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Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches
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By focusing on entire gas bubbles, rather than soap films or vertices, a microscopic model was recently
developed for the macroscopic deformation and flow of foam in which dimensionality, energy storage, and
dissipation mechanisms, polydispersity, and the gas-liquid ratio all can be varied [@asilyDurian, Phys.

Rev. Lett.75, 4780(1995]. Here, a more complete account of the model is presented, along with results for
linear rheological properties as a function of the latter two important physical parameters. It is shown that the
elastic character vanishes with increasing liquid content in a manner that is consistent with rigidity percolation
and that is almost independent of polydispersity. As the melting transition is approached, the bubble motion
becomes increasingly nonaffine and the relaxation time scale appears to diverge. Results are also presented for
nonlinear behavior at large applied stress, and for the sudden avalanchelike rearrangements of bubbles from
one tightly packed configuration to another at small applied strain rates. The distribution of released energy is
a power law for small events, but exhibits an exponential cutoff independent of system size. This is in accord
with multiple light scattering experiments, but not with other simulations predicting self-organized criticality.
[S1063-651%97)14002-9

PACS numbgs): 82.70.Rr, 83.70.Hq, 05.48j

I. INTRODUCTION The purpose of this paper is to explore, via computer
simulation, the connection between the complex macro-
Aqueous foams consist of a random dispersion of gascopic rheological behavior of foams and the underlying mi-
bubbles in a much smaller volume of liqu[d,2]. If the  croscopic structure and dynamics of the tightly packed gas
solution contains enough stabilizing surfactants, or othebubbles. Special attention will be paid to the role of key
surface-active agents, then the structure formed by the cobtructural parameters such as gas volume fraction and the
lection of bubbles can be essentially constant over timéyubble size distribution. These issues are of intrinsic interest,
scales ranging from minutes to hours. One can then reasonet only because the range of behavior is rich and unusual,
ably ask about the mechanical, or rheological, properties obut also since foams are familiar from everyday life and are
the foam as a material. The response of aqueous foams tseful as materials in a broad range of applications. Study of
externally applied forces is strikifg—5]. Even though they foams may also shed light on related systems where tight
consist mainly of gas and relatively little liquid, foams can packing of discrete objects is crucial, such as concentrated
support small shear forces like an ordinary solid. The originemulsions and colloids, as well as granular media. Further-
of this elasticity is in the increase in gas-liquid surface areamore, theoretical study is especially timely since the advent
and the corresponding energy cost given by the surface temf multiple-light-scattering techniques is permitting new and
sion, as the tightly packed bubbles distort under applicatioras-yet unexplained experimental insights into bubble-scale
of shear. If the applied forces are sufficiently small, then thedynamics[6-11].
response is linear and the shear modulus is given by the Since foams are naturally disordered, and since the bubble
stress per unit strain whether the experiment is performeeearrangement dynamics are nonlinear and collective, com-
under controlled stress or controlled strain conditions. As theuter simulation is an important tool for theoretical study.
applied stress or the imposed strain is gradually increasednalytical calculation is possible only for periodic systems
the behavior becomes increasingly complex. In the case 46,12,13,37, or for linear rheological featurell4]. While
applied stress, for example, the response first changes frosuch work can provide important insights, it cannot capture
linear to nonlinear. Next, the response becomes irreversiblghe full range of behavior. The first simulations of foam rhe-
as topological changes are induced in which a few bubbles inlogy were by Weaire and co-workers for two-dimensional
a finite region suddenly change neighbors. As the appliefloams with zero liquid content, where the packing of bubbles
stress is increased further, more and more rearrangemerntan be described entirely by the continuous network of thin
occur but the resulting strain remains finite. Finally, whenstructureless soap films that separate adjacent bubbles
the applied stress exceeds a “yield” stress, the system flowgl5,16. The geometry and topology of this network are
indefinitely at nonzero strain rate by a never-ending series dfiighly constrained, as specifically accounted for in Weaire's
neighbor-switching rearrangements. If the strain rate is lowapproach. For instance, the vertices at which films meet are
the rearrangements are discrete avalanchelike events; butdfl three-fold coordinated; if a film shrinks to zero length,
the strain rate is high the deformation is more homogeneoulgaving an unstable fourfold vertex, then a neighbor-
and continuous, as in a simple viscous liquid. switching topological rearrangement is implemented. The
only degrees of freedom are the end points and curvature of
each film; these are adjusted to minimize total interfacial
*Electronic address: durian@physics.ucla.edu area for the given topology subject to the constraint that the
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area of each bubble be fixed and the curvature be constanalled the “vertex” model[28—3(, since the Plateau bor-
along each film. This is done in a “quasistatic” fashion sinceders in a two-dimensional dry foam are structureless points.
dissipation mechanisms are not included; consequently, the&@ince “vertices” are the fundamental structural unit in this
are no viscous stresses, and the network structure is alwagpproach, it is not applicable either for foams with nonzero
in static mechanical equilibriurf.7,18. liquid content or for foams in three dimensions.

For three-dimensional foams, this general program is only The models described above are all either at, or are essen-
now starting to be implemented, largely because descriptioHa!ly €xpansions about, the dry foam limit where gas
of the network of soap films is significantly more difficult. Pubbles are nearly polyhedra separated by thin curved soap
Geometrically, the soap films have two different radii of cur- films. All are based on different uncontrolled approximations

vature that are neither constant nor independent; only th@nd ha_ve d'ﬁEV?”t Ilm!ted ranges O.f appllc_ablllty. Th_|s
total curvature, and hence Laplace pressure across the int akes it nea_rly |mpos_5|ble to reconcile conlicting pred|c-
face, is constant. Topologically, the only stable junction of lons, as, for instance, in the case of the avalanchelike rear-

films is threefold coordinated, and these so-called Platea[fi"9eMents to be discussed later. Furthe.rmore, none alone is
borders are curves that are not necessarily confined to ple t'o'capture the full range of behavior seen in natu're.
plane; the only stable junction of Plateau borders is fourfol erceiving the need_ for_ a S|mpler,_ more alltencompas_smg
coordinated. Yet another difficulty is that foams in nature ramew_ork for _con3|der|ng hOV.V d_|s_order, _dlmen5|onal|ty,
usually contain enough liquid that the vertices, Plateau bor‘§lnd microscopic phenomena |n‘c‘1|V|duaI!,y influence foam
ders, and films all develop further structure that cannot béheology, l r_ecently mtrpdgceq a bupble model basgd on
ignored. It is proving possible to account for some of this® physical picture of pairwise |nteract|ons'between entire gas
complexity by using the surface evolver program develope(lfubbles[SS]. It is essentially an expansion about the wet

by Brakke[19]. Such efforts have concentrated on dry peri-' 02 limit, where the gas bubbles are neaiglimensional
odic system$20,21], though randomness and nonzero liquid spheres that are hence simple to describe. As do the previous
content are being pursuéd2]. As in Weaire's original ap- models, this approach also rests upon uncontrolled approxi-

proach, this is restricted to static phenomena since dissipam.at'onS; howgver, Its parameters can be varied muc;h more
tion effects cannot be included. widely. In particular, it has the unique advantage of simulta-

For two-dimensional foams, Weaire's group has mad eously incorporating interaction amtissipationeffects for

significant progress in accounting for the effects of nonzer oams of arbitrarydisordet liquid content anddimensional-

L : ; ; ty. Its most serious flaw is that it does not explicitly account
liquid content[23—27. This permits study of how the strik- ! 2
ing elastic character vanishes, or melts, as the liquid conteﬁ r bubble shapes and liquid degrees of freedom, and hence

is increased and the bubbles become able to translate, rathere> not E)ossesi a d% foam I]imnt\_/vhel;e Ithe osmogc;hpresgure
than distort, in response to imposed strain. Incorporation o Iverges 1o maintain the gas Iraction below one. erwise,

liquid is achieved by decorating the Plateau borders at whict te' bufbblte modfel futpces(sjﬂélly rep_rofduces;hel knovx_/n quali-
three films meet with a small amount of liquid and by using auve features of static and dynamic foam rheology, in many

Laplace’s law to insure that the pressure is the same througl’ﬂSta.nCeS qu_ant|tat|vel)[35,3d. Therefore, this .approach
out all borders and uniform within each bubble. Further approvldes an important complement to the previous models

proximations, besides quasistatic dynamics, (aehe soap and can serve as a basis for developing physical intuition

films are structureless and straight outside the Plateau bofl-.bOUt the part|cglar influence of various microscopic Ingre-
g|ents, for exploring new phenomena, and for reconciling the

inside each bubble, an@) liquid is not conserved but rather other simulations approaches with each other and with ex-

is created locally as needed in order to satisfy Laplace’s lanperiment. Herg, | will f|rst.recap|tulate more fully the con-
Perhaps because of such approximations, this approaa%ructlon and implementation of the bubble model and then

breaks down for foams wetter than about 89% gas conterf{réSent new r_e_sults for the influence_z of polydisp_ersity on _the
and precludes definitive quantitative study of the meltingmeltlng transition anql for the nonlinear behavior at finite
transition near 84% gas content. stress levels and strain rates.

In a separate effort, important advances have also been
made recently by K_a\_/vasaki_anql co-workers_ in acpounting for Il. BUBBLE MODEL
the effects of realistic dissipation mechanisms in dry two-
dimensional foamp28—3(. This permits simulation of shear In a very wet foam, the gas bubbles are all spherical and
at nonzero rates and of the transition from plastic to fluidthe only structural quantities are their rafif;} and the time-
behavior as the shear rate is increased. Of the many possiliependent position vectofs;} of their centers. The imme-
dissipation mechanism81-33, the dominant one for dry diate goal is to develop equations of motion for fig by
foams is shear flow of the infinitesimal amount of viscousconsidering all the pairwise interactions between neighbor-
liquid within the Plateau borders as a film is stretched oring gas bubbles. No explicit degrees of freedom will be in-
shrunk[34]. To incorporate this mechanism most readily, thecluded for bubble shapes or for flow within the continuous
films are approximated as straight line segments. Equatiorifquid phase. Physically, then, imagine what occurs if two
of motion are then generated for the Plateau borders whem@ctual gas bubbles are gradually brought into contact at in-
three films meet by balancing dissipation forces with surfacdinitesimal rate in an otherwise empty sea of liquid. Both
tension forces according to Newton’s second law for a masshubbles will remain spherical and experience no forces until
less object. These are then solved subject to the constraiessentially touching, since the ranges of the van der Waals
that each bubble has constant area, and with suitable rules ftorce (attractive, originating from the dielectric mismatch be-
topology change when a film shrinks to zero length. This issween gas and liqujdand of the electric double-layer force
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(repulsive, originating from the adsorbed surfactardee  forces. When two interacting bubbles move with sp&éed
typically less than 100 nm, which is much less than the typitelative to one another, the viscous liquid within the inter-
cal gas bubble size of more than 20m. If pushed into vening soap film remains of roughly fixed thickness and is
geometrical contact, such that the center-to-center distance sheared at rat®/|. The drag force per unit area then has
less than the sum of their radii, the two gas bubbles WillmagnitudeF})j/<R)2= nV/1, where 5 is the liquid viscosity.
distort in shape rather than coalesce. The region of contadthis shows that Eq(2) has the proper form if shear within
will then flatten out into a soap film with a thickness deter-the films is the dominant dissipation mechanism, and gives
mined by the combination of applied, van der Waals, andan estimate for the constant s 7(R)?%/I.
double-layer forces. This and the concomitant increase in To find the time evolution of the center position of bubble
total surface area give rise to a mutually repulsive force prot, the contributions of Eqg1) and (2) for the repulsive and
portional to the gas-liquid surface tensian, . This repul-  drag forces must simply be summed over all the neighboring
sive force is nearly harmonif25,36—39, that is, propor- bubblesj. Since inertial effects are negligible, this total force
tional to the size of the deformatiof=(R;+R;)—|F;—Fj|.  must add to zero according to Newton’s second law. Simpli-
In two dimensions this is an excellent approximation. Infying for the velocity of bubbld gives the following equa-
three dimensions, numerical calculation of the detailedion of motion:
bubble shapes shows that the interaction potential rises ap-
proximately as®, wherea ranges from 2.1 to 2.6, depending = 1 1 Fa
on the bubble coordination number, which is slightly faster 0=(0;)+ _9 > [ (Fi—Fj)+ —, 3
than harmonid 36,39. b b

For simulations of the bubble model presented ea86f
and to be carried further here, the repulsive force is taken tovshere only neighboring bubbles contribute to the average
be perfectly harmonic as follows. The effective spring forceve|ocity<ﬁj> and the sum of repulsive forces. If bubhlés

for each bubble scales as tht_a Laplace pressyiiR;, since 5, edge bubble, then an applied for‘r?;é may be imposed
large t_)ubbles aré more easily deforme_d. For two ”_]Utua”XNith normal and tangential components that, respectively,
repulsing bubblesf; —7j| <(R; + Ry), the individual Springs ¢ive the local pressure and shear stress, as would be trans-
are added in series such that the effective spring constant fijyteq from a wall. Bubble motion will be generated strictly
Fo/(Ri+R); physically, the force consta, plays the role  5.0014ing to Eq(3) throughout this paper, though useful
of surface tension but with units of force; for a real foam it, 5 jations can be made to details of the viscous and repulsive
would be on the order df ;=0q(R), where(R) is the aver-  [3g) ingredients. This simple, physically motivated model
age bubble radius.. The repulsive forég acting on the has several key advantages over previous approaches. First,
center of bubblé due to bubblg is then given by the spring since Eq.(3) is a vector equation, it can be implemented
constant multiplied by the compression and a unit vector: easily in any numbed of spatial dimensions keeping all
.. other ingredients constant. By contrast, prior simulations
Er— Fo [(R+R)—|f;i—F] (Fi—Tj) were all based on dimension-specific topological features of
T(R+R) o R [ 41 the bubble-packing structure. Second, the gas-liquid volume
fraction can be varied arbitrarily over the entire range
-F 1 _ 1 (F,—F). (1) 0<¢<1 simply through choice of size and number of
olri—-rfl (R+Rp| bubbles per unit volume. By contrast, prior simulations were
) . ] o all based on approximate decoration of the topological struc-
This force is taken to be strictly repulsive; if the two bubblestyre, and have been restricted to relatively high gas fractions,
do not overlap, thelﬁ{j is set to zero. well above the melting point. And third, stress relaxation can
The second key ingredient in the bubble model is dissipabe studied and the strain rate can be varied. By contrast, prior
tion. When a foam is strained at nonzero rate, energy is dissimulations were all either quasistatic, or else intrinsically
sipated due to shear flow of the viscous liquid within thelimited to two-dimensional foams with gas fraction of iden-
soap films and Plateau borders, by flow within the adsorbetically one. The bubble model of foam rheology represented
surfactants films, and by a variety of other such mechanismby Eg. (3) is the first in which the effects of randomness,
[33]. The simplest assumption, given a description of foandimensionality, liquid content, and microscopic interaction
structure entirely by bubble positions and radii, is that thisand dissipation effects can all be accounted for and system-
produces a drag force on bubllécom neighboring bubbl¢  atically explored.

in proportion to their velocity difference: One important consequence immediately apparent from
Eq. (3) is that bubble motion is highly overdamped. Further-
ﬁ;)j =—Db(3;—v)). (20  more, for a given set of bubbles, the only parameter affecting

this dynamics is a microscopic time scatg=b(R)/F, set

The proportionality constarit is assumed to be the same for by the average bubble size and the competition between
all pairs of bubbles. To see that this is reasonable, considenechanisms for storing and dissipating energy. The indi-
an actual foam where the bubbles are packed together susfdual values ofb and F, are not relevant. Physicallyr

that their shapes are all of comparable distortion away fromiepresents the exponential relaxation time constant for mo-
spherical. The intervening soap films are similarly all oftion of a typical bubble toward equilibrium while all other
comparable area, of ordéR)? as set by the typical bubble bubbles are held fixed, and thus gives the shortest time scale
size, and of comparable thickndsas set by the liquid con- for the duration of a topological rearrangement event. Of
tent and the competition of surface tension and interactiomourse, as will be discussed in detail later, collective effects
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involving the simultaneous motion of many bubbles canthereby shear the intervening bubbles. The second equilibra-
cause complete relaxation to last significantly longer; the ultion process is to relax th&?—2N bulk bubbles, initially
timate relaxation time may even depend on system sizeplaced on a triangular lattice, with respect to both each other
Even though Eqs(1) and (2) merely approximate the true and also the top and bottom walls. It is crucial that this be
effects of surface tension and viscosity, respectively, an@one carefully in order to observe linear rheological behav-
even though other storage and dissipation mechanisms mayr where the shear modulus, for example, is independent of
be important, Eq(3) should reasonably be expected to cap-the sign and magnitude of the strain. At successive time
ture the essential behavior since there will always be a chakieps, the position of each bulk bubble is adjusted according
acteristic microscopic tlme.scale and since the dynamics will, Eq. (3) from the repulsive spring forces it experiences
always be overdamped. It is thus to be hoped that the genergh,, 5| its neighbors, both in the bulk and within the top or
approach of the bubble model has applicability beyond th%ottom walls. As in the first equilibration process, the ap-

assumptions made in its derivation. . . .
plied force and average neighbor velocity terms are set to
zero. Also at each time step, the top and bottom edge bubbles
IIl. SIMULATION DETAILS are slid as a rig?d unit gccording to the parallel component of
_ ) ) _ ~ the total repulsive spring forces exerted from all the neigh-
Itis straightforward to integrate numerically the equationsporing bulk bubbles. This is repeated until the total force on
of motion in Eq.(3) to find the response of a given system of gach pulk bubble, and the total lateral force on the top and on
bubbles to various applied forces. Before results are prege pottom walls. are all zero.
sented in the next several sections, | first outline common  gi3ndard techniques are employed in order to make both

technical details for how systems are actually chosen, how,e o qjilibration and the subsequent rheology simulations

;g:(rfne:dare applied, and how the numerical integration is PElatficient and accurate. First, instead of comparing each

X . . . bubble with all others to determine the existence of a spring

As in the previous simulations85], the results presented force, only fairly close neighbors are examined by means of
here are all for two-dimension® XN systems of bubbles i k d 3|/ { 436 Thi gd th b fy ; f
confined to a square of edge length The topN and a linked list [40]. This reduces the number of pairs o

bottomN edge bubbles are held at fixed height and relativé)Ubbles to be com'pared at each t'm? step from ohfeto
positions, as though stuck to movable plates, while periodi@rder N. Second, instead of employing a forwafBuler
boundary conditions are imposed to the left and right. Thdinite differencing scheme to generate the change in bubble
bubble radii are taken from a triangular distribution thatPositions in a time intervalt, rj(t+At)=ri(t) +v;(t)At,
peaks afR) and vanishes at (w)(R). To investigate the Whereu;(t) is given explicitly by the right-hand side of Eq.
effects of polydispersity, the width of the distribution is set  (3), @ semi-implicit scheme is used in which steps are gen-
either tow=0.75, for a polydisperse size distribution similar erated from information that is more symmetrical across the
to that which naturally arises from coarsening by gas diffu-time interval (Ref. [41], Chap. 13. In particular, new posi-
sion, orw=0.10, for a more monodisperse foam as may bdions are taken as F(t+At)=r(t)+3[;(t)
specially constructed. With such a distribution, the averaget v;(t+At)]JAt, wherev;(t+At) is estimated in terms of
bubble area igA)=m(R)?[1+w?/6] and the gas volume positions and velocities at timefrom the matrix of partial
fraction is given by the total bubble area, ignoring overlapsderivatives of the right-hand side of E(B) with respect to
as ¢=N%(A)/L?=7wN?(R/L)?[1+W?/6]. The value of R)  positions. This permits the time step to be made as large as
is thereby chosen in units of the system edge length accord:t=0.274 without noticeably affecting the results. By con-
ing to the desired gas fraction. Bubble radii are then drawrirast, the Euler scheme is unstable and requires Atabe
randomly from this distribution, and the very last one is cho-infinitesimal in terms ofr.
sen such that the gas fraction is identically as specified. If One final point is that for all the simulation results pre-
this last, required, radius lies outside the triangular distribusented here and in RdB5], the average velocity term in the
tion, or if the width of the realized set of bubbles is off by right-hand side of Eq(3) is taken agv;)= yy;X, wherey is
more than 0.1%, then another set is drawn. This procedure the imposed shear strain rage is the coordinate of bubble
employed separately for bubbles along both top and bottorandX is the unit vector in the imposed flow direction. This is
edges, as well as in the bulk. done mainly for computational simplicity, since then the
Before rheology simulations can begin, the chosen systerright-hand side of Eq(3) gives the velocity of each bubbie
of bubbles must first be equilibrated. This is done in twoexclusively in terms of the bubble positions, but has other
separate tasks. The first is to construct rigid walls fromNhe benefits as well. Takings;) as a literal average would re-
top andN bottom edge bubbles. These bubbles are initiallyquire that the equations of motion for all bubbles be simul-
spread evenly along straight lines, to which they will be for-taneously solved for the bubble velocities prior to integra-
ever confined. Their positions along the lines are then repeation; this entails the inversion of a large sparse matrix at each
edly updated according to the equation of motion, B8], time step, and also significantly complicates the use of im-
until the total force on each bubble from the sum of its twoplicit finite differencing. However, note thgw;)= yy;X is
edge neighbors is zero. Both the applied force and the averctually a reasonable approximation if the typical bubble co-
age neighbor velocity terms in EQ3) are set to zero; the ordination number is very large. Furthermore, it is the correct
latter is required to break translational symmetry and damplescription of the viscous interaction of an isolated bubble in
out the motion. After this is accomplished, the relative posi-a viscous liquid undergoing shear, and is therefore superior
tions of the edge bubbles are held fixed in order to form rigidto a literal average in the limit of small gas area fraction.
walls that may be slid with respect to one another and Whatever its pros and cons, the choice adopted here for
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(vj) cannot affect equilibrium configurations or static elastic 1

properties. It can, however, affect other phenomena to be 0.1

studied here such as bubble dynamics under steady shear and g 102t
a8}

o, width

stress relaxation following step strain. Work is now in 103 1.00, 0.75 T ]
progresg42] that will examine empirically the sensitivity to <] 10 — Lo o010 N
. . . . . . —----0.84, 0.75
details of the interactions assumed in E8). Until this is 1050 084 010 o
completed, some insight can be gained by treatment of a 106 . ’. . ] . \ Bt

one-dimensional, periodic version of the bubble model. Con-

sider, then, a chain of massless beads connected by springs, g-z(s) I T ' 1 ' R
. - ~ B

each with force constark. The equations of motion for the N ]
bead positionsx,,, can be written as >. 020 ¢ N E
= 0.15 3

: : : : o)
0=K[Xn+1+Xn-1=2Xa]+ B1[Xn1 1+ Xn—1—2Xp] = B2Xy 0.10 3
(4) 0.05 7
O | | L | \“ | K

where two terms involving time derivatives represent two
distinct viscous interactions. In the context of foams, fhe
term represents dissipation due to relative motion of adjacent
bubbles as caused, for example, by shear of the intervening FIG. 1. Energy and stress relaxation as a function of time fol-

liquid. This corresponds to a literal computation (@) in lowing an imposed step strain gf=10"5 for four 20x20 systems

Eq. (3), which would not vanish during relaxation. T  of pubbles. The different line codes indicate gas fractioand the
term represents dissipation due to absolute motion of bubblegjative width of the bubble size distribution as labeled.

with respect to the continuous fluid phase, as happens, for

example, at very low gas fractions or during relaxation from . . L
a state with more fluid on one side of the sample than thdith Ed. (3) for brief application of shear at a very large

other. This corresponds to the choi(:éj):'yyi& adopted shear rate'y, Wher_e the viscous forces completely dominate
here for Eq.(3), which vanishes during relaxation. For the the repulsive spring forces. Next, the bulk bubbles are al-
periodic one-dimensional model, the relaxation spectrum calpwed to move according to Eq3), with (v;)=yyx=0,

be found easily keeping both terms. Modes of wave veetor Until mechanical equilibrium is achieved, all the while keep-
relax exponentially as exp w7), where ing the edge bubbles fixed. This relaxation process is moni-

tored via the total energy stored in the springs and the total
w(k)=k(1—cosca)/[B1(1—cosca)+3B8,]  (5)  shear stress on the walls. The total energy is defined as the
sum over all pairs of interacting bubbles as one-half of the
gpring constant times the square of the compression; the
shear stress is defined as the average lateral force per edge
Bubble. Typical results for a step strainpf10 > are shown

Il
102 107 10° 10" 10
T

anda is the equilibrium bead separation. For the special cas
B-=0, all modes relax at the same ratix)=k/B3;. In gen-
eral, however, the fastest modes are at short wavelength

a=m/2, and relax with rates(x)=k/(B;+38,), whereas the =~ - . ) . :
glowgst modes a)r(eW;t long (\I/(v)avelfaf\lgtliigilw and relax N Fig. 1 for four configurations of bubbles with gas fractions

with rate w(x)=k(xa)?/ 8, independent of3;. The longest ©f #=1 (dry) and $=0.84 (wet) and with triangular size
possible relaxation time thus varies with the square of thdlistributions of widthsw=0.75 (polydispersg andw=0.10
system size. Such length-scale-dependent dynamics may B@onodisperse The top plot in Fig. 1 displays the difference
expected for a real foam, where the collective relaxation ofn energy from the final value normalized so that the decay
bubble shapes is accompanied by the flow of liquid throughstarts at one. The data all exhibit nonexponential relaxations
out the entire interconnected porous geometry between tHéat span many decades in time ranging from about 1% at
tightly packed bubbles. Th@, term, corresponding to the 0.01ry to full decay at(200-50007,, consistent with the
choice (v;)=yy;X adopted here for simulations using Eq. presence of many length-scale-dependent relaxation times

(3), is needed to capture this behavior. predicted by the periodic one-dimensional version of the
model. The bottom plot in Fig. 1 displays the stress relax-
IV. STEP-STRAIN RESULTS ation divided by the magnitude of the imposed step strain.

These data all exhibit nonexponential relaxations, as for the

In t.his se_ction, results are given for the linear response Oénergy, but that are not necessarily monotonic due to the
two-dimensional square samplesNX N bubbles subjected choice(s ;)= yy;x=0. The final value for the decay is non-

tore?/izhespviérﬁ(l[nés?gﬁg\t/gé m:lsbtg tgisg:](:f:‘iec:(ije[r?tlzzg rSIQ(E[Eat zero, since the system is strained, and gives the shear modu-
b y larg lus asG=lim__., o(7)/y. Note thatG is greater for the dry

the variance between different realizations of bubbles doelsoams and that the total relaxation time is greater for the wet

not obscure trends. foams, independent of polydispersity. For all the examples

given here, the response is linear in tRats independent of

strain, and no new springs are formed or existing springs
After thorough equilibration, the rheology simulations be- broken, for step strains up to roughhj<10~>.

gin with the instantaneous imposition of an affine step strain, The equilibrium bubble configurations for the four par-

of size v, in which thex coordinate of each bubble center is ticular foams just discussed are shown two ways in the next

shifted tox+ yy. Note that such a deformation is consistentfigures. Figure 2 displays both the bubbles, as dotted circles,

A. Stress relaxation
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FIG. 2. Equilibrium bubble configurations for the four systems  FIG. 3. The same configuration of bubbles shown in Fig. 2, now
examined in Fig. 1. The top two and bottom two have gas fractiongvith lines through the centers that depict the direction and magni-
of $=1.0 and 0.84, respectively; the left two and right two havetude of motion during relaxation after an imposed step strain as
distribution widths ofw=0.75 and 0.10, respectively. Note that the described in the text. This motion becomes increasingly nonaffine
top and bottom edge bubbles are fixed to a horizontal plate, whiléor greater liquid content and polydispersity.
periodic boundary conditions are imposed to the left and right. A
solid line is drawn between the centers of adjacent bubbles if thepge segment size is smaller than the average bubble diam-
overlap and hence, physically, repel one another by a spring forc&ter. According to this scheme, regions within the foam that
These repulsive spring networks percolate across the system amuhdergo affine shear deformationx; (y;)— (X;+ yYi.Vi),
give the foam shear rigidity. such as in the edge bubbles of Fig. 3 or in a periodic network

free of defects, therefore all have horizontal line segments of
and the spring network, as solid lines between the centers @qual size. The response of bulk bubbles thus displayed in
pairs of repulsing bubbles. A spring is thus drawn only whenrig. 3 is evidently neither homogeneous nor affine. Never-
the circles representing two bubbles happen to overlapgheless, large correlated regions in which the motion is
where actual bubbles would distort in shape away fromnearly affine exist, inside of which the line segments are all
spherical and hence repel each other. The overlaps are large comparable size and direction. The trend apparent in Fig.
enough to be visible in Fig. 2 only for the dry foams. Note 3 is that these uniformly elastic regions are more prevalent
that by contrast with other studies of random spring netfor drier more monodisperse foams. The motion is least af-
works, the springs shown in Fig. 2 are all compressed; nonfine for the wet polydisperse foam, where the size and direc-
is stretched. Inspection shows that the networks are sparsgbn of the line segments are the least spatially correlated and
for the wetter foams, as expected, since bubbles are then @an, in fact, vary wildly between neighboring bubbles.
average further apart and interact with fewer nearest neigh- The line segments displayed in Fig. 3, depicting how
bors. In fact, all bubbles are involved in the network for thestress is relaxed following step strain, allow visualization of
dry foams, but occasional isolated bubbles occur in the wethe motion that would occur in linear response to oscillatory
foams. In both cases, the networks of compressed springs #irain. If sinusoidal strain is imposed at a frequencthat is
Fig. 2 all percolate not just from top to bottom, as required tosmall in comparison with the reciprocal of the longest relax-
support static shear, but across the entire sample. Anothettion time, ,, as seen Fig. 1, then viscous forces can be
feature apparent in Fig. 2 is that the networks are more oreglected and the spring forces on each bubble will sum to
dered for monodisperse foams, since in two dimensions iderrero throughout the entire strain cycle. The motion is hence
tical spheres tend to crystallize when packed. The wet monqquasistatic, and each bubble will move sinusoidally with am-
disperse foam is not as highly ordered as the dry since itglitude and direction prescribed by the line segments in Fig.
bubbles are only barely packed together. 3. As the oscillation frequency increases, however, the vis-

The motion of bubbles that occurs during relaxation fol-cous forces will become more important, and the bubble mo-
lowing sudden step strain is shown next in Fig. 3, for thetion will eventually become affine in the limib>r, *.
same four foams. Both the magnitude and direction of the The line segments in Fig. 3 also support a recent model
motion are indicated by a small line segment through théor the anomalous viscous dissipation observed in three-
center of each bubble given by’ ff)/yy; times a con- dimensional, random, monodisperse emulsifh§. There,
stant; f; is the new position of bubblé after stress relax- an extraiw contribution to the complex dynamic shear
ation, 7 is its equilibrium position before the step strain was modulus,G* (w), was observed and attributed to a distribu-
imposed, and the scaling constant is chosen so that the aveisn of “weak” regions in which bubbles can shift their rela-
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tive positions rather than distort elastically. These shifts are

proposed to occur where several bubbles are packed together 0:20 ‘ ' ‘ '
in such a way that they can be sheared in certain “easy” G 0.15 |-
directions with a smaller elastic penalty than in others. The 0.10 L
Jiw contribution then arises, in both two and three dimen-
sions, from the fact that mechanical energy is dissipated, 0.05 -
rather than stored, in regions where bubbles shift and from 0.00
the assumption that the sample is isotropic on average, even 0.08 . . . —
though it is locally anisotropic due to the presence of easy 0.06 - o ]
directions. The simulation data in Fig. 3 are consistent with P 2
this picture. Areas in which the deformation is roughly affine 0.04 };f* ]
can be identified as the “strong” regions, where energy is 0.02 - ﬁ;t{;féf
predominantly stored; and areas where the deformation is ;{ﬁ*‘
especially inhomogeneous can be identified as the “weak” o.og ' E— ’

T

regions, where energy is predominantly dissipated. Further-
more, the relaxation results in Fig. 1 may also be consistent s
with this model and the emulsion experiments. Since the Z

complex dynamic shear modulus and the stress relaxation

modulus are related by Fourier transform/ia» contribution ‘

to G*(w) corresponds to ]J; behavior in the stress relax- 3 | ! ! !

ation. This is consistent with the gradual relaxation observed " ] . : .

in Fig. 1, and the fact that the exponential cutoff moves out ; g ; E
for larger system§35]. Further simulations are required both 10°F 2;?&*0:# -
to test decisively the model of Liet al. and to distinguish Tr/Td i o R e
the relative importance of the random packing geometry 10 £ s@z?gés* ° A oi@”? E
from the choice of viscous dynamics in E(3) on the : :;;%é;g%"eoﬁ% g

gradual stress relaxation. 3 t ) L ! E
075 0.80 085 090 095 1.00

B. Melting transition

Consider now the trends in linear rheological properties as ;5 4 The melting of polydispers@idth w=0.75 and mono-
a function of liquid content. In particular, consider the ”aturedisperse(w=o.10) foams vs gas fractiorb. The static shear modu-

of the melting transition as the liquid content is increasedys G, pressureP, and coordination numbeiaverage number of
and the bubbles become free to move around one anothgpying contacts per bubbl&, all vanish, while the stress relaxation

WIthOUt any elaStiC distortion. Th|S tl’ansition iS tl’aCked fourtime 7 divergeS, at aboubzo_84_ Each point represents an entire|y
ways in Fig. 4 for sequences of polydispefagédth w=0.75 different 20< 20 realization of bubbles.

and monodisperséw=0.10 foams subjected to instanta-

neous step strains of magnitugte: 10~°. The four quantities therefore not indicative of very dry foams, but rather of more
displayed as a function of gas fractignare the shear modu- typical ones with greater, nonzero liquid content.

lus G, the average normal force per edge bubble or pressure Outside the dry foam regime, consider the results in Fig. 4
P, the coordination number, or mean number of springfor the static quantities, P, andZ as a function of¢.
forces per bulk bubbl&, and the relaxation time, , defined These all decrease as the liquid content is increased, and
here as the time constant for the final exponential relaxatiosimultaneously vanish below a critical gas fraction that de-
of the total spring energy following step strain, as seen, fopends slightly on polydispersity,¢.=0.835-0.005 for
example, in Fig. 1. Before examining the meaning of thesev=0.75, and¢.=0.845-0.005 forw=0.10. The simulation
data, first note that an entirely new realization of bubbles isapproach based on approximate decoration of Plateau bor-
constructed for each gas fraction. The scatter in the fouders gives roughly the same critical gas fractiggs=0.84 in
quantities shown in Fig. 4 is therefore purely statistical, andRefs.[23, 25, 27 and most recentlyb.=0.82 in Ref.[26],

is much greater than the accuracy with which any of thesdy extrapolation from data fop> ¢.+0.05. Here, since data
guantities is determined for a given realization; indeed, there obtained on both sides of the transition, extrapolation is
results in Ref[35] showed how the scatter from realization unnecessary and the uncertaintyggpis set only by statisti-

to realization decreases as a function of system size. Thisal scatter from different bubble configurations. Dense ran-
approach is more time consuming, but avoids introducinglom packings of hard disks with a wide variety of size dis-
systematic artifacts in the quantitativedependence of rheo- tributions [44] also give the same critical fraction,
logical parameters that would result if, instead, the gas frace¢,=0.84+0.01; furthermore, they give a mean coordination
tion were adjusted more simply by scaling the radii of all thenumber ofZ.=3.75+0.10 that is identical to the simulation
bubbles in a single configuration. Also, note that there is naesults displayed in Fig. 4. Note that this coordination num-
dry foam limit as the gas fraction approaches 1. There, in #er is defined by bubble-bubble contacts, not by a Voronoi
real foam, the pressure should diverg,26,39 and the construction of nearest neighbors.

shear modulus should reach its limiting value with zero slope Empirically, the increase o& above the melting transi-
[24,25,27. The behavior of the bubble model near=1 is  tion can be described as a power la@x (¢— ¢.)?, where
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7. While the networks shown in Fig. 2 certainly become sparser
r 1 near¢., the system sizes are far too small for a serious test
i of fractal character. In any case, the simulation results pre-
0.5 sented here show that the coordination number plays a cen-
G tral role in determining the static elastic properties of foams,
0.1 - independent of polydispersity.
I Now that statics have been addressed, consider the results
0053_ in Fig. 4 for the stress relaxation time as a function of
e volume fraction. While the shear modulus and pressure both
vanish at¢, , the relaxation time reaches a maximum, rising
0 3‘ : sharply as the transition is approached from either above or

below. This behavior is seen for both the polydisperse and
monodisperse systems. Presumabty,would actually di-
verge at¢, for arbitrarily large samples. This suggests the
resence of a diverging length scale, and is thus further con-
sistent with the rigidity percolation picture where the corre-
lation length, beyond which the spring network is homoge-
neous and below which it is fractal, grows as the transition is
the exponent is less than 1 but depends noticeably on polygpproached. This also shows how the transition may be dif-
dispersity, #=0.5£0.1 for w=0.75, and #=0.7£0.2 for fijcult to observe experimentally, both because the time scales
w=0.10. These power-law fits are shown as the solid anghecome long and because the nature of the rheology is not
dashed curves, respectively, and are based on data spannipgrkedly different on the two sides of the transition. Above,
one decade irff¢— ;). This contrasts with experiments on it s a viscoplastic solid with infinitesimal shear modulus;
three-dimensional, random, monodisperse emulsi@&,  pelow, it is a viscoelastic liquid with zero shear modulus; on

whereG rises almost linearly iri¢— ;). Based on a varia- hoth sides, the transient storage of elastic energy is very long
tion of the repulsive force law in Eq3) according to nu- Jived and dominates the behavior.

merical calculation of bubble shapes, such behavior was at-
tributed in R_ef. [36] to disorder plus anharr_nonicity. V. CONSTANT STRESS RESULTS
However, the increase df found here for decreasing poly-
dispersity suggests that details of the narrow size distribution While Sec. IV dealt with linear response as a function of
in the emulsion experiments may also play a role. liquid content, this section and the next deal, respectively,
The guantitative increase of both and P above¢, can  with nonlinear behavior at large strain amplitudes and during
be understood in terms of thi2dependence of the coordina- flow. An alternative approach to static rheology is to con-
tion number. Physically, the pressure must be proportional tsider the strain produced by a given applied stress, as op-
both the average number of spring contacts per bubble angbsed earlier to finding the stress required to support a given
their average compression, and must thus scale dmposed step strain. After thorough equilibration, the simu-
PoZ(¢p— ¢¢). Indeed, this form provides an excellent de- lations now begin with the application of a very small shear
scription, independent of polydispersity, as shown by thestress to the bubbles within the top and bottom edge plates.
solid and dashed curves through the pressure data in Fig. #he bulk bubbles are then allowed to move according to Eq.
This gives a linear increase with— ¢, in agreement with  (3) with (17j>=0, and the edge plates are allowed to move
exact calculation for periodic systerf#3,39. The behavior independently as a rigid unit according to the sum of applied
of the shear modulus cannot be explained by a similarlyand spring forces from neighboring bulk bubbles. Eventu-
simple argument. The crucial observation, shown in Fig. 5, isally, the resulting strain becomes large enough that the total
that to within statistical uncertaintys is proportional to applied force is balanced by the shear elasticity of the sys-
Z—Z. over the entire range. Such behavior is observed ifem; when all motion stops, the final strain is recorded. The
two-dimensional percolation phenomejb]|, and supports applied stress is then increased slightly and the process is
the contention first made in Ref23] that the melting of repeated. Simulation results for two such runs are displayed
foams is an example of rigidity percolation. In the usualin Fig. 6, both for the same ¥12 system of bubbles with
percolation problem, springs in a random network are progas fractiong=1, but with shear forces applied in opposite
gressively cut until rigidity is lost. Here, by contrast, springsdirections. Raw data are displayed in the inset, and the ap-
are effectively lost with increasing liquid content as pairs ofplied stress divided by resulting straiwy, are displayed in
bubbles are given room to push each other apart. The diffethe main plot. Figure 6, first of all, demonstrates théy is
ence is that the topology of the usual random spring networkonstant at sufficiently small applied stress, independent of
is fixed and the springs may be stretched as well as consign. This is the regime of linear response characterized by a
pressed, whereas here, the springs represent bubble-bublsteear modulusi =lim ,_,q07y.
repulsion, and so cannot be stretched. Furthermore, the net- As the applied stress is steadily incremented, the response
work of compressed springs is not fixed but is rather detereventually becomes nonlinear, and then irreversible but still
mined by minimizing the total spring energies according tostatic; for even greater applied stress, continuous flow can
the equation of motion of Eq3). If the percolation picture occur. Figure 6 shows that the linear regime lasts up to about
holds, then the repulsive spring networks should become inly~10"3, beyond whicha/y rises above the value @. In
creasingly fractal on approach to the melting transition.spite of this nonlinearity, mechanical equilibrium at all

FIG. 5. Shear modulus vs coordination number. The data of Fig
4, thus replotted, show a linear relationship supporting the rigidit
percolation picture of melting.
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cally very close to the yield stress. This can be seen clearly

0.16 ey . . : : . .
C Va . in the following simple physical picture of the dynamics.
0.14 1 modulus. G I g Suppose in static mechanical equilibrium that the stress in-
G/Y 0.12F 2 “~U 7 creases linearly with strain all the way up to the yield point,
0.1 ; 0.015 —— "-.“:,a 3 drops immediately to zero, and then repeats periodically. The
0.08F o] l ___________ I ‘..: ] shear modulus is then given by the yield stress and yield
O T S - {J ] W] strain asG= o,/ y, . The equation of motion for the strain as
0.06 sl - ] Vi a function of time in response to a given applied stiesis
0.04 s then
0.02 a S R R— 2 ]
. E.m\ FERRETIT AR ETITT BT | \’Ym.ml PREETTTT ERNUEETIT u:.‘é O: O-A_ Gy_ 'LLd‘y/dt’ (6)
107 10° 10° 10™ 107° 107 107 1 . o . :
I,Y| wherep is the so-called plastic viscosity of the system, since

the applied, elastic, and viscous forces must sum to zero.
FIG. 6. The strainy at which mechanical equilibrium is This equation can be transformed into the empirical Bing-

achieved with the imposed stressfor a 12<12 system of bubbles "am plastic relation found for actual foar¥5] simply by
with gas fraction¢=1 and distribution widthw=0.75. Data points e€placing the elastiGy term by the yield stress, as though in
were obtained by successively increasinfjom zero, in both posi- @ random foam the elastic stress is always at the yield point,
tive and negative directions, and recording the strain once statiand by assuming that the strain rate is constant in time. For a
equilibrium was reestablished. Irreversible slips, where a large moperiodic foam, Eq(6) can be integrated over one strain cycle
tion was caused by a small stress increment, are denoted by dashid obtain the period, which in turn gives the average strain
lines. rate as

strains throughout the range<0y|<0.03 can be achieved by _ ay
suitable choice of applied stress, and the motion is fully re- (y)=
versible; for example, if the applied stress is set to zero then

the system will relax back to a strain of zero. Beyond thlsln the limit of very large applied stress,> o, , the elastic

somt, r_]ovxlllevler, a small m_grlem_ent In stress can Xro?]uce &y term in Eq.(6) is negligible and Eq(7) predicts a vis-
ramatically large, irreversible, increase in strain. As the apey ;s response at nearly uniform ratey) — ol p. As the

plied stress passes a threshold, the strain in some region gfasq is lowered, the average strain rate decreases and an
the Lozm becomes so I?‘rge_" thﬁtapﬁ'r' or pairs, zf bubblels Afficreasingly greater fraction of the strain cycle is spent
pushed past one another; when this occurs, their repuisiv eeping up to the yield strain. To produce arbitrarily small
interactions no longer counteract the applied shear but in facsttrain rates, the applied stress must be made infinitesimally

a|d.|t. Flc.’W thus ensues, and Fhe spring netV\_/ork rearrange&reater than the yield stress. In constant-stress computer
until a stiffer bubble configuration arises that is able to SUPsimulations this is difficult because the yield stress is not

port the higher level of applied stress. The strain thus adgy, o in advance and is difficult to locate accurately, as
vances considerably at nearly the same stress, as shown QYo i Fig. 6. A practical solution might be to simulate a

the q_as_hed lines in Fig. 6 between points of static meChar_‘iC%Iystem with large enough aspect ratio that the strain rate
equilibrium. Note that once flow has occurred, the MOotioNyacomes uniform. never deviating far from the average

can no longer be reversed: cessation of applied shear will n lue.

result in a return to zero strain. New configurations of me-

chanical stability, in turn, eventually give way as the applied

stress is further increased. Finally, the applied stress becomes VI. STEADY STRAIN-RATE RESULTS

too great to support any bubble arrangement, and the system Rather than simulate flow behavior under conditions of
flows |ndef|n|tel_y. For the example foam studied in Fig. 6, constant applied stress, it is simpler to impose constant
the largest static strains observed are between 1 and 1.5 §rain-rate conditions and then characterize the resulting
magnitude; the simulation was stopped when the flow extime-dependent stresses. The behavior under steady strain-
ceeded a strain of 10 under the assumption that static Meate flow is the subject of the remainder of this paper. After
chanical equilibrium would never again be achieved. Thenorough equilibration, the simulations thus proceed by a se-
corresponding yield stress required to produce indefinite flowjes of small time steps in which the top and bottom edge
is slightly less than 0.013, comparable to the shear modulugya|s are translated according to the desired strain rate while

It is worth emphasizing that the onset of irreversibility, the bulk bubbles are simultaneously allowed to move accord-
where topological rearrangements first occur, is nearly WGng to Eq.(3), with (T))=yyiX.

orders of magnitude below this point.

The behavior during indefinite flow can be studied under
conditions of constant applied stress, but not easily since the
strain rate is fairly constant only when the stress is much Results for a &6 system were shown previously in Ref.
greater than the yield stress. As the yield stress is approach¢8db]. Here, analogous results for a single<i2 system with
from above, the motion becomes increasingly nonuniformgas fractiong=1 are shown in Fig. 7, always for the same
slowing down as stiff bubble arrangements arise and speedhitial equilibrated bubble configuration. The inset depicts
ing up as they are broken. Very long runs are then needed t@w data for the shear stress on the walls as a function of
ascertain the average strain rate, which will vary dramatistrain for several different strain rates, labeled according to

_,u, In[1—oy/oa] ™

A. Bingham-plastic behavior
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FIG. 7. Average and maximum shear stress vs imposed strain N K IATAA A AKX R
rate, yrq, for a 12<12 system of bubbles with gas fractiet=1 = .

and distribution widthw=0.75. Error bars denote rms fluctuations £, 8. Bubble configurations befofelotted circles and after
about the average, and the solid curve is a fit of the maximum qgqjig circleg a sudden topological rearrangement that occurred at
Bingham-plastic behavior. Raw stress vs strain data are shown igy, jnfinjtesimal strain rate of74=10"5; bubble-center trajectories
the inset for several dimensionless strain rates as labeled. are also shown. This particular event released more elastic energy

from the spring network than any other observed in thex12

Deborah numbery7y, where 74=0b(R)/F; is the micro-  gimylation run; nevertheless, the topology change involved only a
scopic relaxation time constant defined earlier. In all caseSgy pubbles.

the stress initially increases and then undergoes a series of
fluctuations about some well-defined average. As the straithey are otherwise negligible at low strain rates, and that the
rate is increased, the inset shows how the average level édstest time scale in the rearrangement motion is setyby
shear stress also increases while the frequency and relatiiédhe characteristic time scale that separates the low strain rate
size of the stress fluctuations decrease. Such behavior is sutsehavior from the viscous high strain rate behavior is ulti-
marized in the main plot by the average and maximum stressnately also set by this microscopic time,. The former
tabulated over the range<Oy<10, versus Deborah number; regime is achieved only when rearrangements are discrete
error bars denote the rms size of fluctuations about the aveand come to completion before noticeable macroscopic shear
age, not statistical uncertainty. As the strain rate increasesccurs, and the latter regime is achieved only when rear-
the relative size of the fluctuations is clearly seen to shrinkangements are induced at such a high rate that they merge
while the maximum eventually becomes indistinguishabletogether into continuous uniform motion.
from the average. In the opposite direction, as the strain rate The simulation results shown in Fig. 7 can be compared
decreases, the stress versus strain and strain rate approactjuantitatively with expectations for real foams. Experience
limiting behavior, as seen both in the inset and in the level{3-5] shows that the typical stress versus strain rate relation-
ing off of the maximum and average in the main plot. ship is roughly that of a Bingham plastio;=cy+ upy. A
Physically, the simulated stress versus strain and straireasonably good fit of this form to the maximum stress data
rate behavior depicted in Fig. 7 can be understood as folis shown in Fig. 7, where the yield stressdg=0.01 and
lows. First, at high strain rates, the viscous dissipation ternplastic viscosity isu,=1074. As found previously35], the
(v;)=7vyix in Eq. (3) is much larger than the repulsive plastic viscosity is set by the stress relaxation time and con-
spring interactions. Accordingly, the instantaneous velocityfirms the above expectation regarding the crossover time
of each bulk bubble approaches the average value of all itscale. Note that the rise of the maximum stress data away
neighborsy;—(vj) = yYiX, and the deformation of the sys- from the low strain rate limit is slightly more gradual than
tem becomes affine. In this limit, where the source of elasthe Bingham plastic form, and is significantly more gradual
ticity is negligible, the response of the foam is exactly like for the average stress data. The prediction of (Egis even
that for a purely viscous liquid undergoing shear. In the opworse in this respect. This is not a crucial issue, however,
posite limit, of very small strain rates, the viscous interac-since real foams are nonequilibrium systems that are able to
tions in Eq.(3) are essentially negligible and the bubble con-relax elastic stresses via time evolution, causing the stress to
figuration is therefore almost always in mechanicaldrop to zero for very small strain rates. The important point
equilibrium with the applied shear forces. Thus, the stres$s that the model presented here for bubble dynamics in a
versus strain rate approaches a limiting behavior that is inflowing foam successfully reproduces the apparent Bingham-
dependent of strain rate. The source of fluctuations is, oplastic behavior seen for real foams at strain rates large in
course, the irreversible rearrangement of bubbles from oneomparison with evolution time scales. The only other simu-
tightly packed configuration to another. As seen in the inselations that include dissipation effects to achieve finite rates
of Fig. 7, and also in the constant-stress simulation results aff shear are of Kawasaki’'s vertex model, in which the vis-
Fig. 6, this first occurs at a strain of around 3%. An examplecous force between two vertices scales as their relative ve-
of such a rearrangement is shown in Fig. 8 and will be dis{ocity raised to the power of [28—3(. This model also
cussed in detail later; for now, note only that viscous interproduces results consistent with Bingham-plastic behavior
actions cannot be ignored during rearrangement, even thoudbr stresses slightly larger than the yield stress. However, for
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TABLE |. Rearrangement event statistics at a uniform imposed straimage 10~° and gas fractionp=1. The number of bubbles is
N XN, with the top and bottonN bubbles fixed to the edge plates, and the total shear strain suffered during theypnTike resulting
number of events ibl, ; the event rate expressed as the number per bulk bubble per unit stRain ./(N>—2N) v, ; the average energy
release in units of the average bubble energ{AiE)/E,,, with standard deviation as given; and the median energy release in units of the
average bubble energy E,/E, .

N Ym Ne Re (AE)/E, Standard dev. AE/Ep

6 116 1510 0.542 1.77 2.49 0.469
12 40.0 1763 0.376 2.22 3.45 0.510
18 22.8 1953 0.297 2.36 3.89 0.554
30 11.2 2050 0.218 241 4.22 0.550

very large strain rates where viscous forces completely domiized rearrangement events, without noticeable accumulation
nate, it is hard to see how stress could be proportional tof affine shear strain. We also find that the distribution for
strain rate when the viscous force between neighbors is athe number of bubbles involved per avalanche must be
sumed not to be proportional to their velocity difference.  peaked, with no power-law tail; it has a well-defined average
corresponding to a small region roughly four bubbles across,
B. Avalanches and is independent of system size. This is completely incon-
sistent with the picture of self-organized criticality suggested

Attention is finally turned to the nature of the sudden
avalanchelike topological rearrangements that occur when |8 Refs.[27,30. . o
foam is sheared slowly. This has been simulated previously 10 begin reconciling theory and experiment, it is useful to
by Okuzono and Kawasaki using their vertex model for a&xamine the nature of rearrangements predicted by the
perfectly dry, two-dimensional system of over 1000 bubbledubble model for foam mechanics. This is simply a matter of
contained in a square cell and subjected to shear at dimegxtending and analyzing the simulations used to produce Fig.
sionless rate of 10" [30]. They measure the size of each 7. Like Kawasaki's vertex model, the bubble model has the
rearrangement event by the drop in total elastic energy trigvirtue of including dissipation effects to produce rearrange-
gered unexpectedly by a small increment in strain. A broadnents with realistic dynamics and finite duration. But, since
spectrum of events is found, such that the probability of ocbubble motion occurs entirely according to E8), it has an
currence decreases as a power law of size with an exponeatlvantage over both the Kawasaki and Weaire approaches in
of —3. This was based on almost 10 000 events spread ovehat topology need not be separately monitored and updated
a total strain increase of 20, giving an average of about 0.5by hand” when a film shrinks to zero length. Simulations
event per bubble per unit strain. Such behavior is claimed tare thus performed as above for several square systems of
be a deterministic example of self-organized criticality inbubbles, each with gas fractiab=1, subjected to shear at a
which events, or avalanches, occur in all sizes ranging frontonstant rate ofy74=10"°. As seen from Fig. 7, this is slow
a few bubbles to all in the system. This is supported byenough to obtain the low strain rate limiting behavior. There,
figures showing large-scale circulatory flows that suddenlyearrangement events are evident as the sudden drops in
start then stop. Avalanche statistics have also been reportetiess that come after a gradual rise. The motion involved in
by Hutzler, Weaire, and Bolton for a two-dimensional sys-such an event is depicted in Fig. 8 by the bubble locations
tem of 50 bubbles subjected to quasistatic exten§®f].  both before and after the stress drop, along with the center
Rather than tabulate energy drops, they measure avalanchesitions at all times in between. The sudden avalanchelike
size by the number of changes in nearest-neighbor contactature of this event is apparent from the large scale of mo-
that must be performed simultaneously in order to restorgion in the interior, ranging up to about one bubble diameter,
mechanical equilibrium. Histograms for this number areand the infinitesimal motion of the edge walls throughout its
sharply peaked for dry foams, but become broader and amluration. Note that the event in Fig. 8 involves two compact
pear to develop a power-law tail with exponent-ef as the clusters of bubbles undergoing topology change, in the upper
liquid content increases toward the melting point. It is notleft and upper middle right. Surrounding these two clusters is
clear how to reconcile these two sets of observations givea large swath of bubbles that shift without neighbor change
the significant differences in the models, in the quantitiesmore or less coherently, though with gradually decreasing
tabulated, and in system sizes and the level of statistics. Amplitude.
consistent qualitative feature, however, is that the flow of Following Okuzono and KawasakBO], avalanches can
foam is accomplished intermittently by a series of sudderusefully be described by the elastic energy drop per event.
avalanchelike topological rearrangement events with a broatihe extent of the runs and the resulting event statistics are
distribution of sizes, seemingly consistent with self-given in Table I. In comparison with Okuzono and Ka-
organized criticality. wasaki, the system sizes range from significantly to slightly

Experimentally, the sudden rearrangement events inducesmaller, but the runs are typically longer. Results for the
in a slowly sheared three-dimensional foam with gas fractioraverage event rate decrease somewhat with system size, and
0.92 have been observed recently by Gopal and myself usingxtrapolate linearly to about 0.15 per bulk bubble per unit
diffusing-wave spectroscopy, a noninvasive multiple-light-strain as IN goes to zero. Note that since the largest system
scattering techniqui@®]. We find that macroscopically homo- simulated here is significantly closer to this limit than the
geneous shear deformation is accomplished by sudden locamallest, the effects of the finite sample size do not dominate
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10 g T T The avalanche statistics of the bubble model, though in
F S 3 conflict with those of the vertex model, are actually in good
103 ? A0 ﬁ accord with the experiments by Gopal and my$8}f Both
—_ £ show lack of a power-law tail in the distribution of large
64| 3 3 events, which leads to a well-defined average event size. And
g o 3 both show that the average event is relatively small, only a
R 3 few bubbles across. For the bubble model, this can be seen
10.15 two ways. First, most events are smaller than the average
= average bubble energyE, and are exponentially rare aboveéEpb.
10— T l12xi2 median Second, and perhaps more significantly, the extent of bubble
s 6x6 »L motion is not very large. For example, the event motion

1078 Ertnd sl sl sl il sua sl sl vl shown in Fig. 8 is actually atypical; it is for thkrgest
energy drop seen in the ¥A2 system. Even for this largest
of events, the clusters of bubbles undergoing topology
change only involve a few bubbles, and the individual mo-
FIG. 9. Probab.ility density for rearrangement events releasingjons are not more than a typical bubble size. Work is now in
energyAE, normalized by the average energy per bulble De-  rogresd42] to determine whether the choice of dissipative
tails of the simulation runs are given in Table I. Independent Ofdynamics in Eq(3) plays a role in forcing the typical event
system sizdlabeled, there is a preponderance of small events €X-size to be commensurate with the bubble size.
hibiting_ power-law behavior, with exponent 0:¥0.05, and an ex- Physically, the cause for better agreement with experi-
ponential cutoff of large events. ment may be that the bubbles are less constrained and hence
can rearrange before being significantly distorted. In both
behavior; this can also be seen in the other event statistics @periment and bubble model, rearrangements can be in-
Table I. The average rearrangement rate is only slightlyjyced by strains of only a few percent; as more strain is
larger in the Okuzono-Kawasaki simulations, 0.50 pefimposed, the bubbles simply rearrange to maintain shapes
bubble per unit strain. fairly close to equilibrium. Accordingly, the elastic energy is
While event rates may be comparable, the nature of theever much higher than in unstrained equilibrium and the
flows and the quantitative details of the probability density,magnitude of the stress fluctuations is comparable to the av-
P(AE), for events with energy dropE, are entirely differ-  erage, as seen in Fig. 7. In the vertex model, by contrast,
ent for the bubble and vertex models. Figure 9 shows thisearrangements are not induced until the bubbles are very
distribution based on the simulation runs summarized irhighly distorted and the strains exceed 1; as more strain is
Table I. Results for the four SyStem sizes are nearly indistini'mposed, rearrangements occur but only relieve a small por-
guishable, as seen already in Table I, and adequately reprgon of the extra energy, leaving the bubbles still highly dis-
sent the infinite-sample limit. Evidently, the range of energytorted. Accordingly, the elastic energy is significantly higher
drops produced by the bubble model spans an enormoyfan in unstrained equilibrium and the stress fluctuations are
range, from 10" to 50 times the average bubble enery,  small compared to the average, as seen in Figs. 3 and 4 of
The preponderance of events is small, with the median sizgef, [30]. This “loading” produced in the vertex model may
being about 0.6, and the average being about 2,5 For  pe the crucial difference. It does not occur in the bubble
small events, below this average, the distribution is a powemodel, presumably because the bubbles are always spherical
law with exponent—0.70+0.05; for large events, it decays and the corresponding repulsive springs cannot be signifi-
as expp—0.2AE/Ey). Without this exponential cutoff, the av- cantly compressed via shear. It does not occur in experiment

erage and width of the distribution reported in Table | wouldejther, presumably because bubbles are harder to constrain
not be well defined. This contrasts with the Okuzono-for 3 foam which is fairly wet and which exists in three

Kawasaki vertex model simulationg30], where energy dimensions.

drops occur over only two decades, in spite of the larger

system, and where the distribution is a power law, ACKNOWLEDGMENTS
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they find no sign of an exponential cutoff for large events. A Helpful conversations with R. Bruinsma, K. Kawasaki, S.
related difference is that the largest events in the verte. Langer, A. J. Liu, S. Ramaswamy, and D. A. Weitz are
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