, with no power-law tail; it has a well-defined avera
corresponding to a small region roughly four bubbles acro
and is independent of system size. This is completely inc
sistent with the picture of self-organized criticality sugges
in Refs.@27, 30#.

To begin reconciling theory and experiment, it is useful
examine the nature of rearrangements predicted by
bubble model for foam mechanics. This is simply a matter
extending and analyzing the simulations used to produce
7. Like Kawasaki’s vertex model, the bubble model has
virtue of including dissipation effects to produce rearrang
ments with realistic dynamics and finite duration. But, sin
bubble motion occurs entirely according to Eq.~3!, it has an
advantage over both the Kawasaki and Weaire approach
that topology need not be separately monitored and upd
‘‘by hand’’ when a film shrinks to zero length. Simulation
are thus performed as above for several square system
bubbles, each with gas fractionf51, subjected to shear at
constant rate ofġtd51025. As seen from Fig. 7, this is slow
enough to obtain the low strain rate limiting behavior. The
rearrangement events are evident as the sudden drop
stress that come after a gradual rise. The motion involve
such an event is depicted in Fig. 8 by the bubble locatio
both before and after the stress drop, along with the ce
positions at all times in between. The sudden avalanche
nature of this event is apparent from the large scale of m
tion in the interior, ranging up to about one bubble diame
and the infinitesimal motion of the edge walls throughout
duration. Note that the event in Fig. 8 involves two comp
clusters of bubbles undergoing topology change, in the up
left and upper middle right. Surrounding these two cluster
a large swath of bubbles that shift without neighbor chan
more or less coherently, though with gradually decreas
amplitude.

Following Okuzono and Kawasaki@30#, avalanches can
usefully be described by the elastic energy drop per ev
The extent of the runs and the resulting event statistics
given in Table I. In comparison with Okuzono and K
wasaki, the system sizes range from significantly to sligh
smaller, but the runs are typically longer. Results for t
average event rate decrease somewhat with system size
extrapolate linearly to about 0.15 per bulk bubble per u
strain as 1/N goes to zero. Note that since the largest syst
simulated here is significantly closer to this limit than t
smallest, the effects of the finite sample size do not domin
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behavior; this can also be seen in the other event statistic
Table I. The average rearrangement rate is only sligh
larger in the Okuzono-Kawasaki simulations, 0.50 p
bubble per unit strain.

While event rates may be comparable, the nature of
flows and the quantitative details of the probability dens
P(DE), for events with energy dropDE, are entirely differ-
ent for the bubble and vertex models. Figure 9 shows
distribution based on the simulation runs summarized
Table I. Results for the four system sizes are nearly indis
guishable, as seen already in Table I, and adequately re
sent the infinite-sample limit. Evidently, the range of ener
drops produced by the bubble model spans an enorm
range, from 1027 to 50 times the average bubble energy,Eb .
The preponderance of events is small, with the median
being about 0.6Eb and the average being about 2.5Eb . For
small events, below this average, the distribution is a po
law with exponent20.7060.05; for large events, it decay
as exp~20.2DE/Eb!. Without this exponential cutoff, the av
erage and width of the distribution reported in Table I wou
not be well defined. This contrasts with the Okuzon
Kawasaki vertex model simulations@30#, where energy
drops occur over only two decades, in spite of the lar
system, and where the distribution is a power la
P(DE)}DE23/2. Not only is their exponent different, bu
they find no sign of an exponential cutoff for large events
related difference is that the largest events in the ve
model presumably depend on system size, but do not in
bubble model.

FIG. 9. Probability density for rearrangement events releas
energyDE, normalized by the average energy per bubbleEb . De-
tails of the simulation runs are given in Table I. Independent
system size~labeled!, there is a preponderance of small events
hibiting power-law behavior, with exponent 0.7060.05, and an ex-
ponential cutoff of large events.
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The avalanche statistics of the bubble model, though
conflict with those of the vertex model, are actually in go
accord with the experiments by Gopal and myself@9#. Both
show lack of a power-law tail in the distribution of larg
events, which leads to a well-defined average event size.
both show that the average event is relatively small, onl
few bubbles across. For the bubble model, this can be s
two ways. First, most events are smaller than the aver
bubble energyEb and are exponentially rare above 5Eb .
Second, and perhaps more significantly, the extent of bub
motion is not very large. For example, the event moti
shown in Fig. 8 is actually atypical; it is for thelargest
energy drop seen in the 12312 system. Even for this larges
of events, the clusters of bubbles undergoing topolo
change only involve a few bubbles, and the individual m
tions are not more than a typical bubble size. Work is now
progress@42# to determine whether the choice of dissipati
dynamics in Eq.~3! plays a role in forcing the typical even
size to be commensurate with the bubble size.

Physically, the cause for better agreement with exp
ment may be that the bubbles are less constrained and h
can rearrange before being significantly distorted. In b
experiment and bubble model, rearrangements can be
duced by strains of only a few percent; as more strain
imposed, the bubbles simply rearrange to maintain sha
fairly close to equilibrium. Accordingly, the elastic energy
never much higher than in unstrained equilibrium and
magnitude of the stress fluctuations is comparable to the
erage, as seen in Fig. 7. In the vertex model, by contr
rearrangements are not induced until the bubbles are
highly distorted and the strains exceed 1; as more strai
imposed, rearrangements occur but only relieve a small p
tion of the extra energy, leaving the bubbles still highly d
torted. Accordingly, the elastic energy is significantly high
than in unstrained equilibrium and the stress fluctuations
small compared to the average, as seen in Figs. 3 and
Ref. @30#. This ‘‘loading’’ produced in the vertex model ma
be the crucial difference. It does not occur in the bub
model, presumably because the bubbles are always sphe
and the corresponding repulsive springs cannot be sig
cantly compressed via shear. It does not occur in experim
either, presumably because bubbles are harder to cons
for a foam which is fairly wet and which exists in thre
dimensions.
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