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Molecular spin in a fluid undergoing Poiseuille flow
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We use nonequilibrium molecular dynamics to investigate shear induced molecular rotation in a diatomic
fluid undergoing planar Poiseuille flow. We have compared the angular velocity and translational streaming
velocity profiles with the predictions of Navier-Stokes hydrodynamics generalized for systems that possess
spin. We find that the angular velocity profile is in general agreement with the profile predicted from the
Navier-Stokes theory except for some features close to the walls which are likely to be a result of molecular
packing.[S1063-651X97)00102-5

PACS numbds): 03.40.Gc, 02.50-r, 51.10:+y, 05.70.Ln

. INTRODUCTION du
Pgi= " VP (k73— )V(V-u)+(n+ 7,)V2u
Classical Navier-Stokes theory strictly applies only to
simple fluids composed of inert gas atoms. This is because +27(VXw), @
Navier-Stokes hydrodynamics takes no account of the struc-
ture or the possible alignment of the particles comprising a d_w

fluid. The most well developed extension of Navier-Stokes P at =2m(VXU=2w)+ (5, + {34 V(V - @)

hydrodynamics, which is capable of describing the flow of (ft V2 2
fluids composed of structured particles, is the theory which ({+&n) Vo, )

describes the flow of nematic liquid crystdls-3]. This ne-  \yhere y is the mass density of the fluigh the hydrostatic
mato dynamics treats the constituent molecules as rigid bogsressure x, 5,7, , the bulk, shear and vortex viscosities, re-
ies and, in its most common form, the theory assumes thgpective|y’£u ’é’,gn , the respective Coup|e viscosities, and
nematic order parameter is a constant of the motion. Thesg the streaming velocity. O=tr(®,)/3=tr(®)/3 is one third
two assumptions greatly simplify the theory. The most com-of the trace of the average moment of inertia tensor per unit
plex molecular fluids are those in which the nonequilibriummass andw is the streaming angular velocity. 8 is the
nematic order parameter is not constant and where the comverage intrinsic angular momentum per unit mass and
stituent molecules are relatively flexible, allowing shear in-the angular velocity of molecule then

duced changes to the internal conformation.

In this paper we will deal with the generalized hydrody- $=(0i- 0)=0- o, ©)
namics of fluids whose order parameter is not constant bu\k
whose constituent molecules can be regarded as classica
rigid bodies. The hydrodynamics of such fluids was devel-
oped first by Grad4] and then later by Snider and Lewchuk 0= m(r/Zi-rir,) / X m
[5]. The resulting generalized Navier-Stokes equations have e st

Pere

the advantage that for certain idealized flows, such as the 2 o

planar Couette and Poiseuille flow, the solutions are analytic = zi M(rigl=rioris) / M 4
and therefore amenable to testing by computer simulation

experiments. is the moment of inertia tensor per unit mass of molecule

Recently, there has been great interest in studying th&he indexa labels the atoms in moleculeandr], is the
flow of fluids through solid pores using nonequilibrium mo- vector from the center of mass of molecil® site « of the
lecular dynamics. Most of these simulations have concernegame molecule. These atoms are assumed here to have iden-
simple fluids, i.e., those composed of structureless particlescal masses, namelyy. M is the total mass of molecuie
[6-15. While some simulations of molecular fluids have In this paper we confine ourselves to uniaxial molecules
been carried ouf16-18, the microrotation or spin of the (such as the halogens=or such molecules the principle mo-

molecules has been overlooked. ment of inertia tensor per unit mass of each molecule can be
In this article we perform simulations of a liquid com- written as

posed of rigid diatomic molecules undergoing planar Poi-

seuille flow. We analyze the resulting translational velocity, I 0 0
and angular velocity profiles and compare them with the pre- 0,={0 I 0, (5)
dictions of generalized Navier-Stokes theory for fluids which 0 0 O

possess spin.
The Navier-Stokes equations appropriate for fluids com- The equations of linear and intrinsic angular momentum
posed of uniaxial molecules close to equilibrium ft6] written above only apply in the linear regime close to equi-
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librium. This is because those equations assume the transport
coefficients are independent of the driving thermodynamic &
forces and they neglect the higher order effects of shear bi- ®
refringence on the intrinsic angular momentum equation. It is [ %
this linearity assumption that enables us to wftew=0w. * -
We should also mention that even in the linear regime

there is a difference for isotropic fluids between the stream- *
ing angular velocity and the average angular velocily, | wall atoms

I

I

I

!

[

[

[

I

I

Sincel =0, andO=tr(O;)/3=2I1/3, we see that

I~
plaije of closest approach

% y=0 plane

w=2w/3. (6)

We also note that Sarman and EvdB$ have proved that
away from boundaries, in the absence of external applied
torques,w=1/2VXu. This relation holds for the streaming x
angular velocity but obviouslyot for the average angular
velocity.

For a fluid flowing under the influence of a pressure gra-
dient in thex direction (planar Poiseuille flowbetween two fluid molecules
infinite parallel plates a distandeapart whose normals are * -----------
in the y direction, Egs.(1) and (2) can be solved for the — NIV -
streaming linear and angular velocitigk?] periodic image of wall

&

3 — r coshKhy) )
Ug=Ug 1—y?+ (7% n KD cott’(Kh)( cosHKh) 1|,
(7 *
_
Uc [ sinh(Khy)
G ( ~ “sinh(Kh) ) ® - -
FIG. 1. Simulation geometry for planar Poiseuille flow. The
— axis is normal to the plane.
wherey=y/h,
4y, 172 Both the fluid atomic sites and wall atoms interact via the
= W} (9 WCA interatomic  potential  function ¢(r):é(r)
e " =4(r 2—r % +1, forr<2v% ¢(r)=0, forr >2%. We de-
and fined the Weeks, Chandler, Anders@WCA) potential pa-
rameterso and e to be unity for simplicity; we also defined
h? dp the site mass to be unity, thus the molecule masg=2m.
U=~ 27 dx’ (100 These definitions define our reduced system of units.

The wall atoms were fixed in an fcc lattice structure by

In deriving Egs. (7) and (8) the assumptions that Nharmonic restoring forces3]
»=(0,0w,(y)) and u=(u,(y),0,0 (.e., V-w=0 and
V-u=0) have been used. (I)Harm:%Ks(ri_rieq)zr (11)

Il. SIMULATION DETAILS . . .
whereKg is the spring constarihich we take as 150.15

In this work we use nonequilibrium molecular dynamics and rf? is the equilibrium position of a wall atorn Wall
to simulate a fluid composed of rigid diatomic molecules|ayers are prevented from moving by a constraint mechanism
undergoing planar Poiseuille flow between two atomisticwhich fixes the center of mass of each layer of wall particles
walls. Our method is essentially that used by Todd and cowhile allowing individual wall atoms the freedom to vibrate
workers [13-1§ to study a simple fluid undergoing Poi- about their lattice sites. There is only one three atom thick
seuille flow. wall per simulation cell. The second wall is simply the peri-
The geometry of the system is shown in Fig. 1. The sysodic image of the first wall. This periodicity ensures that the
tem is surrounded by periodic images of itself in each of thggta| density of the system remains constant.
three Cartesian dimensions. We note here that the simulation The equations of motion for the wall atoms are
geometry is such that the driving pressure head is inxthe
direction and heat will flow in thg direction only. The pore
width W is defined as the separation in thedirection be- i:& (12)
tween the centers of the first layer of wall atoms adjacent to "'m’
the fluid. Our system consists of 360 fluid molecules bound

by 216 wall atoms which were three atomic layers thick ) Harm - —WCA i )
atoms per layer pi=F T+ F T —api =N, Tel(k=1,23 (13
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wherep; is the momentum of wall atoriy r; its velocity, m  system can remain longitudinally homogeneous. Under an
is the mass of a wall atonf;1'®™ the harmonic restoring actual pressure gradient this is not possible because in com-
force on wall atom, F/Y° the total intermolecular force on pressible fluids, pressure gradients imply density gradients.
wall atomi due to all other wall atoms and all fluid molecu- The equations of motion for a sitein fluid moleculei are

lar sites,a is a thermostatting multiplies, is a unit vector

along the laboratory fixeg-Cartesian axis), is the wall . _Pia (19)
center-of-mass constraint multiplier for wall lay&r The m

form of Eq.(13) has been derived using Gauss'’s principle of
least constrainf20]. Expressions for the thermostatting mul-
tiplier &, and the wall layer constraint multiplieks, can be

obtained by a second application of Gauss'’s principle of least o
constraint where the mass of molecular sites is taken to be the same as

the mass of the wall particles,is a unit vector along the

SN 3 laboratory fixedx-Cartesian axis anB, is the magnitude of

Ny Fi-p—> Flp) the externally applied field. In Eq20), \; is a Gaussian
! K , (14) bond constraint multiplier and ,, is defined byr;,—r;;. An

. 1
Pia=Fla "+ (= 1)*\ifi12t 5 iFe, (20

w=
N 3 vy expression for\; is obtained by an application of Gauss'’s
Nw; pi'pi_zk PPk principle of least constraint
1 [ M Ny o [Fiso Pl A+ m(Fi1p)?] (21)
MR { > Fl-aX piy}, k=123 (15 | 2(ri0)”
NW iely iely

Linear proportional feedback needs to be introduced to
whereN,, is the number of wall atoms in a wall layer, counter any drift in the bond lengths and component of ve-
locity down the bond. This is achieved by adding the follow-
ing terms to Eqs(19) and(20), respectively,

NW NW
Fi=i- 2 Fi, andpl=j- > pi, )
“ —F(rio—d1ri12, (22

iely

L, is wall layerk. In the above equation§; now represents CG(FanFF 23

the sum of harmonic and intermolecular forces. While the (Tizz Ti12Ti12, (23

Gaussian algorithm is.formglly exact, in very long s‘irT“’k’mO.nwhereri12 is the magnitude of the bond vector in molecule

runs truncation and dlscre§|zat|on errors lead to a slow drn‘rdl2 is the required bond lengtli. ., is a unit vector in the

in the values of the constrained variables. To counter this, W8irection of the bond. and  is the bond velocity. Values
’ il .

have used a continuous linear proportional feedback mech%r the drift constant& andG used in this work are 10 and
nism. One simply adds the following terms to the equationslS respectively

of motion for the wall atoms. For the temperature feedback The walls were kept at a constant temperature of 0.971

we add the term and a number density of 0.90. With this choice for the wall
—B[T,(t)=T,Ip, (16) density and our choice of harmonic force constant, we found
’ that no molecules were able to penetrate into the wall layers.
whereT,(t) is the instantaneous wall temperatuFg, is the ~ Lowering the force constant to the value suggested by Liem,
required wall temperature, amis a constant. In these simu- Brown, and Clarkg11], i.e.,K;=57.15, results in significant
lations we have takeB=100. For the feedback on the wall Penetration of the walls by fluid molecules, though this value

center-of-mass positions we add the following terms to Eqs9f Ks would facilitate the coupling of heat exchange between
(12) and(13), respectively: the walls and the fluid. The number density of the fluid was
n=N/V=0.544 at the start of the simulation whe¥eis the

c [ Mw N number of liquid atoms and is the volume accessible to the

- D yi— > yi(t=0)|, k=123 (17 liquid. The reduced pore width is 10.2 while the unit cell
wiiebe  deby dimensionsL,,L,,L,, are 8.481, 9.200, 8.481. It is impor-

tant to note that , includes the fluid and wall particlésee

Fig. 1. We observe that there is no clear definition of the

average density of the fluid because there is no unambiguous

definition of the total volume which is “accessible” to the

In the above expression8,andD are feedback constants. In fluid, and again refer the reader to Rdf$3] and[14] for a

these simulations we haven taken the val@s10 and discussion of this. We simply note here that an effective pore

D=0. width was found to bé.,=9.0.

In our simulations there are no pressure gradients. Instead The equations of motion were integrated using a fourth-
we apply a constant external field which has the effect oforder Gear predictor-corrector algorithm with a reduced time
applying a constant force in thedirection to each molecular step,7=0.001. Our initial configuration was constructed as
center of mass. In computer simulations, the advantage dbllows: Having constructed a wall lay€¥2 atoms arranged
using an external field to drive the flow rather than an actuain an fcc lattice this was replicated and shifted to construct
pressure gradient is that under a constant external field thée three layer wall composed of 216 atoms. One of the wall

Ny

_b > vy, k=1,2,3. (18)

NW iely



55 MOLECULAR SPIN IN A FLUID UNDERGOING . . . 1569

layers was then replicated a further five times to form five Recently, Daivis, Travis, and Tod&2] have proposed an
fluid layers of atoms equally spaced throughout the remainalternative method of calculating microscopic quantities as a
der of the simulation cell. The coordinates of these fluid sitegunction of position which is exact. In this method one no-
were then taken to be the positions of the centers of mass dionally divides the simulation cell into a number of equally
the fluid molecules The molecules were then constructed spaced planes across the pore.
using the known geometry of the diatomiéall molecules One can write for the density and thecomponent of
are constructed with the same orientation for simplici@f = momentum current
course, starting the simulation from this point would result in
difficulties because large forces would result from particle = E —v

: ge P p(y.)= 7 2 Maly—yi(t)) (27)
overlap. To circumvent this problem, we use the truncated [
force method TFM) of McKecknie, Brown, and Clarkg21].
Using this method, we find that the configuration was suffi-
ciently relaxed after only a few thousand time steps to enable 1 )
the full WCA potential to be switched on. The system was Wy.=7 > Mx;(1) 8y —yi(1), (28)
then allowed to come to equilibrium in the absence of an '
external field. Typically, we use between half and one mil-whereA=L,L, is the area of axz plane. If{t,;)} is the set
lion steps to achieve equilibrium since the fluid temperatureyf times when they coordinate of particlé is equal to some
is a slowly relaxing quantity. Nonequilibrium molecular dy- specified valuey, which defines a plane, one has that,
namics (NEMD) simulations were then performed by first 5(y_yi(ta(i))):5(t_ta(i))/|yi(ta(i))|- Therefore we can ob-
equilibrating for a million time steps with the field switched viously write
on followed by 2 million step production runs. We studied

and

the system at two different values of the magnitude of the VR O(t—t,))
external field,F,=0.2 and 0.5. oy y,(t))—%) Yi(tad)] @9
Determination of the translational and angular velocity Substituting Eq(29) into Eq. (28) we find that,
profiles 1 MX;(t) S(t—t i)
. . . . LybH=5> > el (30)
The streaming velocity can be obtained from the instan- AT Iy.(ta(.))l

taneous momentum current densifyr,t). The momentum ) ) . o
current density for a system of identical particles is givenASSUming the system properties are stationary in time we

microscopically by[20] integrate Eq.(30) from time zero tor and perform a time
average
J(r,H=pu(r,t)=>, Mv;8(r —r;(1)), (24) 1 MX;i(ta(i))
' J = lim — —_—. 31
i «(Y) e TA E, 0<fym<t |yi(ta(i))| (31
where the instantaneous mass densiy,t) is given by Similarly, one can write for the mass density.
1 M,
p(r.H)=2 Ma(r=ri()=Mn(r,1), (25 p(y)=lim — > (32

im —.
e TA T o< <7 [Yiltag)]

wheren(r t) is the instantaneous number density at position! '€ Spin angular momentum density at positiois defined
r and timet. The streaming velocity is then simply instantaneously as

S Mvi(t) 8 —ri(1) PSIND= 20§80 —ri(D)=2 2 /X s =ri(D),

u(r t)=— : (26) (33
E_ M S(r—r;(t)) where, s is the spin angular momentum of moleculer/,
: =r;,—r;. The angular streaming velocityp is defined

_ ) ) through the hydrodynamic expressideqg. (3)]. For uniaxial
In practice, one replaces the Dir&adunction by a narrow  molecules

step function that is nonzero only for a small range of sepa- L ( )
rations. For a system such as ours we could divide the simu- o Szita(i)

lation cell into a number of slabs of thickness and com- p(y)Sz(y)—TIEr; A Z O<%)<T Yi(tac)] (34

pute the streaming velocity as an average evaluated at the

midpoint of each slab. This is the simple histogram methodOne can now use Eq$3) and (34) to calculatew,(y). To
While it is simple to use and implement, it suffers from the obtain the spins at a plane, we calculate the relative positions
drawback that the slab width must be sufficiently large toand velocities at the time thenolecular center of mass
contain enough particles to allow a good estimate of thecrosses a plané they direction.

average streaming velocity in a slabl]. Thus there is a They component of the velocity or angular momentum of
trade-off between lower statistical uncertainty and spatiaparticlei at the precise time of the plane crossing is evalu-
resolution in the histogram method. ated by first solving fott,(;y, the time at which plang is
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FIG. 2. Fluid number density profile for an external field mag-  F!G- 3. Plot of the dimensionless quantitye,/uc vs y/h for
nitude F,=0.2. Statistical uncertainties are smaller than the plotvarious values of the product Kh.
symbols.

The classical Navier-Stokes result for angular velocity is
crossed, by using a Newton-Raphson scheme and then preivially zero since no account is taken of microrotation in
dicting the velocity of the atom at this time. It is straightfor- that theory. The inclusion of spin into the theory results in a
ward to calculate the density and kinetic energy profiles usform for the angular velocity which contains a linear term
ing this method and, hence, the streaming velocity anglus a hyperbolic term. In the absence of the hyperbolic
kinetic temperature profiles. Using this method we are ableerm, the linear term would simply imply that the streaming
to use a fine resolution in calculating the profiles. In thisangular velocity was half the vorticity. The hyperbolic term
work we used 200 planes. is basically a switch function which controls the rate at

Another route to the angular velocity profile involves bin- which the streaming angular velocity changes from its
ning the molecular angular velocities at each time step. Onboundary valu¢namely, zerptowards its preferred value of
then uses Eq6) to determine the average streaming angulatalf the vorticity.
velocity from the average angular velocity. This gives For a constant value af, the theoretical variation of the

streaming angular velocity with the dimensionless parameter

Khis shown in Fig. 3. AKh=1, the angular velocity profile

w(Y,)= 58 2 (1) 8y —yi(1))- (39 s almost flat and close to zero. The hyperbolic switch is so
broad that the midchannel angular velocity is never allowed

Test simulations yielded agreement between profiles calcu© approach its preferred value of half the vorticity. As the
lated by either of these methods although the binning metho¥@lué ofKh increases to-10, the switch becomes sharper
gave the better statistics. For this reason we choose to use tBBowing the midchannel angular velocity to attain its pre-

binning method for calculating the angular velocity profilesferred value. By the tim&h~100 the preferred value for the
in this work. angular velocity is attained across most of the channel and

there is a very sharp transition of the angular velocity to zero
at the boundaries.
Figure 4 shows a plot of the angular velocity as a function
Number density of the porewidth(the results are taken from the,=0.5
simulatiorn). The streaming angular velocity profile is similar

Ill. RESULTS AND DISCUSSION

Figure 2 shows the mass density profile from Ee=0.2
simulation. We observe that the mass density falls to zero at

y==*4.5 which suggests an effective porewidth of 9.0. The 0.30 :
mass density shows strong oscillations near the walls and
shows evidence of the fluid forming eight layers in a pore- 0.20

width of 10.2 molecular diameters wide. The profile is quali- ¢, ) 0.10
tatively the same as that obtained by Todd and EJas$ z ’
for an atomic fluid confined to a channel of the same width. 0.00

Microrotation -0.10

linear curve fit gives

To facilitate comparison of the simulation results with the -0.20 o (y)=-0.004+0030y 1
Navier-Stokes theory, following Ering€g23], we rearrange 030 b0 o o ‘ ‘ .
Eqg. (8) so that the left-hand side of this equation is now e 4 ) 0 2 4
dimensionless and the right-hand side is solely a function of y

the dimensionless quantitih:

. — FIG. 4. Angular velocity profile foFF=0.5. The linear function
ho, el sinh(Khy) (36) is the result of a least squares fit to the data. The slope of this curve
Ug y sinh(Kh) * fit is equal to one half the vorticity.
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FIG. 5. Plot of the normalized angular velocity,/F.. The FIG. 7. Plot of the normalized translational streaming velocity,
solid line is data from th&,=0.2 simulation while the dashed line (u,—b)/F.. The solid line is data from th&,=0.2 simulation
is data from the~,=0.5 simulation. while the dashed line is data from thHe,=0.5 simulation. The

parameteb is the constant term obtained from the quadratic fit to
to the theoretical prediction witkh between 10 and 100, as the streaming velocity data.
is shown in Fig. 3. The large peaks that appear around
y==4in Fig. 4 are not accounted for in the theory but this isexternal fieldF,=0.5. At the effective pore boundaries:
not surprising. The theory given above is a continuum theory+=4.5, the velocity profile drops sharply to zero, indicating
which does not allow for molecular packing effects near thesevere slip, while towards the central region of the pore, a
walls. The wavelength of the oscillations is so they are quadratic behavior can be seen. The severity of the slip may
almost certainly due to packing effects which are not acbe the result of having wall molecules which are different
counted for in the continuum theory presented in this papeifrom the fluid molecules. We note that the quadratic portion
Applying a simple linear fit to the angular velocity data in of the velocity profile is still not classical because two pa-
Fig. 4 shows that in midchannelw,/dy~0.030+0.001. If  rameters are required to fit the data whereas only one param-
instead, we use a nonlinear least squares procedure to fit tieéer is required in the classical case. The reason for this
data to Eq.(8), for F,=0.5 the results of the fit give discrepancy is related to the boundary conditions. From the
u,=0.69+0.02 andKh=20=x3, while for F,=0.2, the re- curve fit equation, we see that the vorticiV Xu=0.033.
sults of the fit giveu,=0.25+0.01 andKkh=32+14. Two  This agrees well with the slope of the linear portion of the
points can be made concerning these fit results. Firstly, thengular streaming velocity shown in Fig. 4.
ratio of the two values ofi.=2.76 is very close to the ratio An attempt at a nonlinear least squares fit of &9to the
of the two external fields, suggesting a linear dependence ovelocity data resulted in a very poor fit. However, from the
the magnitude of the external field or pressure gradient. Figform of Eq.(7) we see that if the vortex viscosity, is small
ure 5 shows a plot of the streaming angular velocity normalin comparison to the shear viscosity, the spin contribution
ized by the magnitude of the external field for the two dif- to the translational streaming velocity is negligible and mo-
ferent sets of data correspondingfg=0.2 andF.=0.5. lecular spin plays no significant role in the transport of linear
The angular velocity profiles are superimposable, confirmingnomentum. Edberg, Morriss, and Evaf#4] obtained a

the linear dependence upon the field strength. value for the vortex viscosity of liquid chlorine at a reduced
number density of 0.544 and a reduced translational tempera-
Streaming velocity ture of 0.97(conditions which are close to the mean number

. ) i i density and mean translational temperature at the center of
Figure 6 shows the translational velocity profile for an g poré. Their value of 7,(y=0)=0.020+0.005 is indeed
. ) . .

small compared to the value they obtained for the shear vis-

LS ' ‘ T cosity; 7(y=0)~5.
We can calculate an effective shear viscosity from Eg.
(10). Rearranging Eq(10) gives
nh?F,
u (y) U TR (37)
Quadratic fit to velocity profile — .
at the center of ] where n is now the mean number density in our system.
the pore gives ] Because the number density profile oscillates strongly near
: 1.389 - 0.033 y* ] the walls, we integrate the profile in the central region to
4 a2 o ) 4 obtain n=0.543, which is close to the input density of
y n=0.544(the density of Edberg, Morriss, and Evdrt]).

Putting the relevant values into E7) gives =4.0=0.1
FIG. 6. Translational velocity profile &,=0.5 (solid line) and ~ (=2.83+0.07 in the reduced units of Edberg, Morriss, and
the least squares fit of the data in the center of the pore to a tw&vans[24]) which is the right order of magnitude for the
parameter quadratic functididotted ling. shear viscosity at a density close to that used by Edberg,
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Morriss, and Evangour mean translational temperature of sess spin. We find that the angular velocity profile is in gen-
1.69 is somewhat higher than their value of 0.97 eral agreement with the profile predicted from the Navier-
Like the angular velocity profiles, we expect the transla-Stokes theory except for some features close to the walls
tional velocity to be linearly dependent on the magnitude ofwhich are likely to be a result of molecular packing. The
the external field. To test this assumption, we have plotted imngular velocity profiles scale linearly with pressure gradi-
Fig. 7 [u,(y) — b]/F. againsty. The parameteb is the con-  ent.
stant term which appears in the least squares fit of the The translational velocity profiles show almost classical
streaming velocity to a two parameter quadratic equation antdehavior towards the center of the pore while at the extremi-
is dependent on the boundary conditions. Data are plotted fdres, severe slip is characterized by a sharp drop in the ve-
the two different values of the external fiel,=0.2 and locities. These profiles again scale linearly with the pressure
F.=0.5. From Fig. 7 we see that both normalized functionsgradient, at least in the portion that is quadratic.
are superimposable, confirming our expectation that transla- The velocity profiles are discussed in terms of a dimen-
tional velocity is linearly dependent on the magnitude of thesionless Navier-Stokes parameter, Kh, which depends on the

external field for low values of that field. shear, vortex and spin viscosities as well as the pore separa-
tion. The magnitude of this parameter controls the deviation
IV. CONCLUSION from linearity of the angular velocity profile and the devia-

tion from quadratic behavior in the translational velocity pro-

Using nonequilibrium molecular dynamics techniques, Wefjle, From our simulations we find that Kh is of the order of
have investigated the property of molecular sfiiricrorota- 40 in reduced units.

tion) in a fluid composed of diatomic molecules undergoing
planar Poiseuille flow. Our simulations were performed at
two different values of an effective pressure gradient and at a ACKNOWLEDGMENT
pore width of 10.2 molecular diameters.
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