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Properties of ridges in elastic membranes

Alexander E. Lobkovsky* and T. A. Witten
The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 19 August 1996!

When a thin elastic sheet is confined to a region much smaller than its size the morphology of the resulting
crumpled membrane is a network of straight ridges or folds that meet at sharp vertices. A virial theorem
predicts the ratio of the total bending and stretching energies of a ridge. Small strains and curvatures persist far
away from the ridge. We discuss several kinds of perturbations that distinguish a ridge in a crumpled sheet
from an isolated ridge studied earlier@A. E. Lobkovsky, Phys. Rev. E53, 3750 ~1996!#. Linear response as
well as buckling properties are investigated. We find that, quite generally, the energy of a ridge can change by
no more than a finite fraction before it buckles.@S1063-651X~97!02002-3#

PACS number~s!: 03.40.Dz, 46.30.2i, 68.55.Jk
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I. INTRODUCTION

There is an abundance of phenomena involving str
deformation of thin elastic membranes that span a w
range of scales. On the microscopic scale, phosphol
membranes behave like a solid below a two-dimensio
~2D! freezing point@1#. Some inorganic compounds such
graphite oxide@2# and molybdenum disulphite@3# also be-
have like elastic membranes on scales large compared to
interatomic spacing. The graphite oxide sheets can be
lapsed in solution by inducing an effective attractive inter
tion between distant parts of the sheet. Molybdenum
sulphite has also been observed in a ‘‘rag’’ phase that lo
similar to a crumpled piece of paper. Mechanical proper
of macroscopic thin elastic plates and shells undergo
large deformations are important in engineering of saf
structures@4# and packaging material development@5#.

Stability and post-bucking properties of thin shells a
plates have been a subject of intense investigation@6#. Few
general results have been derived, however. Due to the c
plexity of the equations that describe large deflections of t
plates~two quadratic fourth-order partial differential equ
tions!, rigorous proofs are difficult to achieve. Difficulties i
treating thin shells and plates arise due to the fact tha
small parameter related to the thickness of the shell mu
plies the highest derivative term in the equations@7#. It is
well known that this fact gives rise to a variety of bounda
layer phenomena in the bending of thin shells@8#. Many
different types of boundary conditions that lead to a bou
ary layer have been analyzed. They include bending m
ments@9#, shear forces@10#, and free boundary condition
with distributed bending moments@11#. A common feature
that emerges from these studies is that membrane stre
become confined to the boundary layer region whose
vanishes as some power of the shell thickness.

The study of the buckling instability and post-bucklin
behavior of thin plates and shells is a well-developed fi
within the discipline of continuum mechanics. For a revie
of the methods and results see, for example, Ref.@12#. Buck-
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ling instability is always treated perturbatively. This level
analysis is sufficient for determining the buckling pattern
a function of the loading. Discussions of the post-buckli
behavior are highly problem specific, however. The auth
of Ref. @13#, for example, realized that in the limit of th
vanishing thickness, the diamond buckling pattern of a
lindrical shell consists of almost flat facets and almost sh
ridges. Understanding of the mechanism that governs
sharpness of the ridges and their energy is lacking, howe
A similar phenomenon was observed in strong axisymme
buckling of a spherical shell by Scheidl and Troger@14#. The
sharp circular ridge was identified as the boundary layer
joins the solutions in the two weakly deformed regions of t
shell. The boundary layer width was found to scale with t
square root the shell thickness.

It has been suggested recently by the author and ot
@15,16# that membrane stresses in a strongly crumpled ela
sheet are confined to a set of straight ridge singularities
folds. These ridge singularities, which were shown to ar
under quite general conditions, constitute another case o
boundary layer phenomena in thin plates. A scaling law
the ridge width as a function of the plate thickness had b
established with the use of an energy scaling argument@15#
and a boundary layer analysis of von Ka´rmán thin plate
equations@16#. Elastic energy was found to be confined
the ridges and to scale as 1/3 power of the size of the ri
for a fixed plate thickness. Other scaling laws such as
dependence of the ridge width and energy on the dihe
angle were also investigated.

In this article we extend the analytical and numeric
study of the ridges to explore whether the results obtai
for isolated ridges can be successfully applied to a netw
of interacting ridges in a crumpled elastic sheet. In Sec. II
introduce the concept of the ‘‘minimal ridge,’’ which refer
to the necessary and sufficient conditions leading to the
mation of the ridge singularity in the limit of the vanishin
plate thickness. Deviations from these ‘‘minimal’’ bounda
conditions in a crumpled sheet can then be treated, at lea
the first approximation, as perturbations to the minim
ridge. In Sec. III we discuss a ‘‘virial theorem’’ for ridge
that is a direct consequence of the energy scaling argum
It provides a useful tool in testing the confinement of elas
energy and the degree to which ridge interaction influen
e

1577 © 1997 The American Physical Society



sio

in
t
m
or
is
re
rg
h
o
r
ion
e
rk

rs
hi
le
. I
p
th
r t
u

fl
it
vo
la
r

th
-

e
s

tio

ld

r

y

nd
at
ss

res

i of
ation
ing

the
ld

ply
is
ives
e
uc-
fer-

or
sses
e
the
eet
ore
by

s
t is
the
dary

ath-
the

1578 55ALEXANDER E. LOBKOVSKY AND T. A. WITTEN
it. In Sec. IV we present a scaling argument and an exten
of the asymptotic analysis of the von Ka´rmán equations that
establish that there is a long-range decay of the longitud
ridge curvature and the transverse stress far away from
ridge. The energy in these ridge ‘‘echoes’’ is negligible co
pared to the energy of the ridge. A perturbation framew
for dealing with external forcing of the minimal ridge
presented in Sec. V. A particular case of the ridge comp
sion is studied in detail and the scaling of the elastic ene
correction is found. We show in Sec. VI that the small ec
strains and curvatures are sufficient to change the energy
far away ridge by a finite fraction. Numeric evidence co
roborating some of the claims made in the previous sect
is presented in Sec. VII. Finally, implications of the ridg
properties for the crumpling problem as well as future wo
are discussed in Sec. VIII.

II. THE ‘‘MINIMAL’’ RIDGE

To facilitate a study of the ridge singularity one must fi
write down equations that describe large deflections of t
plates. Second, an understanding of the conditions that
to the formation of the ridge singularity must be achieved
was suggested in Ref.@16# that the existence of the shar
vertices where both radii of curvature are of the order of
sheet thickness is a necessary and sufficient condition fo
formation of ridges. Ridges connect these points of high c
vature. A minimal way to create a ridge, therefore, Ref.@16#
argued, is to introduce sharp points at the boundary of a
rectangular piece of elastic material by requiring that
boundary follow a frame that has a sharp bend. The
Kármán equations that describe large deflections of thin e
tic plates can be used to deduce the asymptotic behavio
the ridge solution in this simple geometry.

Let us recall the boundary-value problem that exhibits
ridge singularity@16#. Consider a strip made of isotropic ho
mogeneous elastic material with Young’s modulusY and
Poisson ration. It has thicknessh and widthX. The points
are labeled by the material coordinates (x,y) so that x
P(2X/2,X/2). The strip extends in they direction. Normal
forces are applied to the long boundariesx56X/2 in such a
way as to force the boundary to follow a rectilinear fram
that has a sharp bend aty50. The bend dihedral angle i
p22a ~so thata50 corresponds to a flat strip!. The shape
of the strip and the elastic stresses are found from a solu
to the nondimensionalized von Ka´rmán equations

¹4f5@x, f #, ~1a!

l2¹4x52
1

2
@ f , f #. ~1b!

Here¹4[¹2¹2 and a set of square brackets@a,b# denotes a
symmetric contraction of the second derivatives of the fie
a andb,

@a,b#[eamebn~]a]ba!~]m]nb!

5
]2a

]x2
]2b

]y2
1

]2a

]y2
]2b

]x2
22

]2a

]x]y

]2b

]x]y
. ~2!
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Hereeab is the antisymmetric 232 tensor. Summation ove
repeated indices is implied.

All lengths are measured in terms of the strip widthX and
energies in terms of the bending rigidit
k5Yh3/12(12n2). The first von Ka´rmán equation is the
statement of the local normal force equilibrium. The seco
one has a purely geometric origin. It simply states th
Gaussian curvature2 1

2@ f , f # acts as a source for the stre
field. The small parameterl;h/X is proportional to the di-
mensionless thickness of the sheet. Heref (x,y) andx(x,y)
are the potentials whose derivatives give the curvatu
Cab and the two dimensional in-plane stressessab via

Cab5X22]a]b f , ~3!

sab5kX22eamebn]m]nx. ~4!

To clarify the meaning of the curvature tensorCab we note
that its eigenvalues are the inverses of the principal radi
curvature of the sheet. The sheets assumes a conform
that minimizes the elastic energy consisting of the bend
and the stretching parts~measured in the units ofk)

Ebend5E dx dy@¹2f #2, ~5a!

Estr5l2E dx dy@¹2x#2. ~5b!

There are two ways to supply boundary conditions for
von Kármán plate equations consistently. First, one cou
specify a Kirchoff-type condition on the functionsf andx
and their derivatives in terms of thematerial coordinates.
Second, a prescribed shape in theembeddingspace corre-
sponds to clamping the boundaries of the strip or sim
supporting them. Only the first type of boundary condition
tractable in general since the relation between the derivat
of the functionsf and x and the shape of the sheet in th
embedding space is nonlinear. In addition, even if one s
ceeds in translating the boundary conditions that make re
ence to the embedding space into the language off andx,
they will changewhen the thickness of the sheet is varied
external forces are applied. Therefore, only when the stre
and curvatures arespecifiedat the boundary can one mak
any analytical progress. We must remark at this point that
effective boundary conditions for a ridge in a crumpled sh
are not of this type. Stresses in the facets are nonzero. M
importantly, they depend on how each ridge is stressed
the rest of the sheet.

The minimal ridge boundary conditions are given in term
of the curvature at the boundary. The only requiremen
that there be two sharp points on each long boundary of
strip. The stresses and torques vanish at the boun
x56X/2 ~except at the singular pointy50)

]a]bx5]a]b f50. ~6!

The sharp vertices introduced at the boundary can be m
ematically expressed as singularity in the curvature at
boundary pointsy50 andx56X/2,
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55 1579PROPERTIES OF RIDGES IN ELASTIC MEMBRANES
]2f

]y2
5ad~y!. ~7!

The coefficienta in Eq. ~7! is exactly the bending anglea of
the frame which is equal to the half of the difference of t
dihedral angle of the frame fromp @16#.

The motivation behind seeking the minimal ridge is tha
number of the asymptotic properties of the ridge singula
are independent of the details of the boundary conditio
These include the exponents in the asymptotic thickn
scaling of the ridge curvature, elastic energy, and other qu
tities. Dihedral angle scaling exponents are also indepen
of the details of the boundary conditions@16#. Other ridge
properties, which do depend on the details of the bound
conditions~the longitudinal stress supported by a ridge,
example!, can then be found perturbatively, at least in t
first approximation. The following two sections explore a
ditional boundary-condition-independent asymptotic prop
ties of the minimal ridge that are useful in the investigati
of the effects of the crumpled sheet environment on the m
mal ridge.

III. VIRIAL THEOREM

A study of the minimal ridge@16# revealed that as the
thickness of the sheet vanished, the shape developed a
crease. Details of how that singular limit is approached w
found. In particular, the elastic energy concentrates in
small region around the ridge of the size given by the ch
acteristic ridge curvatureC. This fact allows one to construc
an energy scaling argument that yields the asymptotic s
ing behavior of the ridge curvatureC and the elastic energ
E @17#.

For the purpose of the energy scaling argument given
Ref. @17#, let us rewrite the expressions for the bending a
the stretching energies Eqs.~5! in terms of the principal
strains g1 and g2 and the principal radii of curvature
R1[1/C1 andR2[1/C2. We get@18#

Ebend5
1

2E dS@k~C11C2!
21kGC1C2#, ~8a!

Estr5
1

2E dS@G~g11g2!
21Gsg1g2#. ~8b!

G5Yh is the two-dimensional stretching modulus of a sh
of thicknessh made of elastic material with Young’s modu
lus Y. For the purposes of an energy scaling argument
may ignore the second terms in the expressions for the e
gies. The argument given by Witten and Li in Ref.@17#
estimates these energies in terms of a characteristic curv
C, for example, the transverse curvature in the middle of
ridge. According to that argument, if the length of the ridg
i.e., the distance between the vertices, isX, then the charac-
teristic straing;(CX)22 exists in the ridge region of width
C21 so that the total stretching energy in the ridge is a
proximately Estr;Gg2(X/C);GX23C25. Similarly, the
bending energy is given by the characteristic ridge curva
C, viaEbend;kC2(X/C);kXC. Reference@17# then argued
that C is the only parameter that characterizes the rid
Also, since the bending and the stretching energies both
y
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as a power ofC, they must be comparable when the to
energy is minimized. It immediately followed tha
C;(k/G)21/3X22/3;h21/3X22/3.

Another important conclusion of the energy scaling arg
ment emerges when we consider the derivative of the ene
with respect to the parameterC. It must vanish for the value
of C at which the minimum total energy is achieved. Sin
the energies depend on powers ofC we obtain the statemen

dE

dC
5
dEstr
dC

1
dEbend
dC

5
25Estr1Ebend

C
50, ~9!

which leads to a ‘‘virial theorem’’ for ridgesEbend55Estr
analogous to the virial theorem relating kinetic to potent
energy in celestial mechanics@19#. The validity of this virial
theorem rests on rather general grounds. The only requ
ments are that~a! the energy be rigorously expressible a su
of a bending and a stretching contributions and~b! each of
these varies as apowerof a free parameter, hereC. Thus a
failure of the virial theorem would indicate that the energ
did not vary with the anticipated powers ofC. Such a failure
would be expected ifC21 were comparable to other length
in the problem, such as the size of the sheetX.

We have performed a numerical test of the virial theor
using a lattice model of an elastic sheet after Seung
Nelson @20#. A numerical verification of the virial theorem
for the tetrahedral shape is presented in Sec. VI; here
only remark that the agreement is better than few perc
We must point out that whereas the virial theorem holds
the limit of the vanishing shell thickness, the numeri
showed that the ratio of the total bending and stretching
ergies is predicted by the virial theorem with a 10% accura
for ridges of the size to thickness ratio greater than 1000
a view of the crumpled membrane as a network of ridges
meet at vertices is correct, the tetrahedron virial theor
suggests that ridges in a crumpled sheet are well-defined
jects to which a scaling argument can be applied.

IV. LARGE-DISTANCE BEHAVIOR
OF THE RIDGE SOLUTION

To ascertain how much ridges influence one another
crumpled sheet one must determine how the boundary-la
solution, which is valid in progressively narrow regio
around the ridge midline, joins onto the flat solution far aw
from the ridge. The following development is motivated b
an observation that in a numerical implementation of a rid
the echo strains and curvatures persist far away from
ridge, despite the fact that most of the energy is concentra
into a region of asymptotically vanishing width. In fact, th
characteristic decay lengthL of the echo strains and curva
tures may diverge in thel→0 limit. In this section we
present an energy scaling argument for the existence
asymptotic scaling of the decay lengthL for the minimal
ridge configuration. This conclusion is put on a more rigo
ous footing by an extension of the asymptotic analysis of
von Kármán equations that includes the matching conditi
between the boundary layer and the large-distance solu
The scaling of the long-distance solution is later suppor
by numerical evidence.

We imagine cutting the ridge along its midline into tw
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1580 55ALEXANDER E. LOBKOVSKY AND T. A. WITTEN
identical parts. For the boundary-value problem defined
one of resulting semi-infinite strips, the ridge effectively i
troduces some complicated boundary conditions applie
the cut. The detailed form of these boundary conditions
not important for our purposes. It is significant, howev
that they have no singularities. For the purposes of an en
scaling argument, we imagine that the short side of the se
infinite strip is slightly bent so that its middle is displaced
the normal direction by an amounta as shown on Fig. 1.

This curvature decays to zero at a characteristic dista
L from the short end of the strip. This length is set by t
competition of the bending energy that favors quick decay
the curvature and the stretching energy that is smallest w
the decay length is large. The bending energy is given by
integral of the squared mean curvature over the area of
strip. If the decay lengthL is much larger than the vertica
displacementa, the dominant curvature is in thex ~short!
direction and is approximatelyCxx;a/X2. The bending en-
ergy is thenEbend;kCxx

2 XL;ka2X23L. Herek is the bend-
ing rigidity andXL is the area of the strip where the defo
mation exists. The strain created by the decay of
transverse curvatureCxx is due to the fact that the middle o
the sheet is inclined by a small angle of ordera/L and thus
the projected length of the line that bisects the strip is sho
than the length of the same segment of the boundary.
length mismatch creates a characteristic strain in they ~long!
direction gyy;a2/L2. Thus the stretching energy i
Estr;Ggyy

2 XL;kh22a4XL23. Here we used the fact tha
the 2D stretching modulusG is related to the bending rigid
ity via G;k/h2. Since both kinds of energies vary as
power ofL, they must be comparable when the total ene
Ebend1Estr is minimized. We thus obtain the scaling of th
decay lengthL;X(a/h)1/2. The displacementa is deter-
mined by the scaling properties of the ridge. The asympt
scaling ofCxx;a/X2 must be consistent with that of th
longitudinal ridge curvature]2f /]x2;l1/3/X. Therefore
a;Xl1/3, which yields the scaling for the decay lengthL
and the elastic energy in the ridge ‘‘wing’’ in thel→0 limit

L;Xl21/3, Ewing;kl1/3. ~10!

Notice that the energy in these ridge wings or echoes is n
ligible compared to the ridge energy that scales askl21/3

@15#. This energy is spread over an increasingly large ar
The scaling of the ridge wings can be also obtained fr

an extension of the asymptotic analysis of the von Ka´rmán
equations. Reference@16# determined the scaling of th
boundary-layer solution by rescaling all variables by a pow
of l as in Eq.~16! and then requiring that the highest d
rivative terms in Eqs.~1! be of the same order inl. The
exponents of thel factors that rescaledf andy were iden-

FIG. 1. Gentle curvature at the short end of a semi-infinite s
decays at a characteristic distanceL.
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tical due to the imposed boundary conditionf5auyu @this a
particular way to satisfy Eq.~7!#. Here we are seeking th
scaling of the large-distance solution that is pieced toge
with the ridge solution. Hence we can find such a solut
separately for either side of the ridge. This allows for ar
trary rescaling factors forf and y since the large distanc
behavior off in the case of the wing is no longer required
be linear iny. The matching condition on, say,]2f /]x2 for
some fixedy andl→0 requires that the wing solution fo
f scale withl in the same way as the ridge solution, i.e
f5l1/3f̃ , where f̃ is finite in thel→0 limit. The same rea-
soning applies to the asymptotic scaling ofx. Thus the re-
scaling transformation that is needed to determine the sca
of y in the wing solution is

f5l1/3f̃ , x5l22/3x̃, y5lbỹ, x5l0x̃. ~11!

The longitudinal directionx is not affected by the rescalin
transformation and the exponentb must be negative since
positiveb would reproduce the boundary layer scaling. Plu
ging the scaling ansatz Eq.~11! into the von Kármán Eqs.~1!
we obtain

l1/3F ]4 f̃

] x̃4
12l22b

]4 f̃

] x̃ 2] ỹ 2 1l24b
]4 f̃

] ỹ4G
5l22/311/322b@x̃, f̃ #, ~12a!

l222/3F]4x̃] x̃4
12l22b

]4x̃

] x̃ 2] ỹ 2 1l24b
]4x̃

] ỹ4G
52

1

2
l2/322b@ f̃ , f̃ #. ~12b!

Balancing the dominant terms we obtainb521/3 in con-
trast tob51/3 for the boundary-layer solution@16#. There-
fore, the decay lengthL of the wing strains and curvature
scales asXl21/3, in agreement with the prediction of th
energy scaling argument above. The leading-order beha
of the elastic energy in the wings can be found by substi
ing the rescaled variables into Eqs.~5!. We obtain
Ewing;kl1/3 in accord with the energy scaling argument.
Sec. VI we numerically verify the existence of the lon
range decay of the curvatures and stresses away from
ridge. The decay length is found to scale as predicted in
small-thickness limit.

V. RIDGE UNDER EXTERNAL FORCING

To assess the relevancy of the results obtained for
minimal ridge to ridges in a crumpled membrane, we m
first discuss ways in which the effective boundary conditio
for a ridge in a crumpled sheet differ from that of the min
mal ridge, and second, we ought to determine how th
differences affect such relevant ridge properties as the c
ficients in the thickness scaling laws. The additions a
changes to the rectilinear frame boundary conditions for
minimal ridge, which distinguish them from realistic boun
ary conditions for a ridge in a crumpled sheet, can consis
~a! stresses applied at the boundary,~b! torques applied at the
boundary, and~c! distributed normal forces that arise whe

p
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55 1581PROPERTIES OF RIDGES IN ELASTIC MEMBRANES
distant parts of the crumpled sheet press on the ridge.
In this section we discuss the linear response of the m

mal ridge to external perturbations.A priori, there is no rea-
son to believe that the asymptotic scaling of the line
response moduli is independent of the details of
boundary conditions that create and, more importantly, m
tain the ridge in the process of external loading. In oth
words, if we have chosen to maintain constant normal for
on the boundaries instead of maintaining constant curvat
the scaling of the linear-response moduli with the thickn
could be different. In fact, numerical evidence suggests
the scaling of the ridge stiffness with respect to compress
does indeed depend on the way boundary conditions
maintained as the ridge is being distorted. One must th
fore address the applicability of the results derived in t
section to the determination of the elastic response
crumpled sheets where the details of the boundary condit
are not known. We are unable to address this question
beyond suggesting that the linear response of a regular t
hedron considered in Sec. VII might reflect the situation
the crumpled sheet given our view of the crumpled me
brane as a collection of vertices, ridges, and facets.

A. Linear response to specified boundary forces

We present a treatment that allows one to construc
consistent perturbation expansion in the small external fo
that act at the boundary. The case of the distributed exte
forces can be treated in a similar manner that will be d
cussed below. This method of treating perturbations is by
means unique. It allows one, however, easily to estab
asymptotic scaling of the energy correction in the limit of t
vanishing membrane thickness. The essential idea is to re
mulate the problem in terms of some new functionsf i and
x i that are subject to theunchangedminimal ridge boundary
conditionsB0 but satisfy modified equations. Consider t
case when the full boundary forcesBext ~including the ap-
plied external forces! can be decomposed int
Bext5B01dB. Let f e and xe be the solution to the
boundary-value problemdB that includesonly the small ad-
ditional forces~i.e., the strip is not bent!. We then seek the
solution to Eqs.~1! subject to the full boundary conditions i
the form

f5 f i1 f e , x5x i1xe , ~13!

so thatf i andx i are subject to the same boundary conditio
B0 as the undisturbed ridge solution, but satisfy modifi
equations

¹4f i5@x i , f i #1@xe , f i #1@x i , f e#, ~14a!

l2¹4x i52
1

2
@ f i , f i #2@ f e , f i #. ~14b!

For a sufficiently small perturbation one can construct a
ries expansion around the unperturbed solution.

The equations for the first-order corrections to the rid
solution are linear and inhomogeneous. The coefficients
well as the source terms are proportional to the second
rivatives of the unperturbed minimal ridge solution. The
second derivatives are proportional to the stresses and cu
i-
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tures in the unperturbed ridge. According to Ref.@16#, the
dominant~dimensionless! stresses and curvatures are of o
derl21/3 in the region of the ridge of widthl1/3. Section IV
of this article determines the behavior of the stresses
curvatures in the rest of the sheet. The dominant n
dimensional stresses and curvatures in the ridge wings a
orderl1/3. These echo disturbances are spread over a la
region of sizeL;l21/3 so that the elastic energy in th
wings is negligible compared to the ridge energy. The c
rection to the ridge solution will possess the same qualita
features as the source terms in Eqs.~14! that determine them
Since the behavior of the source terms in Eqs.~14! is com-
pletely determined by the minimal ridge solution we pos
late that the perturbing energy is confined to the region of
ridge of widthl1/3. We will use this feature later to deter
mine the appropriate integration domain for the ridge ene
correction due to the external forces.

At this point we must mention how distributed force
could be included in this treatment. On the one hand,
could find the effect of the external forces on the flat st
with free boundaries and then proceed with the derivation
above. On the other hand, distributed normal forces can
directly added to the first von Ka´rmán equation~14a! since it
states the normal force balance on an infinitesimal elemen
the sheetdxdy. External in-plane forces lead to a redefin
tion of the Airy stress functionx. It may not be at all pos-
sible to define a stress function when in-plane external for
are present, however. External distributed torques result
redefinition of f if its definition is indeed possible. This i
certainly the case for small deflections when Monge coo
nates can be used@16#.

The method presented above of splitting the bounda
value problem into two is applicable when several conditio
are satisfied. First, note that if the equations were linear,
result of such splitting would be trivial since the equatio
for f i andx i would be the same as the original equations a
the result of the splitting the problem into two amounts to t
principle of superposition. Second, the perturbed bound
conditionsBext that include the external force must becom-
patible with the boundary conditionsB0. For compatibility
we require that both sets of boundary conditions are supp
in terms of the same functions~and derivatives! of f andx at
the boundary. Thus the change fromB0 to Bext amounts to a
change in the boundaryvaluesof the specified functions. We
denote the change in these boundary values schematica
dB[Bext2B0. This condition ensures that the boundar
value problemdB for f e and xe is well posed. Third, we
assumed that the part of the boundary conditionsB0 that
create the ridge is unchanged in the process of loading.

It is unknown to us whether these conditions are satis
in a crumpled sheet. We will see below that the predict
based on this method, for the linear response to point for
acting at the vertices of a regular tetrahedron, is incorrec
possible explanation is that precisely the condition forB0 to
be held constant in the process of loading is violated in
tetrahedron. The effective boundary conditions for ea
ridge in a tetrahedron, the stresses in the facets, for exam
may change in proportion to the forces acting at the vertic
However, it might be possible to modify the conclusions
this method for a general case of changing boundary co
tions. Certain features that emerge from the perturba
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scheme are likely to survive for a general loading. In parti
lar, the effect of the perturbation is likely to be confined
the ridge region as above.

Another limitation of this method stems from the arb
trariness of the choice of the external load. In other words
all possible ways to load the ridge, the one in the ridg
‘‘weakest direction’’ is relevant to determination of the ela
tic response of crumpled sheets. It may happen that du
high symmetry, the chosen load does not ‘‘have a compon
in the weakest direction’’ of the ridge. As a result, the sti
ness of the ridge in response to such a load is qualitativ
greater than its stiffness with respect to a generic load.
concepts in quotes above can be made rigorous. We dis
various types of loading in Sec. V D with regard to the
relevance to the determination of the weakest ridge modu

B. Point forces applied at the ridge vertices

The analysis can be carried further when the external
fluence is characterized by a single small dimensionless
rameterF̄. In particular, for most of the following develop
ment, we explicitly consider the case of compression of
ridge by a pair of point forces acting at the ridge vertices
shown on Fig. 2. Presumably, there are loads for which
asymptoticl scaling of the solution to the ‘‘flat’’ problem
f e and xe is different from that in the case of the poin
forces. This, however, introduces but a few changes in
following derivation.

A flat strip compressed by a pair of point forces acting
the boundary remains flat for small enough forces. In ad
tion, the stress function is linear in the applied forceF̄,

f e~x,y!50, xe~x,y!5F̄l21f~x,y!, ~15!

where the functionf(x,y) depends neither on the forceF̄
nor on the dimensionless thicknessl. Above a buckling
threshold for the compressing forces, the flat solution
~15! becomes unstable to small perturbations. Another bu
led solution exists and may have a different dependence
the forceF̄. This does not affect the linear-response analy
however, since the flat solution is unique for smallF̄.

We proceed with the boundary-layer analysis followi
Ref. @16#. This involves rescaling all variables by a power
l,

f̃ i5lb f i , x̃ i5ldx i , x̃5l0x, ỹ5lby, ~16!

FIG. 2. Long strip of widthX, bent by normal boundary force
~one-quarter of which are shown! and compressed by forcesF ap-
plied at the vertices.
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with d52/3 andb521/3 chosen in such a way as to ba
ance the powers ofl in front of the terms in the Eqs.~14!
that are relevant in the boundary layer. As in Ref.@16#, we
seek the solution to the rescaled equations as a series ex
sion inl2/3,

f̃ i5 f i
~0!1l2/3f i

~1!1l4/3f i
~2!1•••, ~17a!

x̃ i5x i
~0!1l2/3x i

~1!1l4/3x i
~2!1•••. ~17b!

The equations for the zeroth order termsf i
(0) andx i

(0) read

]4f i
~0!

] ỹ4
5@x i

~0! , f i
~0!#1l1/3F̄@ f i

~0! ,f#, ~18a!

]x i
~0!

] ỹ4
52

1

2
@ f i

~0! , f i
~0!#. ~18b!

Let us examine the source term in detail,

@ f i
~0! ,f#5

]2f i
~0!

] x̃ 2

]2f~ x̃,y!

]y2
1l22/3

]2f i
~0!

] ỹ 2

]2f~ x̃,y!

] x̃ 2

22l21/3
]2f i

~0!

] x̃] ỹ

]2f~ x̃,y!

] x̃]y
. ~19!

The derivatives off are evaluated atx5 x̃ and y5l1/3ỹ.
Since the rescaled variables are finite in thel→0 limit,
f ’s behavior neary50 determines the leading-order beha
ior of its derivatives in Eq.~19! in thel→0 limit. The mag-
nitude of the perturbation term is thus governed
F̃5lrF̄, where the value of the exponentr is determined by
the behavior of the derivatives off near the ridge. For ex-
ample, suppose all derivatives off are finite aty50. This is
indeed the case for the compression of a strip by a pai
point forces@21#. Then, the second term in Eq.~19! domi-
nates so thatr521/3. This behavior need not be gener
since the derivatives off may vanish aty50 by reasons of
symmetry. Then the second term in Eq.~19! may vanish so
that a higher-order term inl dominates. This results in mor
positive value ofr.

The solutionf i
(0) andx i

(0) to Eqs.~18! can be sought as a
series expansion in the small parameterF̃. Thus the zeroth-
order term in thel2/3 expansion of the solution to the vo
Kármán equations in the presence of the external forces
ing on the ridge is given by~up to quadratic terms inF̃)

f ~0!5 f i
~0!1 f e.l1/3~ f 01F̃ f 11F̃2f 2!, ~20a!

x~0!5x i
~0!1xe.l22/3~x01F̃x11F̃2x2!1l21F̄f.

~20b!

The terms linear inF̃ completely characterize the linear re
sponse of the ridge to this particular type of loading. In ge
eral, according to the postulated confinement property of
perturbing energy, second derivatives off 1 andx1 possess
the same qualitative features as those off 0 andx0. In par-
ticular, the dominant second derivatives off 1 and x1 are
significant in the ridge region of characteristic widthl1/3.
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Substituting theF̃ expansions into Eqs.~5!, we obtain the
expressions for the bending and stretching energies acc
up to terms of orderF̄2,

Ebend.E0
b1E1

bF̄1E2
bF̄2, ~21a!

Estr.E0
s1E1

sF̄1E2
sF̄2. ~21b!

The energy of the unperturbed ridge as in Ref.@16# is
E0
b;E0

s;l21/3. OtherEi ’s are sums of integrals that involv
second derivatives off i , x i , andf. For example,

E2
sF̄2.l2E dx̄dȳ~l22/3F̃¹2x11l21F̄¹2f!2

5F̄2E dx̄dỹ Fl21/312rS ]2x1

] ỹ 2 D 21lrS ]2x1

] ỹ 2 D¹2f G
1F̄2E dx̄dȳ~¹2f!2. ~22!

We must remark that the terms quadratic inF̄ that involve
f 2 andx2 cancel each other so that the linear inF̄ correction
to the potentialsf andx determines the quadratic correctio
to the total energy. This situation is common to all linea
response problems.

The leading-order behavior ofE1 and E2 in the small
thickness limit can be found by assuming, as before, that
corrections to the ridge solutionf 1 andx1 are confined to the
ridge region. The domain of integration inȳ in the integrals
involving these ridge corrections as in Eq.~22! is thus of
orderl1/3. We can therefore obtain the asymptotic scaling
the coefficients in Eqs.~21!. The bending and the stretchin
pieces scale withl in the same way. The correction to th
total energy isE2F̄

2

E1
~b,s!;A1

~b,s!l21/31r1B1
~b,s! , ~23a!

E25E2
s1E2

b;A2l
21/312r1B2l

r1C2 , ~23b!

whereA1
s, etc., are arbitrary coefficients that do not depe

on l in the l→0 limit. If external stresses and curvatur
given by the derivatives ofxe and f e , respectively, are zero
on the ridge line and do not increase sufficiently rapid
away from the ridge, the exponentr will be positive and
large so that the energy correction will be dominated by
last terms in the expressions forE1 andE2. These terms are
identical to the energy of a flat sheet acted on by the exte
forces. If r,1/6, however, the energy change is domina
in the small-thickness limit by the interaction of the ridg
with the external forces given by the corrections to the rid
solution f 1 ,x1.

Equation~23! predict that both kinds of energy separate
depend linearly onF̄. We demonstrate numerically in Se
VII that upon application of point forces at the ridge vertice
each energy correction does indeed depend linearly on
applied force with the coefficient that scales withl as pre-
dicted. The total energy can depend only on the square o
applied force since the boundary stresses and torques va
for the undisturbed ridge so that the work done by the ex
nal force is exactly the change in the ridge’s elastic ener
ate
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This means that the linear terms inF̄ in the expressions~23!
for Ebend andEstr must cancel each other, i.e.,E1

s52E1
b to

all orders in thel2/3 expansion (A1
s52A1

b , B1
s52B1

b , etc.!.
The numerics reported in Sec. VII convincingly show tha
is indeed the case. Thel scaling of the ridge’s elastic con
stantE2 given in Eq.~23b! has also been shown to be co
sistent with the numerics.

When external forces distort the ridge, additional longi
dinal strain results. We first define a ‘‘vertex-to-vertex
strain gv as the amount by which the vertices move clos
together divided byX. We compare this quantity with the
additional strain in the sheet that is the change
gxx.(1/Y)]2x/]y2. It can be found from the first order in
F̃ correction tox Eq. ~20!. We can infergv by inspection of
the energy-force relation, since the work done byF̄ is the
change of the energyE2F̄

2,

gv;lE2F̄;~A2l
2/312r1B2l

11r1C2l!F̄[Gridge
21 F̄,

~24!

whereas from Eq.~20! we obtain the change in the longitu
dinal strain in the sheet

gxx
add;l2/31rF̄. ~25!

Equation ~25! gives another way to estimate the expone
r numerically.

This way of looking at the problem motivates the follow
ing consistency check of the perturbing energy confinem
An additional way of determining thel scaling of the total-
energy correction viaE2F̄

2;G(gxx
add)2wX/k;l22/312rw̄

must reproduce the scaling ofE2 obtained by explicit inte-
gration as in Eq.~23!. Here w̄5w/X is the characteristic
width of the region in which the perturbing energy is co
fined. Calculated by this method, the widthw̄;l1/3 is inde-
pendent of the exponentr and scales withl in the same way
as the ridge width.

C. Buckling threshold

An important property of the ridge solution that is ina
cessible by this simple perturbation scheme is the force
quired tobucklethe ridge. In principle, one must solve Eq
~18! and then perform a linear stability analysis of the so
tion to determine when the ridge will buckle. This task
intractable analytically due to the complexity of the equ
tions. The asymptotic scaling of the buckling threshold m
nevertheless, be anticipated using the following argum
The undisturbed ridge solutionf 0 and x0 is linearly stable
against shape perturbations. Therefore, changes in this s
tion that destroy stability are likely to be of the order of th
solution itself. To induce such changes, the additional te
in Eqs. ~18! for the loaded ridge must be comparable
magnitude to the rest of the terms in the equations. Hence
parameterF̃ that controls the magnitude of the addition
terms in Eqs.~18! has to be of order unityF̃;1. This means
that in the case of ridge compressed by vertex forces,
buckling threshold force scales as

F̄crit;l2r. ~26!
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This argument has a serious flaw. The scaling of the
problem solutionf e andxe may be different for large force
F̄ since additional solutions to the ‘‘flat-problem’’ may ap
pear. This may result in a different value of the exponenr
and thus a different scaling of the buckling threshold. T
conjectured scaling of the critical load has two importa
implications. First, the additional longitudinal sheet strain
the buckling threshold given by the Eq.~25! is of order of the
strain that existed in the ridge prior to compression. Seco
the ridge energy correction at the buckling threshold value
the external force has the same asymptotic thickness sc
as the energy in the undisturbed ridge. This conclusion
supported numerically in Sec. VII. A corollary of this stat
ment is that the applied load on a ridge does not hav
decisive effect on its energy. The ridge buckles when
energy changes by a finite fraction. We will see in the f
lowing subsection that this argument applies to other type
loading as well. Therefore, any two unbuckled ridges in
crumpled sheet with comparable lengths and dihedral an
should have comparable energies, even though they have
ferent loads.

D. Other types of loading

To describe elastic properties of the ridge in a way tha
relevant to determination of the structure of the crump
sheet we must investigate other types of loading. We fi
consider other loads that can be treated with the perturba
scheme developed above. These include normal forces a
on the minimal ridge. Having done that, we anticipate tha
a crumpled sheet the assumptions that lead to the sca
laws for the energy corrections are violated.

Let us first use the perturbation scheme developed ab
to discuss other loads. The goal is to determine the wea
modulus of the ridge alluded to above. The perturbat
treatment of this section relates the linear response of the
sheet to the linear response of the ridge. We therefore an
pate that any perturbation that causes a large response
flat sheet will also be relevant to the determination of
weakest ridge modulus. Since the bending rigidityk;Yh3

of an elastic sheet vanishes faster in theh→0 limit than the
stretching modulusG;Yh, any perturbation that causes th
sheet to bend will create a large response. We therefore
sider normal forces on a ridge presented on Fig. 3.

Let us first describe the effect of these forces on a
sheet. The scaling of the curvature potentialf e with force

FIG. 3. Same strip bent by normal forces applied at the vert
as well as the middle of the ridge.
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F can be found by noting that the torque of the external fo
is balanced by the flexural moment of the sheet due to
curvaturekX]2f e /]x

2;FX. Therefore,f e5l21F̄w is con-
trolled by a single dimensionless parameterl21F̄. Since the
sheet is bent in the short direction, we can use the argum
of Sec. IV to show that this curvature persists up to a d
tance of orderL;Xl21/3. The treatment of Sec. IV also
determines the stresses in the strip. The dominant compo
of the stress issyy;Yh(a/L)2, where a; f e;Xl21F̄.
Hence the stress is of second order in the applied forceF̄.
The modified von Ka´rmán equations~14! will thus have a
first order inF̄ source term due tof e and a second order in
F̄ source term due toxe . One can now repeat the steps th
lead from the modified von Ka´rmán equations~14! via a
rescaling transformation Eq.~16! to the perturbation expan
sion Eqs.~21!. The only difference is the form of the fla
solution f e andxe .

With knowledge of the small-y behavior of the function
w, one can determine the exponentr that controls the ridge
stiffness under this particular type of loading. The importa
second derivative]2w/]x2 is finite at the ridge. Therefore
r524/3. This means first that the linear response of
ridge to normal forces is qualitatively greater than to in-pla
forces. Second, the normal force required to buckle the ri
F̄crit;l4/3 is much smaller than in the case of longitudin
compression. The conjecture that the ridge buckles when
energy changes by a finite fraction can be made on the s
basis as for the case of the longitudinal compression of
ridge.

We have thus shown that, depending on the symmetr
the applied load, the linear response of the ridge can v
considerably. It is unknown to us at this point whether t
resistance of a crumpled sheet to further compression is
termined solely by the weakest ridge modulus. It is certai
not inconceivable to imagine a situation in which a numb
of ridges in a crumpled sheet that form a kind of a ‘‘stru
tural skeleton’’ are loaded in such a way that their line
response is given by a stronger modulus.

Let us finally discuss the applicability of the perturbatio
scheme developed here to ridges in a crumpled sheet.
anticipate the boundary stresses for the ridge in a crump

s

FIG. 4. Ratio of the total bending to the total stretching ene
vs the dimensionless thicknessl for a regular tetrahedron of edg
length 100b. The asymptotic limit of 5 is approached fo
l.1024.
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55 1585PROPERTIES OF RIDGES IN ELASTIC MEMBRANES
sheet to change by an amount proportional to a load. W
cannot, therefore, utilize the perturbation method, develop
in this section, to determine the scaling of the energy corre
tion and the buckling threshold. Certain features of the co
clusions that emerged from the perturbation analysis a
likely to persist, however. We anticipate that the perturbin
energy is confined to the ridge region. In addition, th
change in the ridge longitudinal strain~the dominant ridge
strain! must be proportional to the movement of the shee
caused by the external forces. The vertex-to-vertex strain
an example of such movement. The coefficient of propo
tionality is likely to scale as a power of the thicknessl. In
most situations, one can make a reasonable guess to w

FIG. 5. Thickness dependence of the dimensionless coefficie
E2 in E/k;E01E2F̄

2 for the strip of dimensions 43b3100b
~squares! and tetrahedron of edge length 50b ~triangles!. The solid
lines are fits according to Eq.~23! with r521/3 for the strip and
r50 for the tetrahedron. Inset: plot of the total energy of a strip~in
units of the bending rigidityk) as a function of the applied force
F̄. The solid line is the quadratic fit to the first five points. Dashe
vertical line marks the buckling threshold.

FIG. 6. CoefficientE1
b of the linear dependence of the total

bending energy in units ofk on the forceF̄ for the 43b3100b strip
~squares! and the tetrahedron of size 50b ~triangles!. The solid lines
are again fits according to Eq.~23! with the same values of the
exponentr as in Fig. 5.
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that power is. For example, the numerics reported in Sec.
show that when a tetrahedron is compressed by point fo
applied to its vertices, the additional ridge strain scales in
same way withl as the vertex-to-vertex strain. This assum
tion, together with the notion of the perturbing energy co
finement, is sufficient to determine the scaling of the ene
correction.

VI. RIDGE INTERACTION

Ridges in a crumpled elastic sheet can interact in t
distinct ways. First, distant parts of the sheet can pr
against a ridge. This type of interaction can be discus
using the framework developed in Sec. V. However, a qu
titative understanding of the distribution of forces throu
the crumpled sheet is needed. Second, nearest-neig
ridges can influence one another through the strains and
vatures they create in the sheet. We will concentrate on
particular aspect of the ridge interaction since we are abl
obtain quantitative conclusions.

Two length scales characterize a ridge. Most of t
ridge’s elastic energy is confined within a strip of wid
w;Xl1/3 around the ridge. Small curvatures and strains p
sist up to a distanceL;Xl21/3 from the ridge. In a crumpled
elastic sheet typical distances between ridgesD are of the
order of their length:D;X. Assuming that all ridges have
the same characteristic sizeX, we are led to a conclusion tha
w!D!L for most ridges. Therefore, the small residu
strains and curvatures of a ridge will influence its neighb
in a way that is calculable within the framework of Sec. V.
fact, in Sec. IV we argued that there is a small transve
straingyy;a2/L2;l4/3 present in the sheet. This strain ca
be thought of as resulting from an external forceF̄;l1/3 that
is stretching the sheet in the direction transverse to the rid
Therefore, the stress potential functionf has a finite deriva-
tive ]2f/]x2 at the ridge. According to the prescription o
Sec. V,r521/3, so that the energy correction scales as

dE;kl21/312rF̄2;kl21/3. ~27!

nt

FIG. 7. Dimensionless coefficientGridge
21 of the linearF̄ depen-

dence of the ‘‘vertex-to-vertex’’ strain created by the external co
pressive forceF̄ for the strip ~squares! and the tetrahedron~tri-
angles!. Solid lines are fits according Eq.~24!. The tetrahedron
ridge stiffnessGridge is qualitatively greater in the limit of the van
ishing thickness.
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FIG. 8. Roof-shaped strip~left! collapsed by
corner forces to obtain two stable buckled shap
as viewed obliquely from above. The value of th
vertex forces must be reduced below the buckli
threshold in order to achieve stability. Shading
proportional to the stretching energy density.
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Note that the energy correction scales the same way witl
as the ridge energy. This means that even though the r
wings carry a negligible amount of energy, they cause
total energy of the system to be changed by a finite fract
This is not surprising since the transverse echo stresses
cussed in Sec. IV are of the same magnitude as the transv
stresses in the ridge. The interaction energy of ridges
strip geometry is studied numerically in the following se
tion. It is found to be a few percent of the ridge energy in t
small-thickness limit.

VII. NUMERICAL SIMULATION
OF THE RIDGE PROPERTIES

In this section we use a lattice model of an elastic shee
Ref. @20#. This model was used by the authors and other
verify a number of the ridge scaling properties@15,16#. The
sheet is modeled by a triangular lattice of springs of equi
rium length b and spring constantK. A bending energy
J(12n̂1•n̂2) is assigned to each pair of adjacent lattice
angles with normalsn̂1 and n̂2. When the strains are sma
compared to unity and radii of curvature are large compa
to the lattice spacingb, this model bends and stretches lik
an elastic sheet of thicknessh5bA8J/K and bending modu-
lus k5JA3/2. We chose a discrete model of this sort ove
conventional finite element scheme because the impleme
tion of disclinations and boundary conditions is somew
more straightforward in the lattice model. As a tradeoff,
must strictly control the finite-size lattice effect. Referen
@16# makes a careful study of the lattice effects.

Ridges can be created either by imposing appropr
boundary conditions to a long strip of the simulated mate
or by introducing disclinations. We studied both types
shapes. First, we applied forces to the particles located on
long boundaries of a strip so as to constrain them to lie
different planes on each side of the ridge. The angle betw
the normals to these planes is 2a. Second, we connected
triangular piece of this simulated material into a regular t
rahedron so that each edge then became a ridge. A sequ
of minimum energy shapes of different dimensionless thi
nessl were obtained with the use of a conjugate gradi
routine. External forces were then applied to the ridge ve
ces and the linear response to compression was measur
well as the buckling characteristics.

We first tested the virial theorem that predicts that if all
the elastic energy is concentrated in the ridges then the
bending energy is five times the total bending energy. In F
4 we plot the ratio of the total bending to total stretchi
ge
e
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energies for the tetrahedron with edge length of 100b. This
ratio approaches the predicted value ofEbend/Estr55 within
a few percent for the values of dimensionless thickn
l<1024. For the smallest values ofl on the plot the ratio
deviates from the asymptotic value due to lattice effec
Thus the virial theorem is obeyed within our measurem
precision.

The predictions of the scaling behavior of the ridge und
external loading were done using a 43.3b3100b strip bent
by boundary forces as well as a tetrahedron with an e
length of 50b. We applied point forces to the vertex particle
in either case in such a way as to compress the ridge. We
compressed a flat sheet to verify that stresses are finite on
line y50. Then, the prediction for the exponentr defined in
Sec. V isr521/3. The correction to the total elastic energ
was found to depend onF̄2 as anticipated. The coefficien
E2 of F̄

2 should scale withl according to Eq.~23!. Figure 5
is a plot ofE2 as extracted by a quadratic fit of the correcti
of the total elastic energy per ridge for the tetrahedron~tri-
angles! and the strip~squares! as a function ofl. The inset of
Fig. 5 shows the fit to the quadratic dependence of the t
energy on the applied force.

The numerically accessible range ofl does not allow for
a direct determination of the exponentr from the data. How-
ever, the strip data are consistent with the prediction
r521/3. However, the tetrahedron data are consistent w
r50 and inconsistent withr521/3 when fitted with the
scaling form Eqs.~23! and ~24!. A given load appears to
store qualitatively less energy for the tetrahedron than for
strip, i.e., the tetrahedron is qualitatively stiffer. This diffe
ence might be explained by noticing that in the case of
strip, the boundary shapeB0, which maintained the ridge
was fixed under the loading, whereas the effective bound
shape for the ridges in a tetrahedron changes when force
applied. In addition, tangential stresses act on the the ef
tive ridge boundary in a tetrahedron, whereas only norm
boundary forces are present in the strip geometry. Theref
the decomposition method of Sec. V cannot be used for
tetrahedron. The scaling of the tetrahedron stiffness imp
that the additional strain due to the action of the compress
force is confined to the ridge region and scales the same
with the thicknessl as the vertex-to-vertex strain. Thes
results are different from the situation in the strip. There,
vertex-to-vertex strain may be relaxed through bending
that the additional strain in the sheet is qualitatively wea
than the movement of the vertices would dictate if such
laxation were not possible.
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In Fig. 6 we plotE1
b for both shapes extracted by a linea

fit of the total bending energy as a function ofF̄. The data
are consistent with the prediction Eq.~23! for the same val-
ues of the exponentsr as obtained from the scaling ofE2.
Finally, we graph the coefficientGridge

21 of the linear depen-
dence of the induced vertex-to-vertex strain on the appli
force in Fig. 7. The data are consistent with the predictio
Eq. ~24!. For comparison let us consider a flat strip. Its d
mensionless stiffnessG21 to compression diverges asl21,
whereas its stiffness to bending vanishes asl.

An important question that needs to be settled numerica
is the buckling threshold of the ridge. The vertex forces we
increased until the shape underwent a radical change. T
seems to imply that buckling is a first-order phenomenon.
other words, there are several stable shapes other than
ridge for a range of compressive forces below the bucklin
threshold. Figure 8 shows two such buckled bent str
shapes. A buckled tetrahedron shape shown in Fig. 9 exhib
a more complex buckling pattern. Shading is proportional
the stretching energy density.

In Fig. 10 we plot the ratio of the energy correction to th
total elastic energy of the undisturbed ridge at the bifurcatio
point of the loaded tetrahedron. This ratio seems to be a
proaching a constant in thel→0 limit, which would agree
with the prediction that the energy of a ridge can only chan

FIG. 9. Tetrahedron lattice~left! collapsed by application of
vertex forces~right!. A complicated buckling pattern results.

FIG. 10. Ratio of the energy correction at the buckling thresho
of the tetrahedron of edge length 50b to the energy of the undis-
turbed tetrahedron as a function of the dimensionless thicknessl.
The empirically drawn solid line suggests that the energy correcti
varies roughly linearly withl.
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by a finite fraction before it buckles. More numerical tes
are needed, however, to establish this assertion firmly.
did not attempt to characterize the buckling of the tetrah
dron in further detail.

The large-distance behavior of the ridge wings was tes
by using a long 52b3500b strip. Figure 11 displays the
transverse curvatureCyy and the longitudinal curvatureCxx
in units ofX21 along a perpendicular bisector of the ridge.
long, almost linear, decay of theCxx is evident, whereas
Cyy decays rapidly to zero. We extracted the decay len
L for a sequence of ridges of varyingl and plotted the
results in Fig. 12 versus the predicted scaling variab
l21/3. The linear fit shows that the data agree well with th
prediction.

We next investigated the question of ridge interactio
Two parallel ridges were created in the strip geometry. W
varied the distance between the ridgesD as well as the thick-
nessl. Detailed interaction features that are shown in F
13 for the 100b3130b strips for a fixedl50.0002 depend

d

n

FIG. 11. Transverse ridge curvatureCyy ~squares! and longitu-
dinal curvatureCxx ~circles! in units ofX21 along the perpendicular
bisector of the ridge vs the distance from the ridge for
52b3500b strip.

FIG. 12. Decay length of the longitudinal curvatureL in the
units of X vs the predicted scaling variablel21/3 for a
52b3500b strip.
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on the relative orientation of the ridges. If they are bo
concave~or both convex! as seen by looking down on th
sheet from above~configurationU!, they repel at short dis
tances and attract at long distances. The situation is reve
if the ridges have different orientation~one is folded up and
the other one down, or vice versa: configurationZ!.

The signs of the interactions can be readily understood
short distances, the two interacting ridges become a si
ridge. If the two ridges have opposite signs, there is no ri
when they are brought together and thus the total energ
zero. If they have the same sign, the combined ridge
twice the dihedral anglea as the constituent ridge. Sinc
ridge energy scales asa7/3 @16#, the energy atD50 should
be 27/3/2 times that atD5`. The behavior of the interaction
energy at largeD is also understandable. Here the deform
tion between the ridges is minimal. For opposite sign ridg
~configurationZ!, the curvature fields created in the regio
between the ridges have opposite signs. For same-sign ri
shaped liket, deformations caused by the two ridges at t
midpoint reinforce each other. In a medium with a quadra
energy functional, such reinforcing deformations lead to
reduction in energy. Conversely, two opposite-sign ridges
a Z configuration have opposing deformations at the m
point. This yields a repulsion.

For a complete account of the interaction energy, we m
consider energy stored not only between the ridges,
within each ridge due to the presence of the other. To inv
tigate such effects we made a long 52b3500b strip bent by
90° in two places. This creates two parallel ridges in
same strip whose relative orientation can be changed. In
14 we plot the difference of the elastic energy of the t
ridges and twice the energy of one ridgeDE divided by the
energy of one ridgeE as a functionl for a fixed interridge
separation ofD51.15X. The lower curve corresponds to th
configuration in which the two ridges have the same ori
tation ~U! and the upper curve corresponds to the ridges
the opposite orientation~Z!. The results are consistent wit
the prediction that this ratio must approach a finite cons
in thel→0 limit. Therefore, the prediction that ridge inte

FIG. 13. Total elastic energy of a two-ridge configuration in t
units of k found from a 100b3130b strip bent in two places by
90° vs the distance between the ridgesD. The thickness is
l50.0002. Squares correspond to the ridges that have the s
orientation~configurationU!, whereas the triangles correspond
two ridges of the opposite orientation~configurationZ!.
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action changes the system by a finite fraction is convincin
confirmed.

VIII. DISCUSSION

In this article we explored properties of the ridge sing
larity in thin elastic plates that may be relevant to a quan
tative analysis of crumpled elastic membranes. A virial the
rem that relates the bending and stretching contribution
the total elastic energy has been derived from an energy s
ing argument and verified numerically. The virial theore
affords a useful test of elastic energy confinement. Wh
most of the elastic energy is confined to the ridges the vi
theorem predicts the ratio of the bending and stretching
ergies in the small-thickness limit.

We have developed a perturbation expansion scheme
allows one to calculate the effects of external forces on
scaling properties of the ridge singularity. We found that t
problem can be decomposed into first solving for the eff
of the external forces on the flat sheetxe and f e and incor-
porating this solution into the equations that describe
ridge singularity in a way that is particularly convenient for
perturbation expansion. This method allows one to determ
the scaling of the energy correction. This correction sca
with the applied force squared and also a power of thickn
that depends on the details ofxe and f e in the ridge region.
Two different types of scaling were identified. Generally,
imposed strain comparable to the strain in a ridge stores
energy comparable to the ridge energy. This leads to an
fective modulus of orderEridge/X

3;Yl8/3. A weaker modu-
lus is possible for isolated ridges with stress-free bounda
since the imposed strain can be relaxed in ways not ac
sible to ridges in a crumpled sheet.

A feature common to all types of ridge loading is that t
ridge solution becomes unstable when the external for
change the energy of the ridge by an amount that is com
rable to the original undisturbed ridge energy. This discov
gives justification to a claim that the energy of a crumpl

me

FIG. 14. Ratio of the difference of the total energy of two ridg
and twice the energy of one ridgeDE divided by the energy of one
ridge E as a function ofl for a fixed interridge separation
D51.15X. The data are obtained from simulation of a 52b3500b
strip bent in two places. The lower curve corresponds to the c
figurationU in which the two ridges are have the same orientat
and the upper curve corresponds to the ridges of the opposite
entationZ.
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55 1589PROPERTIES OF RIDGES IN ELASTIC MEMBRANES
elastic sheet can be found once the ridge network is cha
terized in terms of the ridge sizesXi and their dihedral angle
u i @16#.

We have found that the large distance part of the rid
solution that matches onto the boundary-layer solution
hibits scaling with the thicknessl. We have established b
an energy scaling argument as well as an extension of
scaling analysis of the von Ka´rmán equations that smal
stresses and strains persist up to a distanceL;Xl21/3 away
from the ridge. Using the framework developed in this pap
we found that the main implication of the ridge wings is th
ridges located at distancesD!L away from each other in
teract in a way that changes their total energy by a small
finite fraction.

In the future we plan to build a model for a quantitati
an

e
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characterization of the ridge network in crumpled sheets
incorporates the properties of ridges uncovered in this art
and makes a prediction for the ridge size distribution. W
hope to characterize the buckling behavior more thoroug
and verify our hypothesis that the generic scaling of
modulus is that of the tetrahedron studied here.
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