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Two-order-parameter model for an oil-water-surfactant system
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Dynamics of microphase separation of an oil-water-surfactant system is investigated by means of cell
dynamical system approach on the basis of the proposed two-order-parameter time dependent Ginzburg-
Landau model. For equal volumes of oil and water, the time evolution of characteristic length scale of domains
is investigated by changing the average surfactant concentration. The more the amount of surfactant, the slower
the dynamics. The results are analyzed by using the crossover scaling assupiti&8-651X97)07702-1

PACS numbgs): 82.70.Kj, 64.75+g, 82.20.Wt

I. INTRODUCTION grained fields and surfactants are treated microscopically
whereas Laradjet al. performed molecular dynamics simu-
Microemulsions which are a mixture of oil, water, and lations[8]. Both of these works have shown that the system
surfactant are known to exhibit various interesting micro-containing surfactants exhibits a slow nonalgebraic growth
structures depending on the temperature or the compositioof the domains, in contrast to the pure binary systems.
[1]. When the concentration of surfactant is relatively large, Qualitatively similar results have also been reported in the
they show a rich variety of regularly ordered structures suclother paper by Laradji and his co-workers, who proposed a
as the cubic phase, the hexagonal phase, and the lamellgienomenological two-order-parameter Ginzburg-Landau
phase. By lowering the concentration of surfactant and if thdree energy associated with standard time dependent
volumes of oil and water are not very different, microemul- Ginzburg-LandayTDGL) equationg9]. In their model, one
sions form a bicontinuous structure where a multiply con-of the order parameters represents the local concentration
nected randomly oriented monolayer of surfactants separatelfference between oil and water, while the other one repre-
oil-rich and water-rich subvolumes. There are several experisents the local surfactant concentration. Recentlytzdh
mental methods for studying the convoluted structure of oiland Dawson extended the model by Laraatjial. to incor-
and water, such as by measuring the conducti@fyor the  porate the hydrodynamic effects by coupling the TDGL
diffusivities of molecules[3]. A direct observation of the equations to Navier-Stokes-type equati¢h8]. They found
randomly intertwined structure by using freeze-fracture mi-that, in the presence of the hydrodynamic interactions, the
croscopy has also been reporfdd. Several x-ray and neu- crossover scaling exponent becomes different from that ob-
tron scattering experiments showed that the structure factanined by Laradjiet al.[9].
of the bicontinuous phase shows a peak at nonzero wave However, the book by Gompper and Schick criticizes the
vectork, indicating that there is a structure on a length scalewo-order-parameter model by Laradji al. as not being
2m/k [5]. It is also found that for microemulsions containing well defined, since the free energy of configurations with
equal volumes of oil and water, the peak position shifts tdarge surfactant concentration at the oil-water interfaces is
larger values ok and peak height diminishes as the surfac-not bounded from beloyl]. So far, a quite general expres-
tant concentration is increasg@l. sion of the two-order-parameter Ginzburg-Landau model has
When one quenches a ternary system from a high temalso been given by Gompper and SchidK. In fact, the
perature homogeneous phase where the system is uniformtyodel by Laradjiet al. can be considered as one of the spe-
mixed to a low temperature phase where a certain structureial cases of their expression with too much simplification.
appears, the average domain size increases in time until For the above reasons, a quantitative study of the phase sepa-
reaches the equilibrium size. Since the surfactants act tmtion dynamics based on the well defined two-order-
lower the interfacial tension and the driving force for the parameter model has not yet been done.
phase separation is decreased, it is natural to expect that theIn this paper we shall propose a minimum two-order-
dynamics of domain growth becomes significantly slower inparameter Ginzburg-Landau model in which the above prob-
the presence of surfactants. With this perspective, severédms are removed but which still expresses the essential fea-
people have investigated the effect of added surfactants amires of the ternary system. Our model intrinsically includes
the phase separation dynamics using different models. Fahe preferred value of the surfactant concentration when sur-
instance, Kawasaki and Kawakatsu have proposed a “hybri¢actant molecules aggregate. Moreover, we required in our
model” where oil and water are represented by coarsemodel that when surfactants aggregate at the interface, the
interfacial tension becomes very small. Using our model, we
numerically study the dynamics of phase separation. Here we
*Electronic address: komura@iizuka.isc.kyutech.ac.jp pay attention to the case where the volumes of oil and water
TElectronic address: hkodama@icluna.kobe-u.ac.jp are equal.
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This paper is constructed as follows. In the next sectionstates, i.e.p=0 andp=p,. The physical meaning of these
after reviewing the model by Laradgt al. we present our two states is as follows. The stagpe=0 corresponds to the
model and discuss its physical meanings. In Sec. lll we deease in which the system is locally occupied either by oil or
scribe our simulation method which is essentially based onvater. There are no surfactants in the considered local vol-
the cell dynamical system approach. The analysis of ouume. The state =p¢ corresponds to the case in which the
simulation results and discussion are given in the followinglocal volume is occupied only by surfactants. The quantity
two sections. ps can be considered to represent the density of condensed

hydrocarbon chains of surfactants when they self-assemble.
1I. MODEL It is likely that in any type of surfactant aggregates, the den-
) ) . . sity of hydrocarbon chains does not change appreciably. It

In this section we shall first review the two-order- shoyld be noted here that we did not include any gradient
parameter model proposed by Laragjial. [9]. In their teym of 5, say (Vp)2. This is physically reasonable since the
model, the local concentration difference between oil angsnergy cost due to the direct attachment between hydrocar-
water is described bys(r) and the local surfactant concen- phon chains and oil molecules or between hydrophilic head
tration measured from a certain reference value is denoted as,q water molecules is small. As regards the coupling terms,
p(r). Their model is the local coupling terngy?p? in Eq. (1) has been dropped

out, whereas only the nonlocal coupling terasp(V ¢)? is
F= J dr[d(V ¢)2—ayg?+uy?+bp2+gylp?—sp(V)?], left here. Due to the latter term, the state wthk pg tends to
occupy the narrow region around the oil-water interfaces. It
(1) is also essential in microemulsions that the interfacial tension
vanish when the interface is saturated with surfactants
e[11,12. For this reason, we chose the values of parameters to
satisfy the relatiord = spg, which plays an essential role for

whered, a, u, b, g, ands are positive constants. The
termbp? prevents the surfactants from forming clusters. Th

local coupling termg«?p? guarantees that the local surfac- ) o . ;
pling termgy”p* g our requirementii) in the model. We believe that ER) is

tant concentration remains small in the bulk whegé is one of the minimum models which is sufficient to grasp the
large. The last nonlocal coupling termsp(V )? favors the : . - . grasp tf
essential properties of microemulsions. Another possibility

surfactants to sit at oil-water interfaces. As mentioned in the fth del will be di din the last i
introduction, however, this free energy functional is not® Fe rr;]o el wi eI IScussed In edas section.
bounded from below for positive values sf[1]. Although h or t; tldm'(l?De(\;/E ution C.)ﬂ’(r’t) an Rp(r,t)s,'we %Ssﬂme
Pazold and Dawson reported that they did not find any nu—t e standar equaﬂpps as in REdl. Ince othy
merical instabilities within the parameter values they used"mdp are conserved quantities, TDGL equations are

[10], we observed a diverging tendency of the surfactant con- I SE

centration at the oil-water interfaces as we decreased the — =M, V2—+p,(1,1), 3
simulation mesh size. The finite value @is supported only Jt S

by the nonzero simulation mesh size. This is obviously not

reasonable from the point of view of solving continuous par- a_p =M V2ﬁ+ 7,(r0) (4
tial differential equations. Moreover, we found that the do- ot P op TP

mains do not flow globally in the presence of a convective -
macroscopic flow within their model. This problem also HereM, andM, are transport coefficients;, and 7, repre-
seems to be related to the model intrinsic singular behavigsent thermal noise which satisfies the fluctuation-dissipation

at the oil-water interfaces. theorem
Here we propose a different two-order-parameter P — 2arr

Ginzburg-Landau free energy functional which has none of {7y (1,0 7y (1 1)) 2kgTM () VES(r—r")

the drawbacks mentioned above. What we have required in X 8(t—t'), (5

our model are thati) the profiles ofis and p at oil-water

interfaces do not depend on the average valueg ahdp  wherekg is the Boltzmann constant afdis the temperature.

(denoted hereafter ag andp, respectively and that(ii) the ~ By inserting Eq.(2) into Egs.(3) and(4), the time evolution

coarse-graining dynamics @f based on the free energy be- €quations can be written explicitly as

comes slow when the amplitude pfat the interface takes a

certain saturated value. The proposed minimum model which (9_‘” vaz[—2a¢+4uw3+ 2WVAy—2(d—sp) V24

fulfills these requirements is ot
+2s(Vy)-(Vp) I+ my(r.1), (6)
sz dr[w(V2)2+d(V ¢)2—ayp®+uy® P
d
ep2(p—pP—sp(V 2], @ o =MV2en(p—pe) (29— p) =SV i+ 7,(1,D).
)

wherew, d, a, u, e, ps, ands are positive constants.

First we have added the term(V2y)? which prevents the In the present work we have entirely ignored the hydro-
model from becoming unbounded. Next we replaced the lodynamic interactions which might play an important role in
cal potential of p with a double-minimum potential microemulsions. One of the realistic systems which corre-
ep?(p—ps)? which allows the coexistence of the two bulk sponds to our model is a binary homopolymer mixture con-
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taining diblock copolymerg9,13. Since we have not in- The first term in the right-hand side of E@.5) is introduced
cluded the hydrodynamic interactions, our model lacks dor the sake of numerical stabilityl4]. In the above equa-
bare viscous time scale. Nevertheless, we can choose thigns, the discretized differential operat&sand'ﬁz are de-
model intrinsic time scale as the inverse of the initial growthfined as

rate of the most unstable mode. The wave vector dependent
initial growth rate is defined as

- 1
V=5 (ot 1) = d(n—1ny), $(ne,ny+1)

KL ®

ot o — (ny,ny=1)) (17
where we have introduced the spatial Fourier transform ofng
Y(r,t) as

V2p= 12 #( nearest-neighbor cells
z,bk(t):f dri(r,t)explik-r). 9 2
1

Since the typical time scale for surfactants to assemble at the + ZE ¢( next-nearest-neighbor cells 3¢,
oil-water interfaces is long compared to that of the initial
phase ordering process, we neglect here the effect of surfac- (19

tants onA (k). Hence we have
respectively. The noise terms in Eq$3) and(14) are given
A(k)= —2M¢(wk6+dk4—ak2), (10 by

wherek=|K|. The most unstable mode=ko which maxi- 70 = 9 (n+1ny,0) = 7 (n,,ny 1)
mizesA (k) is
By L0~ ety 0, 09

2o —d++/d?+3aw

0 3w @D here ) and 7 are random numbers uniformly distrib-
uted in the interval —1,1] and C,,, are the noise ampli-
Thus the typical time scale, in our model is given by tudes taken as independent parameters in CL&. The
noise perturbations are important in order to accelerate the
70=1/A(Kg). (12)  evolution processes and prevent domains from freeZioy

In our simulations, we fixed the parameterslie 128,
A=13, W=0.2, D=0.5, S=0.5, E=0.25,
ps=1, M,=M,=0.05, C,=C,=0.02, andy)=0, whereas

In order to solve the above time evolution equations, wep has been changed @s=0.1,0.2,0.3,0.4, and 0.5. The ini-
used the cell dynamical systef@DS) approach proposed by tial distributions ofiys andp are specified by random uniform
Oono and Purj14]. The CDS model is a space-time discretedistributions in  the ranges [—0.01,0.01 and
model to describe a phenomenon at the mesoscopic level ahd—0.01p+0.01], respectively, which correspond to a
proved to be an efficient algorithm for numerical simula- completely disordered uniform state. With our choice of pa-
tions. Here we restricted ourselves to a two-dimensional sysameters, the most unstable mode Etf) is ky~0.51 and
tem. Accordingly, the space coordinate is specified by thehe typical time scale Eq12) is 7,~5.0x 10°.
lattice pointn=(n,,n,) in anLXL square lattice. We also
imposed periodic boundary conditions. The CDS equations
corresponding to Eqg6) and(7) are

Ill. CELL DYNAMICAL SYSTEM APPROACH

IV. RESULTS

_ The typical time evolutions ofy and p are depicted in
Y(nt+1)= zp(n,t)+vazz(n,t)+cw77(n,t), (13 Fig. 1 for (a) p=0.1 and(b) p=0.4. For a quantitative dis-
cussion, we have calculated the average domain sizeiof
nt+1)=p(nt)+M V2 nt)+C n'(nt), (14 the following way. First a discrete Fourier transform of
p( )=p(N,)+M,VJ(n,t)+C,7'(n,t), (14 J(n.t) is defined by

where Z(n,t) and J(n,t) are the discrete thermodynamic
forces given by W= H(nexplik-n) (20)

Z(n,t) = — Atanhy+ -+ W(V2)2— (D — Sp) V24

with k=27n/L andne{0,1,...,L—1}2 The structure fac-

tor is given byS(k,t) ={y(t) _(t)), where the average is
over the ensemble of systems. In this paper, we calculated

1l_ = the time dependenrinverse characteristic length scale de-
_ _ _ _ - 2
JnO)=Ep(p=ps)(2p=ps) = 5S(VY)~. (18 g 4 by[16]

+S(Vih)-(Vp), (15)
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FIG. 1. Time evolutions of)
\ At and p for (@ p=0.1 and (b)
p=0.4. The left and right col-
(@ umns show the spatial distribution
of ¢ and p fields, respectively.
Dark area denotes the region of
higher values ofy and p. Notice
that the typical time scale is
70~5.0x 10%.

t = 20000 ‘ t = 50000

function of time step for different values gf. Each line

go K| ~S(k,t) corresponds to a single run. By turning off the coupling be-

(k(t))=——. (21)  tweeny andp, we ha}ye also i_ncluded_the result of ordinary
E K|~ 2S(k,t) spinodal decomposition which exhibits the well-known
o ’ t~ 2 evolution. The estimated most unstable mégés con-

sistent with our simulation result. We recover the following
This expression provides better estimation of the characterfeatures which have also been found in the previous works.
istic length scale than that obtained by using the sphericallyi) In the presence of surfactants, evolution of the pattern
averaged structure factpt6]. In Fig. 2{k(t)) is plotted as a becomes exceedingly slow, which appears to be almost loga-
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The time evolution of the characteristic length scale for
various values op has been analyzed by using the crossover
scaling assumption. Since the hydrodynamic interaction is
ignored in our simulation, we consider a similar form pro-
posed in Ref[9];

(k(t))=t"13f((p—po)*), (22

FIG. 2. Inverse characteristic length scéltét)) as a function of
time step for different values qf. The straight line has a slope of
—-1/3.

rithmic in time for large time steps and large(ii) At almost
any time step, the average domain size decreasgs ias
increased. e

In addition to these features, especially for smallwe  where f(x) is a scaling function withf(x)~ const for
can observe the coexistence of two types of interfaces at the .0 andf(x)~x® for x—=. Here, we denote the average
early stage of phase separation, i.e., the coexistence of satylue ofp in the bulk phase ag,, which can be considered
rated interface and unsaturated interface. At the saturated correspond to the origin of the surfactant density. We
interfaces,p takes a saturated valugslightly above ], checked that this value does not dependgrHence for
whereas the value of at the unsaturated interfaces is almostsmallx, the characteristic length scale exhibits & behav-
the same as that in the bulk phase. This can be more clearfyr as in the ordinary spinodal decomposition, whereas for
seen in Fig. 3 where we plotted the cross section profiles ofyrge x, it becomes proportional to the total surfactant con-
the two fields along the straight lines drawn in Figa)l  centration. The latter fact has been confirmed both by experi-
(t=50000). As the phase separation proceeds, the systefients[6] and by Monte Carlo simulatior[d7] and can be
will eventually be governed by the saturated interfaces anghterpreted in the following way; if all the interfaces are satu-
will reach the equilibrium configuration. It is interesting to rated, the total amount of surfactant should be proportional
note that the dynamics of phase separation in microemuky the total ared“length” in our simulation) of the interface
sions can be understood from the point of view of motion ofwhich is also proportional to the inverse characteristic
one-dimensional interfacér contouy Separating saturated |ength_ In F|g 4 we have p|0tted the Sca"ng functf(ﬂx) as
and unsaturated interfaces. a function ofx for various values op by fixing po=—0.1.
Although the data collapse for larger valuespois satisfac-
tory, the data for smalp (such asp=0.1) deviate from the
7» universal behavior. We also comment that the present scaling

behavior can be observed even in the presence of noise,
which is in contrast to what has been reported previously

[10].

u V. SUMMARY AND DISCUSSIONS

25 50 75 100 125 In this paper, using the CDS approach, we have investi-
n, gated the effect of surfactants on the dynamics of phase sepa-
ration between oil and water on the basis of the proposed
minimum two-order-parameter TDGL model. We restricted
ourselves to the case where the volumes of water and oil are
equal whereas the average surfactant concentration has been

FIG. 3. Profiles ofy andp along the straight lines drawn in Fig.
1(a) (t=50000). The solid line represengsand dashed line rep-
resentsp.
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changed systematically. The time evolution of the typicalassumed the relatiod~spg according to the physical rea-
length scale of the domains is characterized by an extremelsons in Sec. Il, the following situations may be more general.
slow dynamics. Our results can be interpreted according téf d>sp., the surfactant cannot cancel the interfacial tension
the dynamical scaling assumption. of the oil-water interface. In this case, the system will un-
We comment on the other possibilities of the two-order-dergo a macrophase separation.dkkspg, the interfacial
parameter model. As regards the double-minimum local potension becomes essentially negative and the system will
tential of p in Eqg. (2), one may consider replacing it with a produce more interfaces.
single-well potentiap? which appears in the original model In fact, our primary purpose in considering the Ginzburg-
by Laradji et al. [see Eq.(1)]. [The term §?y)? is always Landau free energy for microemulsions is to investigate its
necessary for the stability of the modelVe also examined rheological behavior in ways such as by measuring the re-
this case, but it turned out that the system exhibitac-  sponse to the applied shear flow. According to our prelimi-
rophaseseparation rather thamicrophaseseparation within  nary study, we found a pronounced effect of the added sur-
the parameter we investigated. This means that the surfaéactants on the macroscopic mechanical properties. The
tants do not adsorb enough at the interface to suppress thietails of our results will be published in the futyds].
phase separation dynamics as fapé¥ ¢)? is the only in-
cluded coupling term. This situation can be changed, for ex-
ample, by including a local coupling term such #% ac-
cording to the symmetry consideratiofiNotice that the We would like to thank Professor Shigehiro Komura, Dr.
?p? term in the model by Laradgt al. gives a higher order G. Gompper, and Dr. J. L. Harden for their helpful discus-
contribution thany?p.) In this paper we tried to reduce the sions. We also thank Max-Planck-Institutr fikolloid und
number of different types of coupling terms to as few asGrenzflzhenforschungs for its hospitality while part of this
possible. We consider that the nonlocal coupling term usetork was in progress. This work is supported by the Minis-
in this paper works more essentially for the slow dynamicsitry of Education, Science and Culture, Jag@&rant-in-Aid
Finally we discuss our choice of parameters. In principle for Scientific Research No. 08226233, No. 08740324, and
d ands in Eq. (2) are independent parameters. Although weNo. 0657.
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