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Two-order-parameter model for an oil-water-surfactant system
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Dynamics of microphase separation of an oil-water-surfactant system is investigated by means of cell
dynamical system approach on the basis of the proposed two-order-parameter time dependent Ginzburg-
Landau model. For equal volumes of oil and water, the time evolution of characteristic length scale of domains
is investigated by changing the average surfactant concentration. The more the amount of surfactant, the slower
the dynamics. The results are analyzed by using the crossover scaling assumption.@S1063-651X~97!07702-7#

PACS number~s!: 82.70.Kj, 64.75.1g, 82.20.Wt
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I. INTRODUCTION

Microemulsions which are a mixture of oil, water, an
surfactant are known to exhibit various interesting mic
structures depending on the temperature or the compos
@1#. When the concentration of surfactant is relatively lar
they show a rich variety of regularly ordered structures s
as the cubic phase, the hexagonal phase, and the lam
phase. By lowering the concentration of surfactant and if
volumes of oil and water are not very different, microem
sions form a bicontinuous structure where a multiply co
nected randomly oriented monolayer of surfactants separ
oil-rich and water-rich subvolumes. There are several exp
mental methods for studying the convoluted structure of
and water, such as by measuring the conductivity@2# or the
diffusivities of molecules@3#. A direct observation of the
randomly intertwined structure by using freeze-fracture m
croscopy has also been reported@4#. Several x-ray and neu
tron scattering experiments showed that the structure fa
of the bicontinuous phase shows a peak at nonzero w
vectork, indicating that there is a structure on a length sc
2p/k @5#. It is also found that for microemulsions containin
equal volumes of oil and water, the peak position shifts
larger values ofk and peak height diminishes as the surfa
tant concentration is increased@6#.

When one quenches a ternary system from a high t
perature homogeneous phase where the system is unifo
mixed to a low temperature phase where a certain struc
appears, the average domain size increases in time un
reaches the equilibrium size. Since the surfactants ac
lower the interfacial tension and the driving force for t
phase separation is decreased, it is natural to expect tha
dynamics of domain growth becomes significantly slower
the presence of surfactants. With this perspective, sev
people have investigated the effect of added surfactant
the phase separation dynamics using different models.
instance, Kawasaki and Kawakatsu have proposed a ‘‘hy
model’’ where oil and water are represented by coar
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grained fields and surfactants are treated microscopically@7#,
whereas Laradjiet al. performed molecular dynamics simu
lations @8#. Both of these works have shown that the syst
containing surfactants exhibits a slow nonalgebraic grow
of the domains, in contrast to the pure binary systems.

Qualitatively similar results have also been reported in
other paper by Laradji and his co-workers, who propose
phenomenological two-order-parameter Ginzburg-Land
free energy associated with standard time depend
Ginzburg-Landau~TDGL! equations@9#. In their model, one
of the order parameters represents the local concentra
difference between oil and water, while the other one rep
sents the local surfactant concentration. Recently, Pa¨tzold
and Dawson extended the model by Laradjiet al. to incor-
porate the hydrodynamic effects by coupling the TDG
equations to Navier-Stokes-type equations@10#. They found
that, in the presence of the hydrodynamic interactions,
crossover scaling exponent becomes different from that
tained by Laradjiet al. @9#.

However, the book by Gompper and Schick criticizes t
two-order-parameter model by Laradjiet al. as not being
well defined, since the free energy of configurations w
large surfactant concentration at the oil-water interfaces
not bounded from below@1#. So far, a quite general expres
sion of the two-order-parameter Ginzburg-Landau model
also been given by Gompper and Schick@1#. In fact, the
model by Laradjiet al. can be considered as one of the sp
cial cases of their expression with too much simplificatio
For the above reasons, a quantitative study of the phase s
ration dynamics based on the well defined two-ord
parameter model has not yet been done.

In this paper we shall propose a minimum two-orde
parameter Ginzburg-Landau model in which the above pr
lems are removed but which still expresses the essential
tures of the ternary system. Our model intrinsically includ
the preferred value of the surfactant concentration when
factant molecules aggregate. Moreover, we required in
model that when surfactants aggregate at the interface,
interfacial tension becomes very small. Using our model,
numerically study the dynamics of phase separation. Here
pay attention to the case where the volumes of oil and w
are equal.
1722 © 1997 The American Physical Society
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This paper is constructed as follows. In the next secti
after reviewing the model by Laradjiet al. we present our
model and discuss its physical meanings. In Sec. III we
scribe our simulation method which is essentially based
the cell dynamical system approach. The analysis of
simulation results and discussion are given in the follow
two sections.

II. MODEL

In this section we shall first review the two-orde
parameter model proposed by Laradjiet al. @9#. In their
model, the local concentration difference between oil a
water is described byc(r) and the local surfactant concen
tration measured from a certain reference value is denote
r(r). Their model is

F5E dr@d~“c!22ac21uc41br21gc2r22sr~“c!2#,

~1!

where d, a, u, b, g, and s are positive constants. Th
termbr2 prevents the surfactants from forming clusters. T
local coupling termgc2r2 guarantees that the local surfa
tant concentration remains small in the bulk whereucu is
large. The last nonlocal coupling term2sr(“c)2 favors the
surfactants to sit at oil-water interfaces. As mentioned in
introduction, however, this free energy functional is n
bounded from below for positive values ofs @1#. Although
Pätzold and Dawson reported that they did not find any n
merical instabilities within the parameter values they us
@10#, we observed a diverging tendency of the surfactant c
centration at the oil-water interfaces as we decreased
simulation mesh size. The finite value ofr is supported only
by the nonzero simulation mesh size. This is obviously
reasonable from the point of view of solving continuous p
tial differential equations. Moreover, we found that the d
mains do not flow globally in the presence of a convect
macroscopic flow within their model. This problem als
seems to be related to the model intrinsic singular beha
at the oil-water interfaces.

Here we propose a different two-order-parame
Ginzburg-Landau free energy functional which has none
the drawbacks mentioned above. What we have require
our model are that~i! the profiles ofc and r at oil-water
interfaces do not depend on the average values ofc andr
~denoted hereafter asc̄ and r̄, respectively! and that~ii ! the
coarse-graining dynamics ofc based on the free energy b
comes slow when the amplitude ofr at the interface takes
certain saturated value. The proposed minimum model wh
fulfills these requirements is

F5E dr@w~¹2c!21d~“c!22ac21uc4

1er2~r2rs!
22sr~“c!2#, ~2!

wherew, d, a, u, e, rs , and s are positive constants
First we have added the termw(¹2c)2 which prevents the
model from becoming unbounded. Next we replaced the
cal potential of r with a double-minimum potentia
er2(r2rs)

2 which allows the coexistence of the two bu
,
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states, i.e.,r50 andr5rs . The physical meaning of thes
two states is as follows. The stater50 corresponds to the
case in which the system is locally occupied either by oil
water. There are no surfactants in the considered local
ume. The stater5rs corresponds to the case in which th
local volume is occupied only by surfactants. The quan
rs can be considered to represent the density of conden
hydrocarbon chains of surfactants when they self-assem
It is likely that in any type of surfactant aggregates, the d
sity of hydrocarbon chains does not change appreciably
should be noted here that we did not include any grad
term ofr, say (“r)2. This is physically reasonable since th
energy cost due to the direct attachment between hydro
bon chains and oil molecules or between hydrophilic he
and water molecules is small. As regards the coupling ter
the local coupling termgc2r2 in Eq. ~1! has been dropped
out, whereas only the nonlocal coupling term2sr(“c)2 is
left here. Due to the latter term, the state withr5rs tends to
occupy the narrow region around the oil-water interfaces
is also essential in microemulsions that the interfacial tens
vanish when the interface is saturated with surfacta
@11,12#. For this reason, we chose the values of parameter
satisfy the relationd5srs , which plays an essential role fo
our requirement~ii ! in the model. We believe that Eq.~2! is
one of the minimum models which is sufficient to grasp t
essential properties of microemulsions. Another possibi
of the model will be discussed in the last section.

For the time evolution ofc(r,t) and r(r,t), we assume
the standard TDGL equations as in Ref.@9#. Since bothc
andr are conserved quantities, TDGL equations are

]c

]t
5Mc¹2

dF

dc
1hc~r,t !, ~3!

]r

]t
5Mr¹2

dF

dr
1hr~r,t !. ~4!

HereMc andMr are transport coefficients,hc andhr repre-
sent thermal noise which satisfies the fluctuation-dissipa
theorem

^hc~r!~r,t !hc~r!~r8,t8!&522kBTMc~r!¹
2d~r2r8!

3d~ t2t8!, ~5!

wherekB is the Boltzmann constant andT is the temperature
By inserting Eq.~2! into Eqs.~3! and~4!, the time evolution
equations can be written explicitly as

]c

]t
5Mc¹2@22ac14uc312w¹4c22~d2sr!¹2c

12s~“c!•~“r!#1hc~r,t !, ~6!

]r

]t
5Mr¹2@2er~r2rs!~2r2rs!2s~“c!2#1hr~r,t !.

~7!

In the present work we have entirely ignored the hyd
dynamic interactions which might play an important role
microemulsions. One of the realistic systems which cor
sponds to our model is a binary homopolymer mixture co
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taining diblock copolymers@9,13#. Since we have not in-
cluded the hydrodynamic interactions, our model lacks
bare viscous time scale. Nevertheless, we can choose
model intrinsic time scale as the inverse of the initial grow
rate of the most unstable mode. The wave vector depen
initial growth rate is defined as

]ck~ t !

]t
5L~k!ck~ t !, ~8!

where we have introduced the spatial Fourier transform
c(r,t) as

ck~ t !5E drc~r,t !exp~ ik•r!. ~9!

Since the typical time scale for surfactants to assemble a
oil-water interfaces is long compared to that of the init
phase ordering process, we neglect here the effect of su
tants onL(k). Hence we have

L~k!522Mc~wk61dk42ak2!, ~10!

wherek5uku. The most unstable modek5k0 which maxi-
mizesL(k) is

k0
25

2d1Ad213aw

3w
. ~11!

Thus the typical time scalet0 in our model is given by

t051/L~k0!. ~12!

III. CELL DYNAMICAL SYSTEM APPROACH

In order to solve the above time evolution equations,
used the cell dynamical system~CDS! approach proposed b
Oono and Puri@14#. The CDS model is a space-time discre
model to describe a phenomenon at the mesoscopic leve
proved to be an efficient algorithm for numerical simu
tions. Here we restricted ourselves to a two-dimensional s
tem. Accordingly, the space coordinate is specified by
lattice pointn5(nx ,ny) in an L3L square lattice. We also
imposed periodic boundary conditions. The CDS equati
corresponding to Eqs.~6! and ~7! are

c~n,t11!5c~n,t !1Mc¹̃2I~n,t !1Cch~n,t !, ~13!

r~n,t11!5r~n,t !1Mr¹̃2J~n,t !1Crh8~n,t !, ~14!

where I(n,t) and J(n,t) are the discrete thermodynam
forces given by

I~n,t !52Atanhc1c1W~¹̃2!2c2~D2Sr!¹̃2c

1S~“̃c!•~“̃r!, ~15!

J~n,t !5Er~r2rs!~2r2rs!2
1

2
S~“̃c!2. ~16!
a
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The first term in the right-hand side of Eq.~15! is introduced
for the sake of numerical stability@14#. In the above equa-
tions, the discretized differential operators¹̃ and ¹̃2 are de-
fined as

“̃f5
1

2
„f~nx11,ny!2f~nx21,ny!,f~nx ,ny11!

2f~nx ,ny21!… ~17!

and

¹̃2f5
1

2( f~ nearest-neighbor cells!

1
1

4( f~ next-nearest-neighbor cells!23f,

~18!

respectively. The noise terms in Eqs.~13! and~14! are given
by

h~8 !~n,t !5hx
~8 !~nx11,ny ,t !2hx

~8 !~nx ,ny ,t !

1hy
~8 !~nx ,ny11,t !2hy

~8 !~nx ,ny ,t !, ~19!

wherehx
(8) andhy

(8) are random numbers uniformly distrib
uted in the interval@21,1# andCc(r) are the noise ampli-
tudes taken as independent parameters in CDS@15#. The
noise perturbations are important in order to accelerate
evolution processes and prevent domains from freezing@10#.

In our simulations, we fixed the parameters toL5128,
A51.3, W50.2, D50.5, S50.5, E50.25,
rs51, Mc5Mr50.05, Cc5Cr50.02, andc̄50, whereas
r̄ has been changed asr̄50.1,0.2,0.3,0.4, and 0.5. The in
tial distributions ofc andr are specified by random uniform
distributions in the ranges @20.01,0.01# and
@ r̄20.01,r̄10.01#, respectively, which correspond to
completely disordered uniform state. With our choice of p
rameters, the most unstable mode Eq.~11! is k0'0.51 and
the typical time scale Eq.~12! is t0'5.03102.

IV. RESULTS

The typical time evolutions ofc and r are depicted in
Fig. 1 for ~a! r̄50.1 and~b! r̄50.4. For a quantitative dis
cussion, we have calculated the average domain size ofc in
the following way. First a discrete Fourier transform
c(n,t) is defined by

ck~ t !5(
n

c~n,t !exp~ ik•n!, ~20!

with k52pn/L andnP$0,1, . . . ,L21%2. The structure fac-
tor is given byS(k,t)5^ck(t)c2k(t)&, where the average is
over the ensemble of systems. In this paper, we calcula
the time dependent~inverse! characteristic length scale de
fined by @16#
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FIG. 1. Time evolutions ofc
and r for ~a! r̄50.1 and ~b!
r̄50.4. The left and right col-
umns show the spatial distributio
of c and r fields, respectively.
Dark area denotes the region o
higher values ofc and r. Notice
that the typical time scale is
t0'5.03102.
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^k~ t !&5

(
kÞ0

uku21S~k,t !

(
kÞ0

uku22S~k,t !
. ~21!

This expression provides better estimation of the charac
istic length scale than that obtained by using the spheric
averaged structure factor@16#. In Fig. 2 ^k(t)& is plotted as a
r-
ly

function of time step for different values ofr̄. Each line
corresponds to a single run. By turning off the coupling b
tweenc andr, we have also included the result of ordina
spinodal decomposition which exhibits the well-know
t21/3 evolution. The estimated most unstable modek0 is con-
sistent with our simulation result. We recover the followin
features which have also been found in the previous wo
~i! In the presence of surfactants, evolution of the patt
becomes exceedingly slow, which appears to be almost lo
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rithmic in time for large time steps and larger̄. ~ii ! At almost
any time step, the average domain size decreases asr̄ is
increased.

In addition to these features, especially for smallr̄, we
can observe the coexistence of two types of interfaces a
early stage of phase separation, i.e., the coexistence of
rated interface and unsaturated interface. At the satur
interfaces,r takes a saturated value~slightly above 1!,
whereas the value ofr at the unsaturated interfaces is almo
the same as that in the bulk phase. This can be more cle
seen in Fig. 3 where we plotted the cross section profile
the two fields along the straight lines drawn in Fig. 1~a!
(t550 000). As the phase separation proceeds, the sy
will eventually be governed by the saturated interfaces
will reach the equilibrium configuration. It is interesting
note that the dynamics of phase separation in microem
sions can be understood from the point of view of motion
one-dimensional interface~or contour! separating saturate
and unsaturated interfaces.

FIG. 2. Inverse characteristic length scale^k(t)& as a function of
time step for different values ofr̄. The straight line has a slope o
21/3.

FIG. 3. Profiles ofc andr along the straight lines drawn in Fig
1~a! (t550 000). The solid line representsc and dashed line rep
resentsr.
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The time evolution of the characteristic length scale
various values ofr̄ has been analyzed by using the crosso
scaling assumption. Since the hydrodynamic interaction
ignored in our simulation, we consider a similar form pr
posed in Ref.@9#;

^k~ t !&5t21/3f „~ r̄2r0!
3t…, ~22!

where f (x) is a scaling function withf (x); const for
x→0 andf (x);x1/3 for x→`. Here, we denote the averag
value ofr in the bulk phase asr0, which can be considered
to correspond to the origin of the surfactant density. W
checked that this value does not depend onr̄. Hence for
smallx, the characteristic length scale exhibits at21/3 behav-
ior as in the ordinary spinodal decomposition, whereas
largex, it becomes proportional to the total surfactant co
centration. The latter fact has been confirmed both by exp
ments@6# and by Monte Carlo simulations@17# and can be
interpreted in the following way; if all the interfaces are sa
rated, the total amount of surfactant should be proportio
to the total area~‘‘length’’ in our simulation! of the interface
which is also proportional to the inverse characteris
length. In Fig. 4 we have plotted the scaling functionf (x) as
a function ofx for various values ofr̄ by fixing r0520.1.
Although the data collapse for larger values ofr̄ is satisfac-
tory, the data for smallr̄ ~such asr̄50.1) deviate from the
universal behavior. We also comment that the present sca
behavior can be observed even in the presence of no
which is in contrast to what has been reported previou
@10#.

V. SUMMARY AND DISCUSSIONS

In this paper, using the CDS approach, we have inve
gated the effect of surfactants on the dynamics of phase s
ration between oil and water on the basis of the propo
minimum two-order-parameter TDGL model. We restrict
ourselves to the case where the volumes of water and oi
equal whereas the average surfactant concentration has

FIG. 4. Scaling plot off (x) as a function ofx. The straight line
has a slope of 1/3.
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changed systematically. The time evolution of the typi
length scale of the domains is characterized by an extrem
slow dynamics. Our results can be interpreted according
the dynamical scaling assumption.

We comment on the other possibilities of the two-ord
parameter model. As regards the double-minimum local
tential of r in Eq. ~2!, one may consider replacing it with
single-well potentialr2 which appears in the original mode
by Laradji et al. @see Eq.~1!#. @The term (¹2c)2 is always
necessary for the stability of the model.# We also examined
this case, but it turned out that the system exhibitsmac-
rophaseseparation rather thanmicrophaseseparation within
the parameter we investigated. This means that the su
tants do not adsorb enough at the interface to suppress
phase separation dynamics as far asr(“c)2 is the only in-
cluded coupling term. This situation can be changed, for
ample, by including a local coupling term such asc2r ac-
cording to the symmetry consideration.~Notice that the
c2r2 term in the model by Laradjiet al.gives a higher order
contribution thanc2r.! In this paper we tried to reduce th
number of different types of coupling terms to as few
possible. We consider that the nonlocal coupling term u
in this paper works more essentially for the slow dynami

Finally we discuss our choice of parameters. In princip
d ands in Eq. ~2! are independent parameters. Although
-

n,

,

r-
l
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to

-
-

c-
the

-

s
d
.
,

assumed the relationd'srs according to the physical rea
sons in Sec. II, the following situations may be more gene
If d@srs , the surfactant cannot cancel the interfacial tens
of the oil-water interface. In this case, the system will u
dergo a macrophase separation. Ifd!srs , the interfacial
tension becomes essentially negative and the system
produce more interfaces.

In fact, our primary purpose in considering the Ginzbur
Landau free energy for microemulsions is to investigate
rheological behavior in ways such as by measuring the
sponse to the applied shear flow. According to our prelim
nary study, we found a pronounced effect of the added s
factants on the macroscopic mechanical properties.
details of our results will be published in the future@18#.
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