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Molecular spin in a fluid undergoing Poiseuille flow

Karl P. Travis and D. J. Evans
Research School of Chemistry, Australian National University, G.P.O. Box 414, Canberra, Australian Capital Territory 2601, Au

~Received 30 August 1996!

We use nonequilibrium molecular dynamics to investigate shear induced molecular rotation in a diatomic
fluid undergoing planar Poiseuille flow. We have compared the angular velocity and translational streaming
velocity profiles with the predictions of Navier-Stokes hydrodynamics generalized for systems that possess
spin. We find that the angular velocity profile is in general agreement with the profile predicted from the
Navier-Stokes theory except for some features close to the walls which are likely to be a result of molecular
packing.@S1063-651X~97!00102-5#

PACS number~s!: 03.40.Gc, 02.50.2r, 51.10.1y, 05.70.Ln
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I. INTRODUCTION

Classical Navier-Stokes theory strictly applies only
simple fluids composed of inert gas atoms. This is beca
Navier-Stokes hydrodynamics takes no account of the st
ture or the possible alignment of the particles comprisin
fluid. The most well developed extension of Navier-Stok
hydrodynamics, which is capable of describing the flow
fluids composed of structured particles, is the theory wh
describes the flow of nematic liquid crystals@1–3#. This ne-
mato dynamics treats the constituent molecules as rigid b
ies and, in its most common form, the theory assumes
nematic order parameter is a constant of the motion. Th
two assumptions greatly simplify the theory. The most co
plex molecular fluids are those in which the nonequilibriu
nematic order parameter is not constant and where the
stituent molecules are relatively flexible, allowing shear
duced changes to the internal conformation.

In this paper we will deal with the generalized hydrod
namics of fluids whose order parameter is not constant
whose constituent molecules can be regarded as clas
rigid bodies. The hydrodynamics of such fluids was dev
oped first by Grad@4# and then later by Snider and Lewchu
@5#. The resulting generalized Navier-Stokes equations h
the advantage that for certain idealized flows, such as
planar Couette and Poiseuille flow, the solutions are anal
and therefore amenable to testing by computer simula
experiments.

Recently, there has been great interest in studying
flow of fluids through solid pores using nonequilibrium m
lecular dynamics. Most of these simulations have concer
simple fluids, i.e., those composed of structureless parti
@6–15#. While some simulations of molecular fluids hav
been carried out@16–18#, the microrotation or spin of the
molecules has been overlooked.

In this article we perform simulations of a liquid com
posed of rigid diatomic molecules undergoing planar P
seuille flow. We analyze the resulting translational veloc
and angular velocity profiles and compare them with the p
dictions of generalized Navier-Stokes theory for fluids wh
possess spin.

The Navier-Stokes equations appropriate for fluids co
posed of uniaxial molecules close to equilibrium are@19#
551063-651X/97/55~2!/1566~7!/$10.00
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du

dt
52“~p!1~k1h/32h r !“~“•u!1~h1h r !¹

2u

12h r~“3v!, ~1!

rQ
dv

dt
52h r~“3u22v!1~zv1z/32z rr !“~“•v!

1~z1z rr !¹
2v, ~2!

wherer is the mass density of the fluid,p the hydrostatic
pressure,k,h,hr , the bulk, shear and vortex viscosities, r
spectively,zv ,z,z rr , the respective couple viscosities, andu
is the streaming velocity.Q[tr^Qi&/35tr~Q!/3 is one third
of the trace of the average moment of inertia tensor per
mass andv is the streaming angular velocity. IfS is the
average intrinsic angular momentum per unit mass andvi
the angular velocity of moleculei , then

S5^Qi•vi&5Q•v, ~3!

where

Qi5(
aP i

m~r ia8
212r ia8 r ia8 !Y (

aP1
m

5(
aP i

m~r ia8
212r ia8 r ia8 !Y M ~4!

is the moment of inertia tensor per unit mass of moleculei .
The indexa labels the atoms in moleculei and r ia8 is the
vector from the center of mass of moleculei to sitea of the
same molecule. These atoms are assumed here to have
tical masses, namely,m. M is the total mass of moleculei .

In this paper we confine ourselves to uniaxial molecu
~such as the halogens!. For such molecules the principle mo
ment of inertia tensor per unit mass of each molecule can
written as

Qpi5S I0
0

0
I
0

0
0
0
D . ~5!

The equations of linear and intrinsic angular moment
written above only apply in the linear regime close to eq
1566 © 1997 The American Physical Society



sp
i

r b
It

m
m

lie
g
r

ra

e

t

cs
es
ti
co
i-

ys
th
ti
e

t
n

he

by

ism
les
te
ick
ri-
he

55 1567MOLECULAR SPIN IN A FLUID UNDERGOING . . .
librium. This is because those equations assume the tran
coefficients are independent of the driving thermodynam
forces and they neglect the higher order effects of shea
refringence on the intrinsic angular momentum equation.
this linearity assumption that enables us to writeQ•v5Qv.

We should also mention that even in the linear regi
there is a difference for isotropic fluids between the strea
ing angular velocity and the average angular velocity,v̄.
SinceI v̄5Qv, andQ5tr^Qpi&/352I /3, we see that

v̄52v/3. ~6!

We also note that Sarman and Evans@3# have proved that
away from boundaries, in the absence of external app
torques,v51/2“3u. This relation holds for the streamin
angular velocity but obviouslynot for the average angula
velocity.

For a fluid flowing under the influence of a pressure g
dient in thex direction~planar Poiseuille flow! between two
infinite parallel plates a distanceh apart whose normals ar
in the y direction, Eqs.~1! and ~2! can be solved for the
streaming linear and angular velocities@17#

ux5ucF12 ȳ21
2h r

~h1h r !Kh
coth~Kh!S cosh~Khȳ!

cosh~Kh!
21D G ,

~7!

vz5
uc
h S ȳ2

sinh~Khȳ!

sinh~Kh! D , ~8!

whereȳ5y/h,

K5F 4hh r

~h1h r !~z1z rr !
G1/2 ~9!

and

uc52
h2

2h

dp

dx
. ~10!

In deriving Eqs. ~7! and ~8! the assumptions tha
v5„0,0,vz(y)… and u5„ux(y),0,0… ~i.e., “•v50 and
“•u50! have been used.

II. SIMULATION DETAILS

In this work we use nonequilibrium molecular dynami
to simulate a fluid composed of rigid diatomic molecul
undergoing planar Poiseuille flow between two atomis
walls. Our method is essentially that used by Todd and
workers @13–15# to study a simple fluid undergoing Po
seuille flow.

The geometry of the system is shown in Fig. 1. The s
tem is surrounded by periodic images of itself in each of
three Cartesian dimensions. We note here that the simula
geometry is such that the driving pressure head is in thx
direction and heat will flow in they direction only. The pore
width W is defined as the separation in they direction be-
tween the centers of the first layer of wall atoms adjacen
the fluid. Our system consists of 360 fluid molecules bou
by 216 wall atoms which were three atomic layers thick~72
atoms per layer!.
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Both the fluid atomic sites and wall atoms interact via t
WCA interatomic potential function f(r ):f(r )
54(r2122r26)11, for r,21/6; f(r )50, for r.21/6. We de-
fined the Weeks, Chandler, Anderson~WCA! potential pa-
rameterss ande to be unity for simplicity; we also defined
the site massm to be unity, thus the molecule mass,M52m.
These definitions define our reduced system of units.

The wall atoms were fixed in an fcc lattice structure
harmonic restoring forces@13#

FHarm5 1
2Ks~r i2r i

eq!2, ~11!

whereKs is the spring constant~which we take as 150.15!
and r i

eq is the equilibrium position of a wall atomi . Wall
layers are prevented from moving by a constraint mechan
which fixes the center of mass of each layer of wall partic
while allowing individual wall atoms the freedom to vibra
about their lattice sites. There is only one three atom th
wall per simulation cell. The second wall is simply the pe
odic image of the first wall. This periodicity ensures that t
total density of the system remains constant.

The equations of motion for the wall atoms are

ṙ i5
pi
m
, ~12!

ṗi5Fi
Harm1Fi

WCA2api2 jlk , iPLk~k51,2,3! ~13!

FIG. 1. Simulation geometry for planar Poiseuille flow. Thez
axis is normal to the plane.
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1568 55KARL P. TRAVIS AND D. J. EVANS
wherepi is the momentum of wall atomi , ṙ i its velocity,m
is the mass of a wall atom,Fi

Harm the harmonic restoring
force on wall atomi , Fi

WCA the total intermolecular force on
wall atom i due to all other wall atoms and all fluid molecu
lar sites,a is a thermostatting multiplier,j is a unit vector
along the laboratory fixedy-Cartesian axis,lk is the wall
center-of-mass constraint multiplier for wall layerk. The
form of Eq.~13! has been derived using Gauss’s principle
least constraint@20#. Expressions for the thermostatting mu
tiplier a, and the wall layer constraint multiplierslk , can be
obtained by a second application of Gauss’s principle of le
constraint

a5

Nw(
j

3Nw

Fj•pj2(
k

3

Fk
ypk

y

Nw(
j

3Nw

pj•pj2(
k

3

pk
ypk

y

, ~14!

lk5
1

Nw
F (
iPLk

Nw

Fi
y2a (

iPLk

Nw

pi
yG , k51,2,3 ~15!

whereNw is the number of wall atoms in a wall layer,

Fk
y5 j• (

iPLk

Nw

Fi , and pk
y5 j• (

iPLk

Nw

pi ,

Lk is wall layerk. In the above equations,Fi now represents
the sum of harmonic and intermolecular forces. While
Gaussian algorithm is formally exact, in very long simulati
runs truncation and discretization errors lead to a slow d
in the values of the constrained variables. To counter this,
have used a continuous linear proportional feedback me
nism. One simply adds the following terms to the equatio
of motion for the wall atoms. For the temperature feedba
we add the term

2B@Tw~ t !2Tw#pi , ~16!

whereTw(t) is the instantaneous wall temperature,Tw is the
required wall temperature, andB is a constant. In these simu
lations we have takenB5100. For the feedback on the wa
center-of-mass positions we add the following terms to E
~12! and ~13!, respectively:

2
C

Nw
F (
iPLk

Nw

yi2 (
iPLk

Nw

yi~ t50!G , k51,2,3 ~17!

2
D

Nw
(
iPLk

Nw

ẏi , k51,2,3. ~18!

In the above expressions,C andD are feedback constants. I
these simulations we haven taken the valuesC510 and
D50.

In our simulations there are no pressure gradients. Ins
we apply a constant external field which has the effect
applying a constant force in thex direction to each molecula
center of mass. In computer simulations, the advantag
using an external field to drive the flow rather than an act
pressure gradient is that under a constant external field
f
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system can remain longitudinally homogeneous. Under
actual pressure gradient this is not possible because in c
pressible fluids, pressure gradients imply density gradie
The equations of motion for a sitea in fluid moleculei are

ṙ ia5
pia
m

, ~19!

ṗia5Fia
WCA1~21!al ir i121

1

2
iFe , ~20!

where the mass of molecular sites is taken to be the sam
the mass of the wall particles,i is a unit vector along the
laboratory fixedx-Cartesian axis andFe is the magnitude of
the externally applied field. In Eq.~20!, li is a Gaussian
bond constraint multiplier andr i12 is defined byr i22r i1. An
expression forli is obtained by an application of Gauss
principle of least constraint

l i52
@r i12•Fia

WCA1m~ ṙ i12!
2#

2~r i12!
2 . ~21!

Linear proportional feedback needs to be introduced
counter any drift in the bond lengths and component of
locity down the bond. This is achieved by adding the follo
ing terms to Eqs.~19! and ~20!, respectively,

2F~r i122d12! r̂ i12, ~22!

2G~ ṙ i12• r̂ i12! r̂ i12, ~23!

wherer i12 is the magnitude of the bond vector in moleculei ,
d12 is the required bond length,r̂ i12 is a unit vector in the
direction of the bond, andṙ i12 is the bond velocity. Values
for the drift constantsF andG used in this work are 10 and
15, respectively.

The walls were kept at a constant temperature of 0.9
and a number density of 0.90. With this choice for the w
density and our choice of harmonic force constant, we fou
that no molecules were able to penetrate into the wall lay
Lowering the force constant to the value suggested by Lie
Brown, and Clarke@11#, i.e.,Ks557.15, results in significan
penetration of the walls by fluid molecules, though this va
of Ks would facilitate the coupling of heat exchange betwe
the walls and the fluid. The number density of the fluid w
n5N/V50.544 at the start of the simulation whereN is the
number of liquid atoms andV is the volume accessible to th
liquid. The reduced pore width is 10.2 while the unit ce
dimensions,Lx ,Ly ,Lz , are 8.481, 9.200, 8.481. It is impor
tant to note thatLy includes the fluid and wall particles~see
Fig. 1!. We observe that there is no clear definition of t
average density of the fluid because there is no unambigu
definition of the total volume which is ‘‘accessible’’ to th
fluid, and again refer the reader to Refs.@13# and @14# for a
discussion of this. We simply note here that an effective p
width was found to beLy59.0.

The equations of motion were integrated using a four
order Gear predictor-corrector algorithm with a reduced ti
step,t 50.001. Our initial configuration was constructed
follows: Having constructed a wall layer~72 atoms arranged
in an fcc lattice! this was replicated and shifted to constru
the three layer wall composed of 216 atoms. One of the w



ve
ai
ite
s
ed

in
cle
te

ffi
b
a
a
il
ur
y-
st
d
d
th

an

en

io

pa
m

t t
od
he
to
th

tia

s a
o-
lly

t,

we

ions

of
lu-

55 1569MOLECULAR SPIN IN A FLUID UNDERGOING . . .
layers was then replicated a further five times to form fi
fluid layers of atoms equally spaced throughout the rem
der of the simulation cell. The coordinates of these fluid s
were then taken to be the positions of the centers of mas
the fluid molecules. The molecules were then construct
using the known geometry of the diatomics~all molecules
are constructed with the same orientation for simplicity!. Of
course, starting the simulation from this point would result
difficulties because large forces would result from parti
overlap. To circumvent this problem, we use the trunca
force method~TFM! of McKecknie, Brown, and Clarke@21#.
Using this method, we find that the configuration was su
ciently relaxed after only a few thousand time steps to ena
the full WCA potential to be switched on. The system w
then allowed to come to equilibrium in the absence of
external field. Typically, we use between half and one m
lion steps to achieve equilibrium since the fluid temperat
is a slowly relaxing quantity. Nonequilibrium molecular d
namics ~NEMD! simulations were then performed by fir
equilibrating for a million time steps with the field switche
on followed by 2 million step production runs. We studie
the system at two different values of the magnitude of
external field,Fe50.2 and 0.5.

Determination of the translational and angular velocity
profiles

The streaming velocity can be obtained from the inst
taneous momentum current density,J~r ,t!. The momentum
current density for a system of identical particles is giv
microscopically by@20#

J~r ,t ![ru~r ,t !5(
i
Mvid„r2r i~ t !…, ~24!

where the instantaneous mass density,r~r ,t! is given by

r~r ,t !5(
i
Md„r2r i~ t !…[Mn~r ,t !, ~25!

wheren~r ,t! is the instantaneous number density at posit
r and timet. The streaming velocity is then simply

u~r ,t !5

(
i
Mvi~ t !d„r2r i~ t !…

(
i
Md„r2r i~ t !…

. ~26!

In practice, one replaces the Diracd function by a narrow
step function that is nonzero only for a small range of se
rations. For a system such as ours we could divide the si
lation cell into a number of slabs of thicknessDy and com-
pute the streaming velocity as an average evaluated a
midpoint of each slab. This is the simple histogram meth
While it is simple to use and implement, it suffers from t
drawback that the slab width must be sufficiently large
contain enough particles to allow a good estimate of
average streaming velocity in a slab@11#. Thus there is a
trade-off between lower statistical uncertainty and spa
resolution in the histogram method.
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Recently, Daivis, Travis, and Todd@22# have proposed an
alternative method of calculating microscopic quantities a
function of position which is exact. In this method one n
tionally divides the simulation cell into a number of equa
spaced planes across the pore.

One can write for the density and thex component of
momentum current

r~y,t !5
1

A (
i
Md„y2yi~ t !… ~27!

and

Jx~y,t !5
1

A (
i
M ẋi~ t !d„y2yi~ t !…, ~28!

whereA5LxLz is the area of anxz plane. If$ta( i )% is the set
of times when they coordinate of particlei is equal to some
specified valuey, which defines a plane, one has tha
d„y2yi(ta( i ))…5d(t2ta( i ))/u ẏi(ta( i ))u. Therefore we can ob-
viously write

d„y2yi~ t !…5(
ta~ i !

d~ t2ta~ i !!

u ẏi~ ta~ i !!u
. ~29!

Substituting Eq.~29! into Eq. ~28! we find that,

Jx~y,t !5
1

A (
i

(
ta~ i !

Mẋi~ t !d~ t2ta~ i !!

u ẏi~ ta~ i !!u
. ~30!

Assuming the system properties are stationary in time
integrate Eq.~30! from time zero tot and perform a time
average

Jx~y!5 lim
t→`

1

tA (
i

(
0,ta~ i !,t

Mẋi~ ta~ i !!

u ẏi~ ta~ i !!u
. ~31!

Similarly, one can write for the mass density.

r~y!5 lim
t→`

1

tA (
i

(
0,ta~ i !,t

Mi

u ẏi~ ta~ i !!u
. ~32!

The spin angular momentum density at positionr is defined
instantaneously as

rS~r ,t !5(
i
sid„r2r i~ t !…[(

i
(
}

r ia8 3piad„r2r i~ t !…,

~33!

where,si is the spin angular momentum of moleculei , r ia8
5r ia2r i . The angular streaming velocity,v is defined
through the hydrodynamic expression@Eq. ~3!#. For uniaxial
molecules

r~y!Sz~y!5 lim
t→`

1

tA (
i

(
0,ta~ i !,t

szi~ ta~ i !!

u ẏi~ ta~ i !!u
. ~34!

One can now use Eqs.~3! and ~34! to calculatevz(y). To
obtain the spins at a plane, we calculate the relative posit
and velocities at the time themolecular center of mass
crosses a planein the y direction.

They component of the velocity or angular momentum
particle i at the precise time of the plane crossing is eva
ated by first solving forta( i ) , the time at which planey is
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1570 55KARL P. TRAVIS AND D. J. EVANS
crossed, by using a Newton-Raphson scheme and then
dicting the velocity of the atom at this time. It is straightfo
ward to calculate the density and kinetic energy profiles
ing this method and, hence, the streaming velocity a
kinetic temperature profiles. Using this method we are a
to use a fine resolution in calculating the profiles. In th
work we used 200 planes.

Another route to the angular velocity profile involves bi
ning the molecular angular velocities at each time step. O
then uses Eq.~6! to determine the average streaming angu
velocity from the average angular velocity. This gives

vz~y,t !5
3

2A (
i

vzi~ t !d„y2yi~ t !…. ~35!

Test simulations yielded agreement between profiles ca
lated by either of these methods although the binning met
gave the better statistics. For this reason we choose to us
binning method for calculating the angular velocity profil
in this work.

III. RESULTS AND DISCUSSION

Number density

Figure 2 shows the mass density profile from theFe50.2
simulation. We observe that the mass density falls to zer
y564.5 which suggests an effective porewidth of 9.0. T
mass density shows strong oscillations near the walls
shows evidence of the fluid forming eight layers in a po
width of 10.2 molecular diameters wide. The profile is qua
tatively the same as that obtained by Todd and Evans@15#
for an atomic fluid confined to a channel of the same wid

Microrotation

To facilitate comparison of the simulation results with t
Navier-Stokes theory, following Eringen@23#, we rearrange
Eq. ~8! so that the left-hand side of this equation is no
dimensionless and the right-hand side is solely a function
the dimensionless quantity,Kh:

hvz

uc
5 ȳ2

sinh~Khȳ!

sinh~Kh!
. ~36!

FIG. 2. Fluid number density profile for an external field ma
nitude Fe50.2. Statistical uncertainties are smaller than the p
symbols.
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The classical Navier-Stokes result for angular velocity
trivially zero since no account is taken of microrotation
that theory. The inclusion of spin into the theory results in
form for the angular velocity which contains a linear ter
plus a hyperbolic term. In the absence of the hyperbo
term, the linear term would simply imply that the streami
angular velocity was half the vorticity. The hyperbolic ter
is basically a switch function which controls the rate
which the streaming angular velocity changes from
boundary value~namely, zero! towards its preferred value o
half the vorticity.

For a constant value ofuc the theoretical variation of the
streaming angular velocity with the dimensionless param
Kh is shown in Fig. 3. AtKh51, the angular velocity profile
is almost flat and close to zero. The hyperbolic switch is
broad that the midchannel angular velocity is never allow
to approach its preferred value of half the vorticity. As t
value ofKh increases to;10, the switch becomes sharp
allowing the midchannel angular velocity to attain its pr
ferred value. By the timeKh;100 the preferred value for th
angular velocity is attained across most of the channel
there is a very sharp transition of the angular velocity to z
at the boundaries.

Figure 4 shows a plot of the angular velocity as a funct
of the porewidth~the results are taken from theFe50.5
simulation!. The streaming angular velocity profile is simila

t

FIG. 3. Plot of the dimensionless quantity,hvz/uc vs y/h for
various values of the product Kh.

FIG. 4. Angular velocity profile forFe50.5. The linear function
is the result of a least squares fit to the data. The slope of this c
fit is equal to one half the vorticity.
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55 1571MOLECULAR SPIN IN A FLUID UNDERGOING . . .
to the theoretical prediction withKh between 10 and 100, a
is shown in Fig. 3. The large peaks that appear aro
y564 in Fig. 4 are not accounted for in the theory but this
not surprising. The theory given above is a continuum the
which does not allow for molecular packing effects near
walls. The wavelength of the oscillations iss so they are
almost certainly due to packing effects which are not
counted for in the continuum theory presented in this pap
Applying a simple linear fit to the angular velocity data
Fig. 4 shows that in midchannel]vz/]y;0.03060.001. If
instead, we use a nonlinear least squares procedure to fi
data to Eq. ~8!, for Fe50.5 the results of the fit give
uc50.6960.02 andKh52063, while for Fe50.2, the re-
sults of the fit giveuc50.2560.01 andKh532614. Two
points can be made concerning these fit results. Firstly,
ratio of the two values ofuc52.76 is very close to the ratio
of the two external fields, suggesting a linear dependenc
the magnitude of the external field or pressure gradient. F
ure 5 shows a plot of the streaming angular velocity norm
ized by the magnitude of the external field for the two d
ferent sets of data corresponding toFe50.2 andFe50.5.
The angular velocity profiles are superimposable, confirm
the linear dependence upon the field strength.

Streaming velocity

Figure 6 shows the translational velocity profile for

FIG. 5. Plot of the normalized angular velocity,vz/Fe . The
solid line is data from theFe50.2 simulation while the dashed lin
is data from theFe50.5 simulation.

FIG. 6. Translational velocity profile atFe50.5 ~solid line! and
the least squares fit of the data in the center of the pore to a
parameter quadratic function~dotted line!.
d
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external field,Fe50.5. At the effective pore boundaries,y5
64.5, the velocity profile drops sharply to zero, indicatin
severe slip, while towards the central region of the pore
quadratic behavior can be seen. The severity of the slip m
be the result of having wall molecules which are differe
from the fluid molecules. We note that the quadratic port
of the velocity profile is still not classical because two p
rameters are required to fit the data whereas only one pa
eter is required in the classical case. The reason for
discrepancy is related to the boundary conditions. From
curve fit equation, we see that the vorticity,1

2“3u50.033.
This agrees well with the slope of the linear portion of t
angular streaming velocity shown in Fig. 4.

An attempt at a nonlinear least squares fit of Eq.~7! to the
velocity data resulted in a very poor fit. However, from t
form of Eq.~7! we see that if the vortex viscosity,hr is small
in comparison to the shear viscosity,h, the spin contribution
to the translational streaming velocity is negligible and m
lecular spin plays no significant role in the transport of line
momentum. Edberg, Morriss, and Evans@24# obtained a
value for the vortex viscosity of liquid chlorine at a reduc
number density of 0.544 and a reduced translational temp
ture of 0.97~conditions which are close to the mean numb
density and mean translational temperature at the cente
our pore!. Their value ofhr~g50!50.02060.005 is indeed
small compared to the value they obtained for the shear
cosity;h~g50!'5.

We can calculate an effective shear viscosity from E
~10!. Rearranging Eq.~10! gives

h5
n̄h2Fe

2uc
, ~37!

where n̄ is now the mean number density in our syste
Because the number density profile oscillates strongly n
the walls, we integrate the profile in the central region
obtain n̄50.543, which is close to the input density o
n̄50.544 ~the density of Edberg, Morriss, and Evans@24#!.
Putting the relevant values into Eq.~37! givesh54.060.1
~52.8360.07 in the reduced units of Edberg, Morriss, a
Evans @24#! which is the right order of magnitude for th
shear viscosity at a density close to that used by Edb
o

FIG. 7. Plot of the normalized translational streaming veloci
(ux2b)/Fe . The solid line is data from theFe50.2 simulation
while the dashed line is data from theFe50.5 simulation. The
parameterb is the constant term obtained from the quadratic fit
the streaming velocity data.



of

la
o
d

th
an
f

n
sl
th

w

ng
a
at

n
c-
o

n-
er-
alls
e
di-

cal
mi-
ve-
ure

n-
the
ara-
ion
a-
o-
of

u-
me

1572 55KARL P. TRAVIS AND D. J. EVANS
Morriss, and Evans~our mean translational temperature
1.69 is somewhat higher than their value of 0.97!.

Like the angular velocity profiles, we expect the trans
tional velocity to be linearly dependent on the magnitude
the external field. To test this assumption, we have plotte
Fig. 7 [ux(y)2b]/Fe againsty. The parameterb is the con-
stant term which appears in the least squares fit of
streaming velocity to a two parameter quadratic equation
is dependent on the boundary conditions. Data are plotted
the two different values of the external field,Fe50.2 and
Fe50.5. From Fig. 7 we see that both normalized functio
are superimposable, confirming our expectation that tran
tional velocity is linearly dependent on the magnitude of
external field for low values of that field.

IV. CONCLUSION

Using nonequilibrium molecular dynamics techniques,
have investigated the property of molecular spin~microrota-
tion! in a fluid composed of diatomic molecules undergoi
planar Poiseuille flow. Our simulations were performed
two different values of an effective pressure gradient and
pore width of 10.2 molecular diameters.

We have compared the angular velocity and translatio
streaming velocity profiles from our work with the predi
tions of Navier-Stokes hydrodynamics for systems that p
ry,
-

m

L

m

-
f
in

e
d
or

s
a-
e

e

t
a

al

s-

sess spin. We find that the angular velocity profile is in ge
eral agreement with the profile predicted from the Navi
Stokes theory except for some features close to the w
which are likely to be a result of molecular packing. Th
angular velocity profiles scale linearly with pressure gra
ent.

The translational velocity profiles show almost classi
behavior towards the center of the pore while at the extre
ties, severe slip is characterized by a sharp drop in the
locities. These profiles again scale linearly with the press
gradient, at least in the portion that is quadratic.

The velocity profiles are discussed in terms of a dime
sionless Navier-Stokes parameter, Kh, which depends on
shear, vortex and spin viscosities as well as the pore sep
tion. The magnitude of this parameter controls the deviat
from linearity of the angular velocity profile and the devi
tion from quadratic behavior in the translational velocity pr
file. From our simulations we find that Kh is of the order
40 in reduced units.
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