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Propagation and structure of planar streamer fronts
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Streamers are a mode of dielectric breakdown of a gas in a strong electric field: A sharp nonlinear ionization
wave propagates into a nonionized gas, leaving a nonequilibrium plasma behind. The ionization avalanche in
the tip of the wave is due to free electrons being accelerated in the strong field and ionizing the gas by impact.
This chain reaction deeper in the wave is suppressed by the generated free charges screening the field.
Simulations of streamers show two widely separated spatial scales: the width of the charged layer where the
electron density gradients and the ionization rate are very large@O(mm!#, and the width of the electrically
screened, finger-shaped, and ionized region@O~mm!#. We thus recently have suggested analyzing first the
properties of the charge-ionization layer on the inner scale on which it is almost planar, and then understanding
the streamer shape on the outer scale as the motion of an effective interface, as is done in other examples of
nonequilibrium pattern formation. The first step thus is the analysis of the inner dynamics of planar streamer
fronts. For these, we resolve the long-standing question about what determines the front speed, by applying the
modern insights of pattern formation to the streamer equations used in the recent simulations. These include
field-driven impact ionization, electron drift and diffusion, and the Poisson equation for the electric field. First,
in appropriately chosen dimensionless units only one parameter remains to characterize the gas, the dimen-
sionless electron diffusion constantD; for typical gases under normal conditionsD'0.1–0.3. Then we deter-
mine essentially all relevant properties of planar streamer fronts. Technically, we identify the propagation of
streamer fronts as an example offront propagation into unstable states. In terms of the marginal stability
scenario we then find that the front approached asymptotically starting from any sufficiently localized initial
condition ~the ‘‘selected front’’! is the steepest uniformly translating front solution, which is physical and
stable. Negatively charged fronts are selected by linear marginal stability, which allows us to derive their
velocity analytically. Positively charged fronts can only propagate due to electron diffusion against the electric
field; as a result their behavior is singular in the limit ofD→0. For D&1, these fronts are selected by
nonlinear marginal stability and we have to apply numerical methods for predicting the selected front velocity.
For largerD, linear marginal stability applies and the velocity can be determined analytically. Numerical
integrations of the temporal evolution of planar fronts out of localized initial conditions confirm all our
analytical and numerical predictions for the selection. Finally, our general predictions for the selected front
velocity and for the degree of ionization of the plasma are in semiquantitative agreement with recent numerical
solutions of three-dimensional streamer propagation. This gives credence to our suggestion that the front
analysis on the inner (mm! scale yields the moving boundary conditions for a moving ‘‘streamer interface,’’
whose pattern formation is governed by the evolution of the fields on the outer~mm! scale.
@S1063-651X~96!09212-4#

PACS number~s!: 47.54.1r, 52.80.Mg, 51.50.1v
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I. INTRODUCTION

Discharges are nonequilibrium ionization processes
curring in initially nonionized matter exposed to strong ele
tric fields. Depending on the spatiotemporal characteris
of the electric field and on the ionization and charge tra
port properties of the medium, discharges can assume m
different modes of appearance. In particular, in gases un
approximately normal conditions one distinguishes pheno
enologically between stationary modes such as arc, glow
dark discharges and transient phenomena such as leader
initial stages of sparks, and streamers@1–6#, which occur,
e.g., in silent discharges@7#. The latter nonstationary dis
charges often form the initial state of a discharge that late
becomes stationary. We will focus here on an essential
ment of many transient discharge phenomena, the in
field-driven ionization wave.
551063-651X/97/55~2!/1530~20!/$10.00
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The conceptually simplest problem of this kind has b
come known as the streamer problem in a nonattaching
It treats the dynamics of the free electrons and positive i
in a homogeneous gas at rest taking the following mec
nisms into account:~i! impact ionization, the process i
which a free electron accelerated in a strong local field i
izes a neutral molecule, generating a new free electron a
positive ion; ~ii ! drift and diffusion of charged particles, in
particular of the electrons whose mobility is much larg
than that of the ions;~iii ! the coupling of the electric field to
the charges through the Poisson equation of electrostatic

Recent numerical simulations@8,9# of a basic model in-
corporating these physical ingredients for parameter va
appropriate for nitrogen under normal conditions reveal t
a streamer consists of a sharp nonlinear ionization fr
which propagates into a nonionized gas, leaving a wea
1530 © 1997 The American Physical Society



ng
le
th
pa
t

ea
se
in
n
ie
s
ic

th
a
e
ur
la
er
hi
n
ea
th
o

er
th
e
d
b

o

ra

ca
nc
th
r
-
o
-
ll
he
s

re
m
an
of
a
ip

n

us
,
d
of
au

be-
th-
field

e of
nar
us
mer
ne
of
ga-

e-

t-
and
25
tant
fi-
r is
ion

n
.

ies
th
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ionized nonequilibrium plasma behind. The underlyi
mechanism is that in the leading edge of the front the e
trons are accelerated by the large imposed electric field;
causes the build-up of an electron avalanche due to im
ionization. The generated free charges eventually screen
field and thus suppress further ionization. It is the nonlin
balance between these two nonequilibrium proces
namely the ionization avalanche and the electric screen
which determines the dynamics of the ionization front a
the state of the plasma behind it. In confined geometr
streamers usually have a nontrivial fingerlike shape, a
illustrated by the snapshots in Fig. 1 of streamer dynam
taken from the simulations of Vitelloet al. @9#. As the sharp-
ness of the electron density profiles in Fig. 1 illustrates,
‘‘passive body’’ of the finger is separated from the extern
nonionized gas by a very narrow region — of width of ord
micrometers — in which essentially all the action is occ
ring. This width has to be compared to the size of the fi
ment, which is of order millimeters. It is in this narrow lay
that most of the ionization process is taking place. In t
same region, there is a nonzero charge density, and co
quently, also a very large electric field gradient. These f
tures indicate that there are two different spatial scales in
process, an ‘‘inner’’ scale associated with the thickness
the zone where the ionization takes place, and an ‘‘out
one where the spatial variations are set by the size of
finger and the external experimental geometry. It is precis
for these reasons that accurate simulations are extremely
manding and that they were accomplished only recently
Dhali and Williams@8# and by Vitello et al. @9#. ~See also
@10#.!

Such a separation of scales is strongly reminiscent
what occurs in combustion fronts@11,12#. A combustion
front is a narrow layer of thicknessl in to which the combus-
tion is essentially confined, while outside of it, the tempe
ture field varies on a much longer scalel out. Physically, such
sharp combustion fronts occur in the limit when the chemi
reaction rates involved in the combustion are very fast o
a sufficient temperature is reached. It has been shown
on the basis of an asymptotic expansion to lowest orde
the small parameter«5 l in / l out using matched asymptotic ex
pansions@13,14#, the problem can be analyzed in terms
the propagation of an ‘‘effective interface.’’ More specifi
cally, one first solves the so-called inner problem of a loca
almost planarreaction zone. This permits us to relate t
temperature and chemical composition fields on both side
the front~at distancesL such thatl in!L! l out) and to deter-
mine the local front velocity as a function of local curvatu
and fields. On the scale of the remaining outer proble
these relations then play the role of boundary conditions
of a kinetic equation for the effective moving interface
zero thickness. Besides in combustion, the technique of
ymptotic matching to obtain an effective interface descr
tion has also been applied to chemical waves@15#, thermal
plumes @16#, and to phase field models of solidificatio
@17,18#.

In spite of some important differences between comb
tion and streamer fronts as discussed in the Appendix
similar approach appears possible for streamers. As
cussed also in@19#, building on such a reduced description
streamer dynamics appears very desirable, not only bec
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it might make numerical studies much easier, but also
cause it will allow us to draw upon the knowledge and me
ods which have been developed in the last decade in the
of interfacial pattern formation and dynamics@20#. The first
step towards this goal is to determine the field dependenc
the velocity and the ionization and charge profile of a pla
front which propagates into the nonionized region. We th
analyze in this paper the inner problem for a planar strea
front. This allows us to reduce the problem to effectively o
dimension. Our analysis clearly identifies the problem
streamer front propagation as an example of front propa

FIG. 1. Results of the numerical simulations of the full thre
dimensional streamer equations~2.1!–~2.6! of Vitello et al., re-
printed from Figs. 1 and 10 in@9#. ~a! Negative streamer propaga
ing downwards towards the anode. Electrodes are planar
located atz50 and 0.5 cm; the voltage between the electrodes is
kV, which in the absence of the streamer amounts to a cons
electric field uEu5E0/4. The system continues sidewards suf
ciently far to make the lateral boundaries irrelevant. The streame
assumed to be cylinder-symmetric. The dimensionless diffus
constant isD50.1. Each line indicates an increase ofne by a factor
10; densities of 10321014 cm23 can be seen~initial background
ionization: 1 cm23). Shape at time 4.75 ns after an initial ionizatio
seed was placed near the upper electrode.~b! Shape at time 5.5 ns
~c! Logarithmic electronne and total chargens density along the
symmetry axis of~b!. Solid line, ne ; dot-dashed,unsu for ns.0;
dotted,unsu for ns,0. Note the exponential increase of the densit
on themm scale within the front as well as the maximum of bo
densities in the rear part of the front. Courtesy of P. A. Vitello.
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tion into unstable states. Physically, the instability of t
nonionized gas against charge fluctuations can be tra
back to the fact that any small electron density gets ampli
by the impact ionization. As is standard for front propagat
into unstable states@21–25#, we find that the one-
dimensional streamer equations exhibit a one-parameter
ily of uniformly translating front solutions, parametrized b
their velocity. As usual@21–25#, the question is then to de
cide which of these front solutions is the dynamically s
lected one, i.e., is the one reached at long times after a
calized ionized region has been created by some in
ionization event. The existing knowledge of front propag
tion into unstable states@22,23# provides us with an educate
guess for the selected velocity, which we confirm with t
help of numerical studies. Taken together, our results p
vide an essentially complete solution of the inner problem
planar streamer fronts.

In itself, the idea to analyze the planar fronts of a stream
model is not new — we refer to@26–29# for earlier work.
Apart from the fact that the authors from the 1970s@26–28#
investigate different models, which are more inspired
equilibrium concepts~e.g., the ionization behind the front i
determined by thermal ionization, where the electron te
perature is raised by application of strong electric fields!, our
work casts new light on this old problem from two differe
angles.

First it was empirically noted that the standard approa
to analyze uniformly translating fronts failed to determine
unique propagation velocity, given the field and the gas
rameters. Turcotte and Ong@26# clearly state this failure of
their theory~this ‘‘great defect’’ of their theory is recalled in
Fowler’s reviews@28#! and suggest that a unique solutio
might be determined by a dynamical stability analysis. A
bright and Tidman@27# then perform such a stability analy
sis, but not in a systematic way, and they draw incorr
conclusions. D’yakonov and Kachorovskii@29# also find the
indeterminacy of the speed of uniformly translating plan
fronts, now for an approximated version of our model, a
propose to solve this by using the tip radius of the strea
finger as an extra length scale, which, however, they can
determine. We, in contrast, trace the indeterminacy of
velocity from the analysis of uniformly translating stream
front solutions to the fact that this is an example of fro
propagation into unstable states. Applying the concepts
plained above, we solve the selection problem for pla
fronts without additional assumptions or approximations. W
argue that a particular front solution out of a whole family
dynamically stable solutions is selected, because it is
only one compatible with the initial condition of a localize
ionization seed.

Second, this result is the firstingredientfor studying the
formation of patterns, in particular of the tip radius — we
not attempt to modelglobal features of the pattern formatio
with our planar front analysis. Our approach thus is ve
different in spirit from the earlier investigations: As als
stressed in@19#, in an effective interface description based
a matched asymptotic expansion, the results of wea
curved, almost planar fronts are essentially usedlocally ev-
erywhere in the interface region: They enter the analysis
the outer scale as boundary conditions at the moving in
face. It is on this outer scale that pattern formation proble
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like the size, velocity, and shape of the streamer should
analyzed. Once our results on planar fronts will be exten
to weakly curved fronts, all the necessary ingredients
tackle these questions appear to be available.

The main results of our present analysis of the strea
equations used in the simulations@8,9# can be summarized a
follows:

~a! Dimensional analysis shows that in dimensionle
units, a single parameter remains to characterize the gas
dimensionless electron diffusion coefficientD characteristic
of the gas@see Eq.~2.10!#. For gases under normal cond
tions,D is small, of order 0.1–0.3.

~b! The length scale set by the electron impact ionizat
coefficient@the coefficienta0

21 in Eq. ~2.5!# is on the order
of micrometers for nitrogen. ForD&1 the thicknessl in of
the charged layer is on the order of this same ionizat
length for negatively charged streamer fronts~NSF! @30#.
Given that typical streamer diameters found in the simu
tions are of the order of 1 mm,«5 l in / l out is at most of order
1022; this justifies an effective interface description
streamer dynamics.

~c! We find that electron diffusion acts as a singular p
turbation forpositively charged streamer fronts~PSF!: with-
out diffusion, such fronts can not propagate, but with a
nonzeroD, they do. As a result, the behavior is singular
the limit D→0: for D5O(1), the thicknessl in is again of
order of the ionization length, but forD→0 the electron
density and its gradients diverge due to the appearanc
another smaller length scale~of orderD/a0).

~d! The electron density generated by the propagat
front is again basically set by dimensional analysis for NS
We calculate forD&1.5 the dependence of the dimensio
less electron densitys2 behind the front on the electric field
E1 far ahead of our planar front. Our results compare fav
ably with those extracted from the simulations@9#, according
to the prescriptions of the theory of matched asymptotic
pansions@13,14#. Namely,E1 is not the field value at the
electrode position, but the value obtained by extrapolat
the slowly varying outer field to the front position. We als
calculate the fullD andE1 dependence of the electron de
sity s2 behind the front of PSF forD&1.5.

~e! The dynamically relevant~‘‘selected’’! front velocity
v f is a unique function ofE1 andD. The analysis confirms
the strong asymmetry between NSF and PSF also foun
the simulations@8,9# for fronts propagating into an essen
tially nonionized region. The asymmetry is stronger t
smallerD is and disappears forD@1.

~f! For NSF,v f is given by the so-called linear margina
stability velocityv* @22# — see Eq.~5.3! below. For param-
eter values used in the simulations, we find thatv f is typi-
cally 30–40 % higher than the electron drift velocity just
front of the streamer head, which agrees semiquantitativ
with the findings of Vitelloet al. @9#.

~g! We find that PSF propagate for any nonzero value
the dimensionless electron diffusion coefficientD. Due to
the singular behavior asD→0, we find that fronts propagat
with a unique velocityv† predicted by the so-called nonlin
ear marginal stability mechanism@23# for smallD. For the
Townsend expression used in the simulations@8,9#, this hap-
pens below a well-defined field-dependent value ofD of or-
der unity ~see Fig. 3!. Above this threshold value, PS
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propagate with the linear marginal stability valuev* .
In this paper, our main focus will be on those results t

are of greatest interest from the point of view of understa
ing the generation of low temperature plasmas by
streamer mechanism. We note, however, that the equa
for planar streamer fronts@Eqs.~3.11! and~3.12! below# ap-
pear to be of interest in their own right. As will be discuss
briefly in Sec. V, our streamers have several features in c
mon with the celebrated nonlinear diffusion equation stud
in mathematics@31,32# since the early work of Kolmogorov
et al. @33# and Fisher@34#; at the same time, however, the
are sufficiently more complicated that they appear to pres
new challenges from a mathematical point of view.

This paper is organized as follows. In Sec. II we introdu
the basic equations for streamer formation, and perform
dimensional analysis for the inner problem of stream
fronts. In Sec. III, we discuss the stability of the basic h
mogeneous states of interest, the homogeneous nonion
state, and the homogeneous weakly ionized state. We
discuss the physical mechanism of streamer formation
the proper initial and boundary conditions to study these
the case of planar fronts, which allow us to simplify th
equations describing planar front dynamics. In Sec. IV
demonstrate that there exists a one-parameter family of
formly translating fronts characterized by a continuous ra
of front velocitiesv. We also briefly show how in the cas
D50, the equations for uniformly translating fronts can
solved analytically. These solutions, which turn out to
useful as a small-D approximation for NSF, yield an explici
expression for the electron densitys2 behind the NSF in
terms of the fieldE1 just ahead of it. This is followed by an
analysis of the general caseDÞ0; then the equations canno
be solved analytically, but we demonstrate that there still
one-parameter family of uniformly translating front sol
tions. For PSF, we show that the limitD→0 is singular; we
discuss this limit in detail and show that it accounts for t
strong asymmetry between PSF and NSF for realistic va
of D. In Sec. V we then summarize some of the main res
@21–25# concerning the so-called selection problem, t
question of which particular front solution from the family
reached asymptotically for large times for a large class
initial conditions. Application of these concepts allows us
predict the shape and velocity of the dynamically relev
front solution~the selected front! and the value of the elec
tron density generated behind it. This yields the various
lection results for NSF and for PSF, summarized in poi
~c!–~g! above, and leads us to predict that the behavior
PSF in the limitD→0 is singular. In Sec. VI we presen
numerical simulations of the full partial differential equ
tions for planar streamer dynamics; starting from various
tial conditions, we illustrate that in all cases we have stud
the long time dynamics of the system is characterized b
NSF and a PSF whose behavior is in full agreement with
predictions. In the concluding section we finally reflect
our results and on the future steps to be taken to arrive a
effective interface description of streamer dynamics. In
Appendix we discuss differences and similarities betwe
combustion and streamer fronts.

II. MODELING AND DIMENSIONAL ANALYSIS

A. The minimal streamer model

For simulating the dynamical development of stream
out of a macroscopic initial ionization seed in a so-cal
t
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nonattaching gas like N2 under normal conditions, Dhali an
Williams @8#, and Vitello et al. @9# use the following set of
deterministic continuum equations for the electron dens
ne , the ion densityn1 and the electric fieldE: balance equa-
tions for electrons and ions,

] tne1“R• je5source, ~2.1!

] tn11“R• j15source, ~2.2!

where the fact that the two source terms are the same is
to charge conservation in an ionization event; the Pois
equation,

“R•E5
e

«0
~n12ne!, ~2.3!

and the approximate phenomenological expressions

je52nemeE2De“Rne , ~2.4!

j150, ~2.5!

source5unemeEua0 e
2E0 /uEu. ~2.6!

Apart from the fact that we will allow for a slight general
zation of Eq.~2.6!, these are the equations that we will in
vestigate analytically below.

In these equations,je and j1 are the particle current den
sities of electrons and positive ions, and e is the abso
value of the electron charge. The~dimensional! spatial coor-
dinates are denoted byR, and“R is the gradient with respec
to these coordinates. The use of only Poisson’s law of e
trostatics, Eq.~2.3!, means that all magnetic fields, as well
terms in the Maxwell equations associated with time dep
dences of the fields, are neglected@35#.

The electron particle current densityje is approximated in
Eq. ~2.4! as the sum of a drift and a diffusion term. Note th
this diffusion approximation implies that the electron me
free path must be small with respect to the scale of varia
l in of the electric field. This condition is just about satisfie
for the parameter values taken forN2 in the simulations,
except possibly at the highest field values~see also the dis-
cussion in Sec. VII!. The electron drift velocity is taken to b
linear in the fieldE, with me the ~positive! electron mobility.
The electron diffusion coefficientDe and the mobilityme are
treated here as independent coefficients, since they e
tively depend on the field strength@3# ~only in the low-field
limit are they related by the Einstein relation!. More gener-
ally, the diffusion coefficient should be replaced by a diff
sion tensor, which is diagonal in a reference frame with o
axis along the electric field. Its longitudinal component, t
only relevant one for planar fronts perpendicular toE, is
somewhat smaller than the transverse one. Since we will
thatN2 reaches a typical degree of ionization of only 1025,
density fluctuations of the nonionized gas can be neglec
and the mean free path of the electrons and thereforeme and
De can be taken as independent of the degree of ionizat

The ionic current is neglected according to Eq.~2.5!,
since the mobility of ions is at least two orders of magnitu
smaller than that of the electrons@8#. In particular, for the
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analysis of the inner scale, that we will perform in th
present paper,j1 is negligible.

The source~2.6! finally accounts for the creation of fre
charges by impact ionization. If the product of electric fie
E and electronic mean free pathlmfp is large enough, free
electrons can gain sufficient kinetic energy to ionize neu
molecules. Accordingly there is a threshold fielduEu5E0

} lmfp
21 For uEu*E0 the probability that a scattering eve

carries at least the ionization energy is large. The effec
ionization cross-sectionscs(uEu) then essentially saturate
while for uEu!E0 the ionization rate per scattering event
largely suppressed. The source term is given by the ion
tion rate, which can be calculated as the product of the d
current of free electronsunemeEu times the target particle
densitynn of the neutral gas times the effective ionizatio
cross sectionscs(uEu). Commonly, a phenomenological ion
ization coefficient a(uEu)5nnscs(uEu) is used, ~which
clearly has dimension of inverse length,! whose field thresh-
old behavior in the Townsend approximationa(uEu)
5a0 exp(2E0 /uEu) @3# is expressed by Eq.~2.6!. As dis-
cussed by Raizer@3#, in the approximation that every colli
sion is ionizing, if the electron carries an energy larger th
the ionization energyI , we have

a0' lmfp
21 , and E0'I /~elmfp!. ~2.7!

Since in much of our analysis the specific form ofa(uEu) is
not needed, we will use a slightly more general formulat
in Eq. ~2.11! below.

In the source term, ionization due to the photons a
created in recombination or scattering events is neglec
This is motivated by the ionization cross sections due
photons being much smaller than those due to electr
Note that, if photoionization is taken into account, the d
namical equations become nonlocal.

No sink term needs to be included for the analysis of
inner problem, since the recombination length at a degre
ionization of order 1025 that we will derive below is very
large as compared with the front widthl in . ~For this reason,
the inner problem is the same for streamers and leaders@3#:
the difference between these discharge modes, which
sists in the fact that recombination is negligible in the plas
body of leaders, would come into play only when solving,
a later stage, the outer problem.! The fact that the degree o
ionization remains small is also the reason that satura
effects are neglected in Eq.~2.6!.

In contrast to the situation in N2, which is described by
our model equations, in attaching gases like O2, a third
charged species plays a role, namely, negative ions for
by a neutral molecule catching a free electron. For a desc
tion of the physics of such attaching gases and simulat
thereof, see, e.g.,@36#.

The equations above are deterministic. Thermal fluct
tions in fact can be neglected, since even an unphysic
small ionization energy of 3 eV leads to a Boltzmann fac
of 10252 at room temperature. Also other stochastic effe
are not accounted for in the simulations we compare to.
further discuss possible stochastic effects in the experim
in the Conclusion.

Finally, the dynamical system~2.1!–~2.6! must be
complemented by the following.
l
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~i! Boundary conditions: as will be discussed in detail
Sec. III, for the problem of front propagation, these a
specified by the valueE1 of the electric field far ahead of th
front, where the total charge density vanishes.

~ii ! Initial conditions: we ignore the details of the plasm
nucleation event~e.g., triggering by radiation from an exte
nal source!, and assume that att50 a small well-localized
ionization seed is present. The precise meaning, for our p
lem, of ‘‘well-localized’’ will be made clear in Sec. V.

B. Dimensional analysis

In order to identify the physical scales and intrinsic p
rameters of our problem, we reduce Eqs.~2.1!–~2.6! to a
dimensionless form. The most natural scale of length a
electric field are the ionization lengthl ion5a0

21 and the
threshold fieldE0 of the ionization rate~2.6!. The velocity
scale is then the electron drift velocity at this field streng
v05meE0, leading to a time unitt05(a0meE0)

21, and a
charge unitq05«0a0E0.

For concreteness, we list here the values of these qua
ties for N2 at normal pressure, used in the simulations@8,9#

a0
21'2.3 mm, v0'7.563107 cm/s,

t0'3•10212 s, q0'4.731014e/cm3 ~2.8!

E0'200 kV/cm, me'380 cm2 /Vs.

We now introduce dimensionless quantities by defining

r5Ra0 , t5t/t0 ,

q5~n12ne!e/q0, s5nee/q0 ,

j52 jee/~q0v0!, E5E/E0 . ~2.9!

Note that with our definition,j now plays the role of a di-
mensionlesschargecurrent. If we furthermore introduce th
dimensionless diffusion coefficientD as

D5Dea0 /meE0 , ~2.10!

we obtain what we call the streamer equations

]ts2“• j5s f ~ uEu!, ~2.11!

]tq1“• j50, ~2.12!

q5“•E, ~2.13!

j5sE1D“s, ~2.14!

where“ denotes the gradient with respect to the dimensi
less coordinater , and where the ‘‘ionization function’’

f ~ uEu!5uEua~ uEu!/a0 ~2.15!

is assumed to vanish at zero field. Townsend’s expres
~2.6! yields

f T~ uEu!5uEuexp~21/uEu!. ~2.16!

In general, we will treat an ionization function with the pro
erties@37#
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f ~0!505 f 8~0! and f 8~ uEu!>0 for all uEu.
~2.17!

The dimensionless equations~2.11!–~2.14! now depend on
only one internal parameter, the dimensionless diffusion
efficientD. For the values used in@8,9# for N2 under normal
conditions,D'0.1, while according to the data given b
Raizer@3#, for Ne and Ar,D'0.3. We believe that typica
values are generally in the range 0.1–0.3, since in the
proximation ~2.7!, a0 /E0'I /e and since the ratioDe /me
appears to be commonly of the order of volts for large fiel
while I is typically of the order of several electron volts.

We are now able, solely on the basis of the dimensio
analysis above, to make a first semiquantitative predic
about streamers. We will in practice be interested in exte
fields E15O(1) ~for E1!1 anda0

21 on the order of mi-
crometers, the electron avalanche process becomes muc
ineffective for streamer fronts to develop at reasonably sm
distances; also our scale separation approach discussed
Introduction might break down!. We can therefore expec
that, forD values&1, as is the case for N2, front widths will
be of ordera0

21, and that in addition the reduced electro
densitys2 far behind the front on the inner scale will be
order unity as well. This leads one to expect electron de
ties in the streamer body on the order of 1014 cm23, in
agreement with numerical findings.

III. HOMOGENEOUS SOLUTIONS AND THE CONCEPT
OF FRONTS

A. Homogeneous states and their stability

The first task, when studying in general the propagation
a front, is to identify the nature and stability of the states t
the front connects. We expect the invading state, here
ionized one created by the front, to be stable@38#, while the
invaded state can in general either be metastable or unst
Physically, we of course expect the nonionized state to
unstable in a nonvanishing field in the present model.~In an
attaching gas forming also negative ions, it is conceiva
that the nonionized state is metastable for not too str
fields.!

Equations~2.11!–~2.14! immediately yield that stationary
homogeneous states simply are solutions of

s f ~ uEu!50. ~3.1!

So, these stationary states decompose into two families
follows.

~i! Nonionized states, withs50, E arbitrary: Since the
density of free electrons vanishes, no ionization can oc
whatever the value ofE is. If also the density of ions van
ishes,“•E50. Since these states correspond to the phys
situation far ahead of the front, we label them~1!. More-
over, since we will need in particular the case in which t
field ahead of the front is constant, we takeE15const.

~ii ! Completely screened states, labeled (2), with E50,
s2 arbitrary @39#: Whatever the electron density, forE50
impact ionization does not occur and thermal energy is m
too small to permit ionization.
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Since the steady states we consider as well as the e
tions of motion are translation invariant in space and tim
the eigenstates of the linear perturbations are Fourier mo
of the form

S ds~r ,t !

dE~r ,t ! D 5S s1

E1
D exp~ ik•r1vt!. ~3.2!

We first investigate the linear stability of the nonionized st
s150. Upon linearizing the equations about the zeroth
der values (s150, E1), we find two branches of modes.

~a! The first, trivial branch is a zero mode (v50), with
s150, expressing that the electron density remains ze
This zero mode accounts for the degeneracy of the non
ized states, i.e., for the fact that there exists a~1! stationary
state for each value ofE1. ~ForE1Þconst, these zero mode
express the degeneracy of all steady states withq15“•E1

for any ion densityq1 as long as the electron densitys1

vanishes.!
~b! The second branch of perturbations is associated w

fluctuations carrying a finite electron charge; its dispers
relation is

v15 ik•E11 f ~ uE1u!2Dk2, ~3.3!

with iv1k•E15@ f (uE1u)2v1#s1. The first term on the
right-hand side of Eq.~3.3! simply expresses the fact that th
electrons drift, to first order, in the electric fieldE1 with
velocity (2E1). The real part Rev1, the sign of which de-
termines whether fluctuations decay or are amplified, c
tains a destabilizing term, expressing that any small elec
density fluctuation is amplified at ratef , and a stabilizing
term, due to the diffusive spreading of electron charges.
k2, f (uE1u)/D, Rev1.0: nonionized states are unstab
against long-wavelength perturbations.

We note that the single Fourier eigenmodes~3.2! violate
individually the physical constraint thats be positive every-
where. But Eq.~3.3! also determines the time evolution o
physically allowed fluctuations~wave packets! that are su-
perpositions of these eigenmodes. For example, one e
deduces from it Lozanski’s expression@40# for the time evo-
lution of a Gaussian-shaped small electron density with
bitrary constantsc1 ,c2.0,

ds~r ,t!5c1e
f ~ uE1u!t e2~r1E1t!2/~c214Dt!

~c214Dt!3/2
, ~3.4!

as long as linearization around the nonionized state holds
expected, the center of the spreading packet drifts with
locity 2E1, while the total number of electrons it contains
amplified at ratef and the wave packet stays Gaussian, w
time-dependent widthc214Dt. Such ionization modes de
rived by linearizing around the nonionized state are kno
as electron or ionization avalanches in the gas discharge
erature.

We now perform the same linear stability analysis for t
completely screened states (s25const, E250). The fact
that f 8(0)50 from Eq.~2.17! assures that the linear pertu
bations are not affected by ionization; the dynamics th
evolves with conserved particle densities.

Again, due to the existence of a continuous family
screened stationary states, parametrized bys2, the spectrum
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contains a branch ofv50 modes. For the nontrivial branch
the dispersion relation is given by

v252s22Dk2, ~3.5!

while the eigendirection of such a perturbation is given b

s11 ik•E15s11q150. ~3.6!

Since (s11q1) is the dimensionless ion density of the line
mode, Eq.~3.6! simply expresses the fact that ions are co
pletely immobile in our model.

Equation ~3.5! expresses the fact that the complete
screened (2) states are stable, the decay of perturbatio
being due to the added stabilizing effects of overdam
plasmons (2s2) and electron diffusion. Thek→0 limit of
the plasmon mode leads to dielectric screening@41#.

B. The mechanism of front creation

Let us now investigate the dynamical evolution of an i
tial state in which the electron and ion densities vanish
erywhere except in a small localized region. An example
such localized initial conditions is an initially Gaussian ele
tron density, as in the simulations@8,9# — under what cir-
cumstances initial conditions are sufficiently localized w
become clear later. As long as the electron and ion dens
are small enough, we can neglect in linear approximation
changes in the field as we did above when linearizing ab
the nonionized state. As a result, both densities will gr
due to impact ionization. If this were the only mechanis
the space charge would remain unchanged and the ioniza
would continue indefinitely. However, the electrons are m
bile, and at the same time they start to drift in the direct
opposite to the electric fieldE. If we neglect for the momen
the diffusion, this drift has two effects. First of all, the ele
trons start to drift in the direction of the anode. Impact io
ization then starts in previously nonionized regions as w
so the ionized region expands towards the anode. Secon
the electrons drift while the ions stay put~on the fast time
scale!, a charge separation occurs which tends to supp
the field strength in the ionized region. When the size of
initial perturbation and/or the time during which the av
lanche has built up are large enough, the screening of
field becomes almost complete in the ionized region so
ionization stops there. The behavior in this region can
described by linearizing around the screened state as
done above. After an electrically screened body of the i
ized region has developed, the initial ionization avalanch
said to have developed into a streamer. Thus streamer fr
are strongly nonlinear and determined by two compet
mechanisms, which dynamically balance each other: the
ization process which is strongest at the leading edge and
screening of the field due to the free charges which increa
towards the rear end of the front. This balance also expla
our finding that the ionization length and the screen
length in the plasma behind the NSF are of the same orde
magnitude for field values that are not too small. Technica
speaking, the challenge in constructing the full front is
connect the two regimes linearized about the homogene
states in an appropriate way through the nonlinear regim
the front.
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In the above discussion, we have neglected electron
fusion. In this case the NSF propagates towards the an
with a velocity that is at least the drift velocity of the ele
trons in the local electric field. The PSF, in contrast, is mo
ing in the directionoppositeto the drift of the only mobile
species, the electrons. Its space charge is formed by the
staying put, while the electrons are drawn into the ioniz
body. Propagation of a PSF is therefore only possible if
electron diffusion current overcompensates the drift curre
This in turn implies that if the diffusion coefficientD is
small, electron density gradients must be extremely ste
From this discussion it already becomes evident — and
will derive this below — that for an NSF, diffusion is a sma
correction forD!1, since drift and diffusion currents ar
acting in parallel directions. In PSF, however, diffusion h
to overcome the drift, and as a result in this case the limi
vanishing diffusion is very singular. We will see in Sec. I
that this manifests itself through the emergence of a n
inner length scaleD/a05De /(meE0), the diffusion length
associated with the electron drift velocity.

Of course, a charged front only screens the normal co
ponent of the electric field. This is why electric screening
efficient in the head of the streamer, while the field pe
etrates in the body of a single streamer in the simulati
@8,9#. Our planar front analysis thus serves as a first appro
mation for the mechanisms in the moving tip of the stream
finger.

C. The one-dimensional streamer equations

Let us now restrict our analysis to the case of plane fro
perpendicular to a constant electric field. Of course, in pr
tice planar streamer fronts will be unstable to deformatio
along the front~very much like in the Mullins-Sekerka insta
bility in crystal growth@20#!, but as explained in the Intro
duction, the planar front analysis is a first step towards
derstanding the dynamics on the inner length scalea0

21 and
time scalet0. As such, it is the first basic ingredient fo
deriving an effective interface model on scales@a0

21.
We choose thex axis as parallel to the field and perpe

dicular to the planar front so thatE5Ex̂ and¹5 x̂]x . From
the point of view of matched asymptotic expansions,
electric field in the nonionized region before the front w
vary adiabatically slowly on the ‘‘inner’’ time scalet of the
front, the time scale on which the front propagates ove
distance comparable to its width, because the length scale
the outer problem determining the changes ofE are assumed
to be much larger than the inner scalea0

21. For our study of
the inner problem, we thus take the asymptotic field va
E1 in the unionized region constant in time. Furthermo
we will use the convention that the nonionized initial sta
into which the front propagates is at the right towards la
positive values ofx, so that there

s→s150, q→q150, E→E1, ]tE
150 for x→1`,

~3.7!

which motivates now the use of the superscript1. We em-
phasize again that ‘‘x→1` ’’ should be interpreted on the
length scalea0

21 of the inner problem in the sense o
matched asymptotic expansions@13,14#. Far behind the
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55 1537PROPAGATION AND STRUCTURE OF PLANAR . . .
front, i.e., forx→2`, the discussion of Sec. II leads us
expect a homogeneous stable state

s→s2Þ0, q→q250, E→0 for x→2`. ~3.8!

Which values2 will be dynamically selected and what th
corresponding front velocity and profile are, for a given fix
value of the electric fieldE1 before the front, is the selectio
problem we aim to solve.

The boundary condition~3.7! allows an important simpli-
fication of the equations in one dimension: If we insert E
~2.13! into ~2.12! and integrate, we obtain

]tE1 j5h~t!, ~3.9!

whereh(t) is an arbitrary function of time which is consta
in space. In view of the boundary condition~3.7!, h(t) van-
ishes atx→` and thus everywhere. For planar fronts, t
model Eqs.~2.11!–~2.14! then reduce to

]ts5]x~sE!1D]x
2s1s f ~ uEu!, ~3.10!

]tE52sE2D]xs, ~3.11!

with space charge and electric current determined by

q5]xE and j5sE1D]xs. ~3.12!

We will refer to Eqs. ~3.10! and ~3.11! as to the one-
dimensional streamer equations. They are the basic equa
tions of this paper, on which the rest of our analysis will
based.

Equation~3.11! implies that the field decays behind th
front, if no strong density gradients act against it. As we sh
see later when we will discuss our simulation results in S
VI, such strong density gradients often occur during the tr
sient regime before a PSF emerges. Once, however, a
has approached an approximately uniformly translating st
the electron densitys2 behind the front is almost homoge
neous and the field behind the front then decays to zero
time scale 1/s2 according to Eq.~3.11!. Note that the local
decay of the field for any nonzero electron density is due
electrodynamics of conserved quantities that continues
after the impact ionization has been suppressed.

We finally note that in the limit where the diffusion i
small (D!1), it is easy to identify the crossover time fro
the linear avalanche regime to that of streamer propaga
in the case that the initial electron density is small and n
zero only in a very narrow localized region. As explained
the beginning of this section, in the avalanche regime we
neglect the changes in the background fieldE1 due to the
build-up of the charges. The evolution of the electron den
is then described by the linearized version of Eq.~3.10!, a
linear equation with drift, diffusion, and growth. Hence,
the initial electron density is, e.g., Gaussian, the elect
density will, according to Eq.~3.4!, remain a Gaussian pro
file, whose maximum drifts with a velocityuEu in the direc-
tion opposite to the field and whose amplitude grows ex
nentially as exp„f (E1)t…. In other words, if the total initial
electron charge isNe(0)5*dxs(x,0), then the total numbe
of electrons in this avalanche regime grows
Ne(t)5Ne(0)exp„f (E

1)t…. Likewise, the total ion charge
grows exponentially, but if both the diffusion constant a
.
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the width and amplitude of the initial perturbation are sma
the electron drift will separate the negative electron cha
and the positive ion charge almost completely. The crosso
to the nonlinear streamer regime will therefore occur wh
the total charge in the positively and negatively charged
gions is big enough that screening of the field becomes
preciable, i.e., at a timetc when

Ne~tc!'uE1u, ⇒tc'
1

f ~E1!
ln@ uE1u/Ne~0!#.

~3.13!

IV. UNIFORMLY TRANSLATING FRONT SOLUTIONS

Above we already have introduced the idea that fro
asymptotically approach some shape, which is independ
of the initial conditions. This is based on our experien
@21–25# with other examples of front propagation into u
stable states that the front will acquire some asympto
shape and velocity in the long time limit, which will be th
same~‘‘universal’’ ! for a large class of ‘‘sufficiently local-
ized’’ initial conditions that comprise most physically re
evant initial states. This property is often referred to as
front selection problem. Our subsequent analysis will the
fore follow the usual strategy in examples of this type: W
will first show in this section that there generally is a on
parameter family of front solutions. In Sec. V we then su
marize our present understanding of the front selection pr
lem, and on the basis of this predict the properties of
selected streamer front. The numerical simulations that c
firm our predictions are presented in Sec. VI.

Uniformly translating fronts with velocityv are stationary
in a coordinate system moving with velocityv. If we denote
this comoving coordinate byj5x2vt, the partial differen-
tial equations~PDE’s! ~3.11! and ~3.12! in this coordinate
system become

]tsuj5v]js1]j~sE!1D]j
2s1s f ~ uEu!,

~4.1!
]tEuj5v]jE2sE2D]js.

A front translating uniformly with velocityv in the fixed
frame x is stationary in this comoving frame
]tsuj505]tEuj . As a result, the corresponding front pro
files are solutions of the ordinary differential equatio
~ODE’s!. ~We continue to use partial differential signs]j

even though the uniformly translating solutions are functio
of the variablej only.!

D]j
2s1~v1E!]js1s]jE1s f ~ uEu!50,

~4.2!
D]js2v]jE1sE50.

These equations are analyzed below. Both forD50 and for
DÞ0, they admit solutions for a range of values of the v
locity, so we are indeed faced with the question of fro
selection.

It is important to realize that not all the exact uniform
translating front solutions of these ODE’s correspond
physically relevant solutions. In particular, any physical ele
tron densitys needs to be non-negative (s>0), but as we
shall see the set~4.2! admits PSF solutions wheres goes
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negative. We expect these solutions to be unstable~in accord
with the ‘‘nonlinear marginal stability’’ scenario@23#!, and
also not to be approachable from an initial condition w
s>0. Hence they are neither dynamically nor physically r
evant. Furthermore, note that in our model the ion den
qi (5r1s) can only increase due to impact ionization@Eqs.
~2.11! and~2.11! imply ]tqi5s f (E)>0#. With our conven-
tion that the nonionized state is on the right, this implies t
uniformly receding front solutions withv<0 are unphysical.
We will therefore call a uniformly translating front solutio
physical if

v.0 and s~j!>0 for all j. ~4.3!

A. D50 Front solutions

In contrast to the caseDÞ0, where we can derive prop
erties of uniformly translating fronts only either qualitative
by discussing flows in phase space or quantitatively by
merical integration, Eqs.~4.2! for D50 can be integrated
explicitly. Doing so, we derive a simple explicit expressi
for the electron densitys2 behind the front in terms of the
field E1 before the front; this analysis generalizes an ear
result of D’yakonov and Kachorovskii@29#, and explicitly
illustrates the existence of a family of uniformly translatin
solutions. For NSF, these results extend smoothly to the
DÞ0: The electron densitys2(E1) derived forD50 will
turn out to be a good approximation forD&1, and the small
overshoot ofs at the rear end of the front visible in th
three-dimensional simulations in Fig. 1~c!, is also recovered
for D50. For PSF, on the other hand, we will see thatD acts
as a singular perturbation, so that the class ofD50 PSF
solutions that we derive here is not relevant for the P
selection problem forD&1.

The ODE’s describing uniformly translating fronts fo
vanishing diffusion are found by puttingD50 in Eq. ~4.2!.
These equations then become

]j@~v1E!s#52s f ~ uEu!, ~4.4!

v]jlnuEu5s. ~4.5!

Upon insertion of the left-hand side of Eq.~4.5! for s in the
right-hand side of Eq.~4.4!, this equation can then be ex
pressed as a complete derivative by writing

]jF ~v1E!s1vE
c

uEu
dx

f ~ uxu!
x G50. ~4.6!

For physical fronts withv.0 ands>0 @see Eq.~4.3!#, we
see from Eq.~4.5!, thatE is a monotonic function ofj,

sgn„]jE~j!…5 sgnq~j!5 sgnE~j!5 sgnE1 for all j.
~4.7!

This allows us to useE as a coordinate instead ofj. Accord-
ing to Eq.~3.7!, before the front atj→` the electron density
vanishes, sos15s@E1#50. Equations~4.6! and ~4.7! to-
gether then determines as a function ofE as

s@E#5
v

v1E
rE1@E#, ~4.8!
-
y

t

-

r

se

F

with the function

rE1@E#5E
uEu

uE1u
dx

f ~ uxu!
x

5r uE1u@ uEu# ~>0!. ~4.9!

The functionrE1@E# is nothing but the ion density, as can b
deduced by insertingq5]jE into Eq. ~4.5! and equating the
charge densityq with r2s. The ion densityr for D50
turns out to be a function ofE and E1 only, and to be
independent of the particular front shape parametrized
v.

The fieldss, r, andE as a function ofj can be found by
solving the implicit equation forE5E(j),

]jlnuEu5
r uE1u@ uEu#
v1E

, ~4.10!

which can be derived from Eqs.~4.5! and ~4.9!.
Equation~4.8! immediately shows that physically allow

able solutions withs>0 andv.0 must havev1E>0 for
all field values. Because of the monotonicity ofE as a func-
tion of j, this is automatically satisfied for PSF wit
E1.0, but for NSF this implies in particular tha
v1E1>0; together withv.0 we thus have for physica
fronts

v> max@0 ,2E1#. ~4.11!

In physical terms, the conditionv>2E1 expresses that the
velocity of uniformly translating fronts must be at least t
drift velocity 2E1 of free electrons in the leading edge
the front, where the field is strongest.@Remember that Eq
~4.7! implies that the field is monotonic in space.#

For all values ofv obeying the inequality~4.11!, the so-
lutions of Eqs.~4.8! and~4.10! are proper, physically allow-
able solutions for fixedE1; within the context of the presen
model, this illustrates a general feature of front propagat
into unstable states, namely that there exists a family of fr
solutions parametrized by the velocity@42#.

In Fig. 2~a!, we plot the solution~4.8! for s as a function
of E for the fixed value of the velocityv52 in the case that
the impact ionization functionf (E) is given by the
Townsend expressionf T(E) of Eq. ~2.16! as in the numerical
simulations@8,9#. Note that in this representation, the sta
behind the front atj52` corresponds to a point on thes
axis, and that the front solutions(j), E(j) is represented in
this diagram by the flow along one of the trajectories towa
either the positiveE axis for PSF or the negativeE axis for
NSF forj→`. Note furthermore thats overshoots the value
s2 @5s(j→2`)# in the case of NSF. This property as we
as the monotonicity ofs@E# and accordingly ofs(j) for
positive fronts follows immediately from Eq.~4.8!. For NSF,
it can also be observed in the three-dimensional simulati
of Vitello et al. @9#, shown in Fig. 1~c!.

The smallestE1 for which a front solution withv52 is
shown in Fig. 1~a!, is E1521.999. For this value ofE1,
s@E# continues to increase tillE'E1 and then suddenly
decays to zero. A short analytical investigation of Eq.~4.8!
shows that this behavior develops into a discontinuity
s@E# at the pointE5E1 for v52E1. s@E# then increases
monotonically up tof (E1) for E↓E1 and then jumps to zero
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55 1539PROPAGATION AND STRUCTURE OF PLANAR . . .
discontinuously atE1. This shocklike behavior stays un-
changed under a parameter change tos(j). It is further dis-
cussed and motivated in Sec. V.

An immediate consequence of Eqs.~4.8! and~4.9! for the
electron and ion density is that the values2 behind the front
~whereE→0) is a simple function of the valueE1 of the
field ahead of the streamer profile:

s2~E1!5r uE1u@0#5E
0

uE1u
dx

f ~ uxu!
x

. ~4.12!

The virtue of this expression for the electron densitys2 far
behind the front, as well as of the expression~4.9! for the ion
densityr throughout the whole front, is that it is independen
of the velocityv, hence independent of whichever front pro
file is selected, provided that the limitD→0 is smooth. We
shall see later that thisD50 result remains relatively accu-
rate for NSF fronts withD&1, and compare it to the results
of the simulations@8,9# in Sec. VI. For PSF, on the other
hand, the above result will turn out to be less relevant due
the nonperturbative nature of the limitD→0 in this case.

For the Townsend functionf T(uxu) @Eq. ~2.16!# the func-
tion s2(E1) can be expressed as

s2~E1!T5uE1uE2~ uE1u21!

5 f T~ uE1u!2E1~ uE1u21!, ~4.13!

whereEn(z) is the exponential integral@43#.
We finally note that the second form of Eq.~4.13! shows

that s2 approachesf T for large fields, sincef T@E1 for
E1@1. ForE1 of order unity,s and f T are still of the same

FIG. 2. ~a! Uniformly translating fronts forD50 and v52
shown as flows in the two-dimensional (E,s) phase space. Out of
each points2 on thes axis, there is a PSF flowing to the right and
a NSF to the left. Both reach the same valueuE1u on the horizontal
axis, which also is independent ofv. Note that NSF have a maxi-
mum of s within the front, while PSF have monotonics. Note,
also, that no physical fronts~i.e., with s>0 everywhere! reach a
valueE1,2v522, in agreement with Eq.~4.11!. (b) Sketch of a
uniformly translating PSF and NSF forDÞ0 as a flow in three-
dimensional (E,s,q) phase space. The thick curves indicate th
trajectories, while the thin ones show their projection into th
s50 andq50 planes. For fixedv, there is at each point of the
s axis still only one outgoing vector, which can be followed in tw
antiparallel directions. TheE axis is fully attractive forE.2v and
then always will be reached. be reached.
t

to

order, and this shows~for smallD) that the growth rate~3.3!
of long wavelength unstable modes in the nonionized stat
comparable to the damping rate~3.5! of stable modes in the
plasma behind a NSF. For small fields, the strict bounds
E2 @43# show thats2'E1 f T(E

1), so that the approximate
equivalence of these two time scales does not hold
E1!1, but in the small field range our starting model is n
very realistic anyway, because of the neglect of stabiliz
recombination terms.

B. DÞ0 front solutions

ForDÞ0, we cannot obtain the uniformly translating s
lutions analytically. Moreover, perturbation theory arou
theD50 case is not simply possible, asD appears in front
of the highest derivative in Eq.~4.2!, so the diffusion term
acts as a singular perturbation. As a consequence, Eqs.~4.2!
reduce to a set of two coupled first order ODE’s forD50,
while three are required forDÞ0. However, we can still
easily demonstrate the existence of a one-parameter fa
of uniformly translating front solutions forDÞ0 through
standard counting arguments for ODE’s. Building on the
sults of such an analysis, the solutions can then be c
structed by integrating numerically in a stable direction, u
ing so-called ‘‘shooting methods’’@44#.

To perform the analysis, it is convenient to write th
equations as a set of three coupled first order ODE’s. Th
is some freedom for the choice of the third variable: T
standard choice would bes85]js, but for the discussion of
the singular limit as well as for numerical stability, th
charge densityq has turned out to be the most convenie
choice. The ODE’s~4.2! then become

]js52
sE2vq

D
,

]jE5q, ~4.14!

]jq52
s f ~ uEu!

v
1

sE2vq
D

.

Just as we thought of the profiles forD50 as describing
flow in a two-dimensional (s,E) phase space, we can no
think of Eqs. ~4.14! as describing a flow in a three
dimensional (s,E,q) phase space. The velocityv just plays
the role of a parameter in the flow equations, whilej again
plays the role of a timelike variable — see the sketch in F
2~b!.

The steady states of the full PDE’s discussed in Sec.
correspond to fixed points of the flow: the points (s,0,0) on
thes-axis are fixed points of the flow~4.14!, that correspond
to homogeneously ionized plasma states, while theE axis is
a line of fixed points (0,E,0) each of which corresponds to
nonionized state withs5s850 andEÞ0.

A uniformly translating front solution now corresponds
the existence of a trajectory in this phase space that star
‘‘time’’ j52` on thes axis and flows to theE axis for
j→`. The multiplicity of such solutions~i.e., whether they
exist as discrete sets, or, e.g., as a one- or two-param
family! can be determined as follows. If we linearize th
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flow near an arbitrary point (s2,0,0) on thes axis by writ-
ing (s,0,0) 5(s2,0,0) 1A exp(2L2j), we find the eigen-
value equation

L2S L222L2
v
D

2
s2

D D50. ~4.15!

The fact that there is a zero eigenmode is a consequenc
the fact that thes axis is a line of fixed points. For the tw
nontrivial eigenvalues@which correspond to the linearize
modes~3.5! about the ionized and screened region by equ
ing ik• x̂52L2 andv25L2v# we have

L6
25

v6Av214Ds2

2D
. ~4.16!

The eigenvalueL1
2 is positive, and hence gives a decayi

exponential; thus points along the corresponding eigendi
tion flow into the s axis asj increases. The eigenvalu
L2

2 , on the other hand, is negative and hence correspond
an unstable eigendirection, with flow away from the ax
This implies that at each point (s2,0,0) on thes axis, there
is, for fixed v, a unique eigendirection (2L2

2,1,L2
2)E1

along which the flow is away from the axis. This flow can
followed in two antiparallel directions, determined by th
sign ofE1. The one flowing towards positive values ofE is
the beginning of a PSF front profile, the one flowing towar
negativeE is the beginning of an NSF profile. From the
eigendirections, one derives that for PSF with field pertur
tions E1.0, the electron density decreases close to thes
axis, while for NSF it increases. Accordingly, before reac
ing s50 for j→`, a NSF profile has at least one maximu
of s, while a negative one can be~and is! monotonic. This
generalizes our result forD50, and is consistent with the
findings of Vitelloet al. @9# shown in Fig. 1~c!. The physical
origin of the maximum ofs in the rear end of the NSF
profile is the screening of the field: Due to the low ionizati
rate in an already fairly suppressed field the ion density
already almost acquired its final value, so the electron d
sity has to overshoot its asymptotic values2 so as to make
]jE,0. The screening behind a PSF happens by suppres
the electron density faster than the ion density for increas
j, and so theres is monotonic.

Let us now investigate the stability of the flow near
point (0,E1,0) on theE axis. Upon linearizing the flow
equations~4.14! and writing thej dependence of the pertu
bations in the form exp(2L1j), we find the eigenvalue equa
tion

L1S L122L1
v1E1

D
1
f ~ uE1u!
D D50. ~4.17!

Again, there is a zero eigenvalue due to the fact that
whole E axis is a line of fixed points. The two nontrivia
eigenvalues are

L6
15

v1E16A~v1E1!224Df ~ uE1u!
2D

. ~4.18!

These eigenvalues can be related to Eq.~3.3! in the same
way as Eq.~4.15! could be related to~3.5!. For v1E1.0,
of

t-

c-

to
.

s

-

-

s
n-

ing
g

e

the real parts of these eigenvalues are always positive, so
both eigendirections are stable. In other words,
E1.2v, all points near theE axis flow towards this axis —
in slightly more technical terms, there is a two-dimension
stable manifold flowing into each of these points on theE
axis. ForE1,2v, the flow is away from theE axis, and
fronts with v1E1,0 cannot be constructed. This genera
izes Eq.~4.11! to DÞ0.

The existence of a one-parameter family of fronts w
velocity v.2E1 can now simply be understood as follow
As we saw before, there is one unique PSF and one un
NSF trajectory flowing out of each point on thes axis for
fixed v andD. Since the flow defined by Eqs~4.14! is con-
tinuous, we can expect each trajectory to extend smoo
@45#. Once the flow gets near theE axis, we know from the
above analysis that the trajectory will be attracted comple
to the axis, providedv is large enough. Thus, for eachs2

andv, there will exist two unique trajectories, i.e., a uniqu
PSF solution and a unique NSF solution. Since each of th
trajectories flows into a unique point on theE axis, the flow
equations implicitly define a unique relation of the for
s25s2(v,E1) for each of the two types of fronts. For
given value ofE1, we thus have a one-parameter family
front solutions, parametrized byv.

There are two important properties of the front solutio
associated with their asymptotic largej behavior. First of all,
we note that according to Eq.~4.18! the eigenvaluesL6

1 are
only real for

v>v*[2E112ADf ~ uE1u!. ~4.19!

This implies that the corresponding front profiles can c
tainly not approach the asymptotic states50 ahead of the
front in a monotonic way forv,v* : When the eigenvalues
are complex, the front profiles have an oscillatory tail of t
form exp@2(ReL1)j# cos@(ImL1)j#. Clearly, this violates
the physical condition that the electron densitys should re-
main positive, so solutions with2E1,v,v* are physi-
cally excluded:v* denotes, in the present case, the smal
velocity of physically allowable uniformly translating fron
solutions.

The identification ofv* as a bound on the velocity o
physically allowed front profiles depends only on the stru
ture of the eigenvaluesL1 associated with thelinear flow
near unstable states. There is a second,nonlinear, way in
which the range of physically allowed values ofv can be
bounded. To understand this, note that for anyv>v* , the
asymptotic decay ofs(j) for j→` for a uniformly translat-
ing profile will be

s~j!5A2e
2L2

1j1A1e
2L1

1j1h.o.t. ~4.20!

with real coefficientsA2 and A1 . Here, h.o.t. stands fo
higher powers of the two exponentials generated when
panding the equations to higher than linear order in the v
ables. Clearly, the smallest eigenvalueL2

1 governs the as-
ymptotic decay of the profile providedA2Þ0. ThatA2 will
generically be nonzero for an arbitrary velocityv follows
again from the counting argument above for the flow
phase space: Each PSF and NSF trajectory flowing out
point on thes axis is unique, and hence there is no freedo
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to impose an additional conditionA250 close to theE axis.
Furthermore, the coefficientsA2 andA1 depend on the full
global nonlinear behavior of the flow, and hence they dep
implicitly on v.

There might exist, however, particular velocitie
vpart.v* , for which

A2~vpart!50. ~4.21!

For discussing these we invoke again a continuity argum
for the front properties as a function ofv. We expect a very
slowly decaying, nearly homogeneous uniformly translat
front solution to have a non-negative density everywhe
and to have a very large velocity, since the velocity o
profile is essentially inversely proportional to its slope in t
limit of small slopes.@So indeed the rootsL2

2 given by Eq.
~4.16! andL2

1 given by Eq.~4.18! vanish in the limit that
v becomes large.# So for largev we expect to find physica
solutions. These are characterized byA2.0 in the leading
edge of the front. Decreasingv continuously, we either reac
v5v* smoothly with stillA2.0, or we reach the first par
ticular velocity,v1

part, whereA2 vanishes. In the latter case
we expect by continuityA2(v),0 for v,v1

part. This im-
plies that thens approaches zero from below, i.e., that t
front solution is unphysical. Below the nextv2

part, we expect
the electron density to develop two zeros and so forth. T
largestvpart, if it exists, thus plays the role of thenonlinear
front velocityv† @24#,

v†5max$vpartuA2~vpart!50% ~4.22!

for a givenE1. @Note that ifL2
1,0.5L1

1 the higher order
terms in Eq.~4.20! of order exp(22L2

1j) are actually larger
than the second term exp(2L1

1j). This does not change ou
argument, though, as the prefactor of this second order t
will vanish if A2 vanishes.#

At the velocityv5v† or at anyv5vpart, the flow in phase
space approaches theE axis along the eigenvector where th
flow is most rapidly contracting. The trajectory correspon
ing to the nonlinear front solution is therefore more app
priately referred to as a strongly heteroclinic orbit, whe
heteroclinic indicates that it is a trajectory from one fix
point to another one. The existence and properties
strongly heteroclinic orbits have recently been under ac
investigation@46#.

Such a velocityv†, if it exists, bounds the continuum o
velocities of physical uniformly translating solutions fro
below, and thus replaces the earlier boundv* derived from
linearizing the equations in the leading edge of the front.

C. Nonlinear front solutions for PSF

For NSF, the bounding velocityv* given by Eq.~4.19! is
always positive. Moreover, by integrating the flow equatio
~4.14! numerically and searching for particular solutions f
which, according to Eq.~4.21!, A2(v

part)50, we have con-
vinced ourselves that there are no such solutions for anD
Þ0 and E1,0. Hence, the smallest velocity of physic
NSF solutions is alwaysv* , for any value of the parameter

For PSF, on the other hand, the situation is very differe
since v*,0 for (E1)2.4Df (uE1u) — for the Townsend
d
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function ~2.16!, this happens forD<0.25E1e1/E
1
, hence for

any E1 for D<0.68. In particular for PSF at smallD the
question therefore arises whether there are nonlinear f
solutions defined by Eq.~4.21! and ~4.22! with v†.0. The
results of a numerical search for such solutions are show
Fig. 3, as a function ofD andE1. Below the full line in this
diagram, there exists indeed a nonlinear frontv†.v* ,
whereas above this linev* denotes the smallest velocity o
physical front solutions. While these results have been
tained numerically, the existence of a single~unique! particu-
lar solution with A2(v

part)50 in the limit D→0 can be
demonstrated analytically. Since a full discussion of the
results will be given elsewhere@47#, we confine ourselves
here to a brief outline of the arguments that also demonst
the singular nature of these solutions forD→0.

If we take the limitD→0 with v fixed, assuming no
nontrivial scaling of the variabless, E, and q and of the
spatial coordinatej, Eqs.~4.14! can easily be shown to re
duce to those studied in Sec. IV A forD50. Hence, we can
recover in this way the family of front solutions obtaine
there.Any particular solution, on the other hand, for whic
A2(v

part)50, decays according to Eq.~4.20! as
exp(2L1

1j) asj→`. SinceL1
1}D21 for D→0, such a par-

ticular front solution becomes extremely steep asD→0: its
gradients diverge as 1/D so that the diffusion term can stil
overcome the drift term asD→0. That the velocity of such a
solution must also have a nontrivial scaling in this limit c
be seen from the third equation of Eq.~4.14!, written in the
form

]jq5sS 2
f ~ uEu!
v

1
E

D D2
v
D
q. ~4.23!

Any nontrivial scaling of this equation in the limitD→0 can
only occur if the first term between large parentheses
mains of the same order as the other two, which diverge
1/D. This is only possible ifv scales asD. In this limit, the
third term can then be neglected, and since]jq has to change
sign in the front region~as the charge densityq vanishes as
j→6`), there must be an intermediate valueÊ,E1 of the
field for which v5Df (uÊu)/Ê.

FIG. 3. Phase diagram for PSF as a function ofD and E1.
Above the solid line the lowest speed of physical front solutions
given by v* , below the line byv† corresponding to the smalles
speed of physical front solutions. Accordingly, the selected fr
speed isv* above the solid line~linear marginal stability regime!,
andv† below the solid line~nonlinear marginal stability regime!.
The dotted curve indicatesv*50 and is a lower bound for the
crossover tov† behavior of the selected fronts.
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1542 55UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI
Now that we know the scaling of the spatial gradient
the velocity of such particular front profiles forD→0, one
easily convinces oneself that the electron and charge de
of these solutions mustdivergeas 1/D in this limit. To study
the existence of such possible solutions, it is therefore c
venient to introduce new variables and coordinates accor
to

x5Dx̃, v5D ṽ, j5D j̃, s5s̃/D, q5q̃/D,
~4.24!

with E and t unchanged. In these new variables, the fl
equations~4.14! become

] j̃ s̃52s̃E1D ṽ q̃,

] j̃E5q̃, ~4.25!

] j̃ q̃5s̃S E2
f ~ uEu!

ṽ
D 2D ṽ q̃.

The limit D→0 can now be taken simply by leaving out th
termD ṽ q̃ in the first and last equation. We will show els
where @47# that the resulting equations haveone unique
physical front solution thus fixing one particular value of t
scaled velocityṽ1, and in view of the scaling~4.24! and the
scaling of the eigenvaluesL6

1 , this solution must have
A2( ṽ1)50. This solution is therefore precisely theD→0
limit of the nonlinear front solution with velocityv†5 ṽ1D.
Furthermore, since the limitD→0 is smooth for Eqs.~4.25!,
this shows that there exists a nonlinear front solution w
v†.0 for any E1 and nonzero but smallD. Due to the
singular scaling~4.24!, the corresponding front solutions a
determined by ODE’s that have a different structure fro
those studied forD50 in Sec. IV A, and therefore thes
nonlinear front solutions cannot be obtained perturbativ
from the latter class of solutions — of course, the latter cl
of solutions still exists forDÞ0, in agreement with the
counting arguments given earlier, but these now corresp
to a singular limit of Eqs.~4.25!. The significance of these
nonlinear front solutions lies in the fact that they will tu
out to be the selected fronts that dominate the dynamic
PSF in the physically important range 0.1&D&0.3.

The nonlinear front solution can be constructed num
cally very easily by integrating Eqs.~4.25! using standard
numerical ‘‘double shooting’’ routines@44#. Figure 4 shows
our numerical results for the smallest physical veloci
max(v†,v* ) in the case that the ionization function is give
by the Townsend expression. The scaled velocitiesv†/D and
v* /D are plotted; in agreement with our arguments abo
the scaled velocityv†/D of the nonlinear front solution ap
proaches a finite limit asD→0. Furthermore, the ratio
v†/D hardly varies with D in the physical range
0.1&D&0.3, and for small fieldsE1, the scaled velocity
v†/D becomes exponentially small, in agreement with
boundv†/D,E1exp(21/E1) that follows from the obser-
vations discussed after Eq.~4.23! above.

We finally note that our numerical routines have not on
allowed us to obtain the results show in Figs. 2 and 4,
have also enabled us to verify numerically all the stateme
made above about the multiplicity of solutions, the parame
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ranges for physical fronts, the monotony properties, the
gular behavior of the smallD PSF limit, and the persistenc
of the family of front solutions forD→0.

V. SELECTION OF THE ASYMPTOTIC FRONT

A. Front propagation into unstable states

We have seen that the nonionized state into which
streamer fronts propagate is an unstable state, that the ho
geneous weakly ionized plasma is a stable state, and
there is a family of uniformly translating front solutions co
necting the two. The existence of a family of front solutio
is a generic feature of front propagation into unstable sta
We, therefore, briefly recall what is known in the literatu
for analogous problems and then translate this experienc
the streamer problem. The prototype equation for studie
this type of front propagation is

] tu5]x
2u1g~u!, ~5.1!

whereg(u) is some nonlinear function which satisfies

g~0!50, g~1!50, g8~0!.0, g8~1!,0. ~5.2!

Note that these relations imply that the ‘‘state’’u50 is un-
stable, and that the ‘‘state’’u51 is stable. The study of the
propagation of fronts into the unstable stateu50 in this
equation dates back to the early work of Kolmogorovet al.
@33# and Fisher@34# in the context of population dynamics
Later Gel’fand@48# studied a particular example of a func
tion g(u) motivated by combustion. The mathematical r
search on this equation culminated in the work by Arons
and Weinberger@31#, who rigorously solved the front propa
gation problem for Eq.~5.1!. In particular, they proved tha
any initial perturbation that is nonzero only in a finite part
space approaches a unique uniformly translating front s
tion with velocity v f in the long time limit. Ifg9(u),0 for
all u, v f equalsv*52Ag8(0) ~derived from linearizing in

FIG. 4. ṽ †5v†/D ~solid! and ṽ *5v* /D ~dashed lines! as a
function ofD for E15 0.3 – 1.0 in steps of 0.1, and forE15 1.0
– 2.0 in steps of 0.2.ṽ † depends only weakly onD, i.e., the
physical front velocityv† is approximately proportional toD. At
ṽ †

„E1,Dcr(E
1)…5 ṽ * „E1,Dcr(E

1)…, the selected front crosse
over fromv† to v* ; thev† solutions disappear. PlottingDcr(E

1) in
the (E1,D) plane yields the solid curve in the phase diagram
Fig. 3, while the zeros ofv* determine the dotted curve in Fig. 3
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55 1543PROPAGATION AND STRUCTURE OF PLANAR . . .
the tip of the front!, while for generalg(u), v f approaches
either v* or somev†.v* . We refer to the literature for a
detailed discussion of this work@31,32#.

The velocitiesv* and v† of the above problem directly
correspond to ourv* ~4.19! andv† ~4.22!, since they are also
the smallest velocities, which still allow for uniformly trans
lating fronts withu>0 everywhere. So ifu is interpreted as
a population density or a chemical concentration, the
lected front for every sufficiently localized initial state is th
slowest physical uniformly translating front. In other inte
pretations no physical constraints bindu to positive values.
Nevertheless the selected velocity stays the same. In
case, one can prove that every front with smaller velocity
dynamically unstable@21#, i.e., that the selected front is ma
ginally stable. The slowest physical or stable solution, wh
is selected, coincides with the steepest physical or stable

In the last decade, it has been recognized that sev
aspects of the front selection problem encountered for
nonlinear diffusion equation~5.1! seem to have more gener
validity. Certain scenarios, justified by heuristic argume
but lacking a detailed mathematical proof, were formula
and numerically tested on more complicated PDE’s that w
often of higher order in the spatial derivatives@49,21–25#.
Some of the equations studied lead to nonuniformly trans
ing fronts that leave a nontrivial spatially periodic state b
hind @49,21,23,24,50#. A particular scenario is the one dis
tinguishing between the so-calledlinear marginal stability
regime wherev f5v* and thenonlinear marginal stability
regime wherev f5v† @21–24#. These names stem from th
fact that in this formulation, the two regimes of front sele
tion are related to the stability properties of the front so
tions — in both cases, the selected front separates st
front solutions from unstable ones. Applied to Eq.~5.1!, this
scenario just provides an intuitive explanation of all the we
known mathematical results. For plasma physicists, it
worth mentioning that dynamics in the linear marginal s
bility regime is related to that determined by the ‘‘pinc
point analysis’’ which was developed in plasma physics
the late 1950s@51,52,23#.

B. Predictions for streamer fronts

By extending the arguments in the appendix of@23#, one
may show that in the streamer case just like in the case o
above problem~5.1!, all physical solutions, i.e., all solution
with s>0 resp.u>0 everywhere, are stable. For a detail
discussion, we refer to@47#. It can be argued@22,23#, and
proven for Eq.~5.1! @21#, that a sufficiently localized initial
condition will approach the physical uniformly translatin
front, which is closest in ‘‘phase space,’’ i.e., the steep
one. Both for Eq.~5.1! and for the streamer equations, th
steepest uniformly translating physical front is uniquely d
fined. It is also the slowest one.

We can immediately prove this when initiall
s(x,t50)50 for x.xc for streamer fronts withD50: In
general, there is a front solution for eve
v>max@0,2E1#, but now the only way in which the elec
trons can enter the rangex.xc is through electron drift with
velocity2E1. Clearly, therefore, the asymptotic front spe
of a NSF can only be2E1, while a PSF cannot propagate
all. If the initial electron density, however, decays expone
e-

is
s

h
e.
ral
e

s
d
re

t-
-

-
-
ble

-
s
-

he

t

-

-

tially, the local electron density grows by drift and ioniz
tion, and the front can move quicker than2E1.0 for a
NSF.

For DÞ0, we will here only conjecture the analogou
statements as follows, and we will test them numerically
Sec. VI.

~i! Selected front velocity.If the initial conditions are suf-
ficiently localized,the selected front is the slowest physica
acceptable front solution, i.e., the slowest front profile for
which s(j)>0 for all j. In view of the discussion of Sec
IV, this means that the selected front velocityv f is predicted
to be

v f5v*52E112ADf ~ uE1u!, ~5.3!

except when there exists a nonlinear front solution satisfy
Eq. ~4.22!. In that case,

v f5v†. ~5.4!

Note that the result~5.3! (v* is the linear marginal stability
value in the terminology of@22,23#! is an explicit expression
for v f in terms of parameters associated with the linear
stability of the unstable state only. On the other hand,
existence of a nonlinear front and the value ofv† ~the non-
linear marginal stabilityvalue! depends on the whole non
linear behavior of the flow equations~4.14!.

~ii ! Localized initial conditions.Initial conditions are suf-
ficiently localized if their spatial decay is faster than the a
ymptotic decay associated with the smallest eigenvalue
the selected profile, i.e., if

s~x,t50!,Ce2L2
1

~v* !x, ~5.5!

or

s~x,t50!,Ce2L2
1

~v†!x, for x→`, ~5.6!

depending on whether the selected front isv* or v†. Here
C is an arbitrary constant, andL2

1(v* ) @5L1
1(v* )# and

L2
1(v†) are given by Eq.~4.18!.
~iii ! Nonlocalized initial conditions.If an initial condition

does not obey conditions~5.5! or ~5.6!, faster front speeds
are possible. In particular, if initially s(x,t50)
;exp(2Lx), with L,L2

1(v* ) or L,L2
1(v†), whichever

regime applies, then the front speed is given by

v52E11DL1
f ~ uE1u!

L
, ~5.7!

which is obtained by solving Eq.~4.17! for v in terms of
L.

We now combine the analytic and numeric findings fro
Sec. IV with the selection rules above to quantitative pred
tions for asymptotic fronts, which evolve from sufficient
localized initial conditions, in the case that the impact io
ization is given by the Townsend expression~2.16!.

NSF. For NSF, we numerically have not found any no
linear fronts for anyD andE1, so our simple yet powerfu
prediction is that for NSFv f5v* with v* given by Eq.
~5.3!. In principle it is possible that for ionization function
f (E) other than the Townsend function~2.16!, there can be
nonlinear front solutions also in the NSF regime. In practi



s

n
e

t

r
e

-

F
i

ion

ont

of
l

ul-

as

ed
er of
on

for

eri-

ith
d.
am-

lly
ly
tant

e
ld
me
tart
ian

ear

ally
ing

s

-

,

s

1544 55UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI
we expect, however, that this will not be the case for phy
cally reasonable functionsf (E), i.e., for functions consistent
with Eq. ~2.17!.

Once the predicted velocities are known, the values2 of
the electron density behind the streamer head is obtai
from the numerical integration of the flow equations. Th
results of these calculations are shown in Fig. 5~a!. Since for
NSF, the limit D→0 is smooth, alsos2 depends only
weakly onD for D&1, so that theD50 prediction~4.13! is
quite accurate for realistic values of the diffusion coefficien

At the predicted values of the selected front velocity, th
width of the front region can be obtained directly from ou
numerical solutions of the flow equations. We have som
what arbitrarily defined the widthw as the distance between
the points wheres is 90% and 10% of the values2. As Fig.
6 shows for NSF fronts withD50.1, this front width is
typically of order 3 for field values of order unity. This con
firms again that in the smallD limit the impact ionization
lengtha0

21 sets the inner scale of streamer fronts. Furthe
more, we find that our numerical data are well fitted by th
expressionw'6/L6

1(v* ), which shows that the front width
simply scales with the spatial decay rateL1

1(v* )
5L2

1(v* ) of the streamer profile in the leading edge. NS
fronts always have a maximum of the electron density with
the front.

PSF. As we saw in Sec. IV, for PSF withD&0.9, there

FIG. 5. Electron densitys2 behind the planar selected front a
a function of the fieldE1 before the front for severalD; dotted:
v* fronts; solid:v† fronts.~a! NSF: Forv* fronts,s2 depends only
weakly onD. Results forD5 0, 1, 3 are shown. Crosses: Extrapo
lation of s2(E1) for D50.1 for the curved fronts of the 3D simu-
lations@9#. ~b! PSF results forD5 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2
3. Forv† fronts,s̃25const1O(D), i.e.,s2(E1) is approximately
proportional to 1/D.
i-

ed

.
e

-

r-
e

n

always is a nonlinear front solution with velocityv†.v* .
The prediction is that in this range the selected front solut
is the nonlinear front solution, i.e.,v f5v†. Values ofv† as a
function of D and for several values ofE1 were already
given in Fig. 4. We also saw before that these nonlinear fr
solutions are singular in the limitD!1, where
v†'D ṽ †(D50) ands 2's̃ 2(D50)/D. The resulting
predictions fors2 are shown in Fig. 5~b!.

The fact that the dimensionless inner decay length
these nonlinear fronts scales asD implies that the physica
decay length of such solutions isD/a05De /(meE0), i.e., is
given by the electron diffusion length. However, since sim
taneously the electron densitys2 diverges as 1/D, the total
front widthw defined above still approaches a finite limit
D→0 in units of the ionization lengtha0

21.
We finally note that the front propagation problem pos

by the one-dimensional streamer equations has a numb
interesting differences and similarities with the Arons
Weinberger front propagation problem~5.1!. In particular, it
can be hoped that techniques of strict bounds developed
the time development of these fronts@31# as well as for the
nonlinear front velocityv† @46# might be also applicable to
planar streamer fronts.

VI. NUMERICAL TESTS OF THE PREDICTIONS

We have tested the predictions listed in Sec. V by num
cally integrating the PDE’s~3.10! and ~3.11! forward in
time. Our computer program is a finite difference code w
a time integration which is based on a semi-implicit metho

We have performed an extensive search through par
eter space, varyingD between 0.02 and 3, anduE1u between
0.3 and 10. All our numerical studies of the dynamics fu
confirm our predictions for fronts, and therefore we on
present a sample of our results that illustrate the impor
features.

All the simulations of the initial value problem, which w
present in the remaining figures, have initially a fie
E521 constant in space. We keep the field constant in ti
in the nonionized region. The simulations of Figs. 7–10 s
with the same localized initial ionization seed, a Gauss
profile for the electron density,

s~x,t50!50.01 exp2~x2x0!
2.

Figure 7 shows a run forD51 and timest50 – 130 in time
stepsDt52. As can be seen, the small ionization seed n
x0550 initially grows while drifting to the right in accord
with Eq. ~3.4!. At time t5O(20), the ionization is strong
enough that field saturation sets in and two asymmetric
propagating fronts emerge. The one propagat

FIG. 6. Widthw of the front profile~measured between point
with 0.1s2 and 0.9s2) as a function ofE1 for the selected NSF
fronts withD50.1. The dashed line is given byw56/L2

1(v* ).
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to the right develops into a uniformly propagating NSF w
velocity v*52.21 @53# and degree of ionization behind th
front s250.130. The maximum value ofs in the rear part
of the front issmax50.150. At the same time, a structu

FIG. 7. Numerical integration of the time evolution given b
Eqs. ~3.10! and ~3.11! for D51.0 in a constant background fiel
E521 ~numerical grid sizeDx50.1 and time stepDt50.05, ini-
tial perturbation atx0550). Initial condition att50: small charge-
neutral, ionized region of Gaussian shape depicted by the lo
line. Each new line corresponds to a time stepDt52 and the upper
line to t5130. ~a! The electron densitys(x,t) initially grows and
then, after field screening in the middle sets in, develops into a N
propagating to the right and a PSF propagating to the left.~b! The
electric field E(x,t) staysE521 in the nonionized region and
becomes dynamically screened to zero in the ionized region.

FIG. 8. Emergence of the uniformly translating PSF on the
in the system of Fig. 7. Conditions identical to Fig. 7 except
x05150 and different numerical grid size (Dx50.05 and
Dt50.01).s(x,t) is shown in the time ranget50 – 500 in time
stepsDt510. Note the difference in the duration of the transie
regimes, in the propagation velocities of PSF and NSF, and in
degrees of ionization behind these.
develops on the left, which at timet5130 has not yet
reached a stationary form, and which eventually will deve
into a PSF.~Note that propagation to the left into a negati
field 2E1 corresponds to a PSF front moving to the rig
towards x→` in a field 1E1.! How the PSF actually
reaches a uniformly translating profile is shown in Fig.
where the development forx05150 and otherwise identica
initial and boundary conditions is followed in time steps
Dt510 during the timet50 – 500. An asymptotic velocity
of v†50.22 and a degree of ionizations250.43 is reached.
Note the huge difference in the degree of ionization and
the front velocity already for the unrealistically large valu
of the diffusion constantD51.

The predictions from Sec. V for the selected uniform
translating fronts forD51 andE1561 yield for the NSF
v*52.213 ands250.129, and for the PSFv†50.2199 and
s250.432. They thus correctly predict the simulations
the initial value problem shown in Figs. 7 and 8 within th
accuracy given. Note that for the velocityv† of the PSF and
for the degrees of ionizations2 both behind the PSF and th
NSF, this fact also shows the relative accuracy of the t
very different numerical methods used, while for the veloc
v* of the NSF the numerical integration of the initial valu
problem exactly reproduces the analytic result.

As D decreases, both the structures within the fronts a
the asymmetry between NSF and PSF become more

st

F

t
r

t
e

FIG. 9. Identical with Fig. 7~a!, except that hereD50.1. Time
range alsot50 – 130 in steps ofDt52. The NSF has sharpe
contours and propagates slower than forD51, the PSF appears no
to develop.

FIG. 10. Emergence of the uniformly translating PSF on the
for D50.1. Initial conditions identical with Fig. 9. The time rang
t54000–8000 after an initial perturbation att50 and x0560 is
shown in time steps ofDt5100. ~Numerical grid sizeDx50.01
andDt50.5.!
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nounced. We illustrate this in Figs. 9 and 10 with the te
poral development starting from the same initial perturbat
as before, but now forD50.1, the value corresponding t
the parameter values of the earlier three-dimensional sim
tions @8,9#. The time ranges in each plot are chosen app
priately for seeing the NSF and the PSF evolve into a u
formly translating state. Figure 9 shows a perturbat
~initially localized atx0550) evolving during timet50 –
130 in time stepsDt52. Except for the smaller diffusion
constant and the stretchedx axis, the situation is thus iden
tical with that of Fig. 7. The NSF on the right propagat
with a somewhat smaller velocityv*51.39, leaving a
slightly higher ionizations250.147 behind. The maximum
smax50.199 is relatively higher, since diffusional smoothe
ing of structures is less pronounced. On the time scale
Fig. 9, the left front does not propagate, but retracts into
apparently immobile structure. The electrons drift with t
field into the ionized region, leaving a layer of screening io
behind. Thus the electrons and the field are almost separ
such that ionization on this side almost cannot occur. Ev
tually few electrons will reach the nonzero field region
diffusion and slowly will build up a higher ionization an
ultimately a propagating PSF. That a PSF actually emerge
shown in Fig. 10. Only timest54000–8000 in time steps o
Dt5100 after the initial perturbation att50 andx0560 are
shown. The front propagates with velocityv†50.0149 leav-
ing behind an ionizations256.32. The numerical value
predicted in Sec. V arev*51.384 ands250.144 for NSF,
andv†50.0146 ands256.234 for PSF. The remaining nu
merical discrepancy of maximally 2% could be resolved
choosing a still smaller grid size in Figs. 9 and 10. Compa
son of the PSF forD51 andD50.1 indicates that the time
it takes such a front to build up rapidly increases with d
creasingD, but we have not pursued the scaling of the tra
sient time withD.

We finally show in Fig. 11 the evolution of stream
fronts starting from nonlocalized initial conditions, i.e
not obeying the bounds~5.5! or ~5.6! for D50.1. We
used an initial electron density profiles(x,t50)
50.01/„2 coshL(x2200)… with L50.25 and an initial field
E521. At these values, for the NSF,L2

1(v* )51.918 and
for the PSF,L2

1(v†)50.3766. In this case, the bounds~5.5!
or ~5.6! are indeed violated for both fronts, and Eq.~5.7!
predicts a PSF with velocityv50.497.v†50.0146 and an

FIG. 11. A nonlocalized initial condition withL50.25 as de-
scribed in the text; otherwise, the situation is like in Fig. 9, a
D50.1.
-
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NSF with velocity v52.497.v*51.384. The simulations
find the fronts propagating with velocities 0.50 and 2.5
respectively. The ionization behind the NSF iss250.149
and behind the PSFs250.158, so that now both are com
parable to each other and tos2(D50)50.1485 found from
Fig. 5~a!. Note that the diffusion constant is identical wit
that of Figs. 9 and 10, the only difference being the exten
initial perturbation.

The simulations confirm that streamer front propagation
indeed correctly described by the marginal stability scena
which in the present case amounts to the statement tha
slowest physical velocity is selected, whenever one st
from sufficiently localized initial conditions, just as for th
simpler case~5.1!.

VII. CONCLUSIONS AND OUTLOOK

The analysis in this paper fully supports the validity of
effective interface approach suggested by the results of
full three-dimensional simulations of Dhali and Williams an
of Vitello et al. @8,9#. This emerges from our detailed stud
of the associated one-dimensional problem, which yields
following results.

~a! After a very brief stage of transient exponential am
plification of the initial ionized seed, the growing stream
evolves into an electrically screened plasma body separa
two narrow fronts which propagate into the nonionized ou
region. We show that these two fronts correspond, for
practical purposes, to translating profiles which propag
independently. This entails that the separation of spa
scales between an inner front and an outer one, set by
global geometry, is indeed justified.

~b! This enables us to draw upon the existing knowled
about front propagation into unstable states and thus to
vide definite predictions about~i! the relationshipv f(E

1)
between the velocity of a planar streamer front and the va
of the electric field ahead of it, and~ii ! the value of the
degree of ionization of the plasma created by the fro
s2(E1). These predictions, although only valid as such
the absence of front curvature, still compare very favora
with the numerical results of Ref.@9#. The two values of
s2(E1) on the axis of Figs. 1~a! and 1~b! behind the curved
fronts of the 3D simulations@9# ~with the convention that
E1 should be understood as the electric field value extra
lated from the external nonionized region to the front po
tion! are plotted in Fig. 5~a!. Without adjustable parameter
our one-dimensional predictions fors2(E1) are well within
a factor of 2 from the 3D simulations. Likewise, the veloci
values forv f(E

1) even agree to about 20%.
Moreover, our analysis shows that NSF and PSF pro

gate in this model and for realistic values of the reduc
diffusion coefficientD, in a very asymmetric manner.

~i! NSF rapidly reach a regime of uniform propagation
typically on the scale of several tens of time units, i.e., in le
than 10210 s. Their velocity is slightly larger than the elec
tron drift velocity in the fieldE1.

~ii ! This is to be contrasted with the dynamics of PSF: F
realisticD values, of order 0.1–0.3, they approach unifo
translation considerably more slowly than NSF — typica
on the time scale of 1028 s. Moreover, their asymptotic ve
locity is also much smaller thanv f

NSF. It obeys the inequality
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v f
PSF,DE1exp(21/E1) @47#. Finally, while the widths of

PSF and NSF are comparable, the degree of ionization
hind PSF is much larger~up to a hundred times fo
D50.1) than that behind NSF.

These results answer the question of whether PSF d
do not propagate, while explaining why the simulations
Vitello et al. @9# could not yield a definite answer — mo
probably because, although their total width is of ord
a0

21, their true inner length scale, as defined by the steep
of the profile, was too small to be resolved by their grid si
@Note that the apparent symmetry between PSF and N
found in earlier simulations@8# is to be related to the fact tha
their propagation into a preionized medium~with initial elec-
tron density of 108/ cm3) is studied, and possibly also due
the use of a poorly resolving grid.#

It was observed empirically by Dhali and Williams@8#
that in the three-dimensional simulations, the dielectric
laxation time in the plasma behind the front was of the sa
order as the intrinsic time scale set by the front motion. O
analysis shows that this was no accident: It is a manifesta
of the fact that the balance of the growth mechanism~impact
ionization! and the stabilization mechanism~screening! leads
to a single time scalet05(a0meE0)

21 for a NSF and for the
relaxation behind it for fields of orderE0. Since our dimen-
sionless value ofs2 is the inverse dielectric relaxation time
it is of order unity~or slightly smaller! for fieldsE1'21.

Of course, the above results should only be considere
a first step towards a realistic treatment of streamer prop
tion. They will have to be developed and extended along
different directions, as follows.

~i! Predictions of patterns within the present model a
comparison with the simulations.Within the frame of the
present continuous and fully deterministic model, here
have only considered the restricted case of a one-dimens
geometry. This enabled us to demonstrate that the conce
effective interfaces does apply to streamers. This appro
will now have to be extended to the description of curv
fronts. As also discussed in@19#, one will then be equipped
with a reduced formulation, valid on the outer scale, wh
will permit us to study real three-dimensional streamers
pattern-forming systems, as was done, e.g., for viscous
gers and dendritic solidification fronts@20#. This should pro-
vide a direct approach to the question of dielectric patte
alternative to the phenomenological DLA-inspired dielect
breakdown models@54#.

~ii ! Possibly, extensions of the model will be necessar
predict real experiments.We have based our analysis on t
minimal model as defined in Sec. II. It contains several
stricting simplifications. A first step in the improvement
the model would be to include the field dependence of
transport coefficientsDe andme . It is clear that this will not
modify our qualitative analysis, as, e.g., the counting ar
ment for the existence of front solutions in Sec. IV depen
only on the linearization about the stable and unstable sta
Moreover, the qualitative asymmetry between the NSF
PSF will persist as these result from the asymmetry of
electron drift. Quantitatively, the value ofv* , the selected
value of NSF, will simply be given by Eq.~5.3! with the
transport coefficient and ionization rate evaluated at the fi
value E1. The slow transient build-up and small speed
PSF could be affected quantitatively by ionic motion, b
e-
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from this effect, we expect no major qualitative difference
Finally, it should be kept in mind that our continuum

equations are only valid on length scales larger than
mean free pathlmfp . On the other hand, we find for th
strongest field values appearing in the simulations~which are
much larger than the values of the field across the gap, du
the enhancement near the streamer tip!, that the front width
decreases down to abouta0

21'3lmfp in the approximation
~2.7!. In such limits, nonlocality of the transport and ioniz
tion effects begin to play a role. In addition, under the
conditions, a typical volume of sizelmfp

3 contains only of the
order of 1000 electrons for the parameter values~2.8! used in
the simulations. Fluctuations are then likely to become n
negligible. In principle, treating these effects calls for a f
kinetic description. This is probably out of reach for the m
ment, but one might want to mimic the main features
these effects by introducing stochastic terms in the equati
These also could mimic photoionization somewhat bef
the front due to photons released in the impact ionizat
events, or the natural homogeneous background ioniza
due to radioactivity and cosmic radiation. Investigation
their relevance for branching of dielectric breakdown p
terns might help to understand the asymmetry between
macroscopic patterns of discharges propagating into a p
tive or a negative field@55#.

In conclusion, our analysis opens the way to a mic
scopically based interface approach to discharges that se
promising for building a coherent framework for the analy
of breakdown patterns of various degrees of complexity.
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APPENDIX DIFFERENCES AND SIMILARITIES
BETWEEN COMBUSTION AND STREAMER FRONTS

In the Introduction, we draw on the similarity between t
streamer problem and other problems such as combus
chemical waves, thermal plumes, phase field models, etc
motivate the development of an effective interface approa
Of these problems, streamer propagation is most clos
analogous to combustion, in that the strong nonlinearity
the reaction rates~the combustion rate and the ionizatio
rate! is an important factor in giving rise to front develop
ment in flames and streamers, respectively. There are im
tant differences as well, however, and since several inter
techniques were originally developed in the context of co
bustion@11,12,17#, we highlight some of the differences an
similarities here.

~a! In combustion the reaction rate depends strongly
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1548 55UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI
the temperature, whose outer dynamics is governed by a
fusion equation of the form] tT5“

2T, while for streamers
the ionization rate depends strongly on the fielduEu, with E
thegradientof the potentialF that obeys the Laplace equa
tion “2F'0 in the outer region where the total charge de
sity vanishes. This field strengthE varies strongly in the
streamer front, since the increased screening resulting f
the rising electron density suppressesE — and hence the
ionization rate — to zero. In combustion, on the other ha
the temperature hardly varies throughout the combus
zone.

~b! Combustion fronts are essentially fronts progating in
a metastable state, because the front has to supply the
that increases the temperature and hence the reaction
while streamer front propagation is an example of fro
propagation into unstable states, where the reaction start
any nonvanishing electron density.

~c! In a flame front typically the temperature remains hi
enough that all the reactions proceed to saturation: all
combustable material burns. The temperature difference
tween the flame front and the background is then essent
determined by conservation~conversion! of energy. In typi-
cal streamer fronts, on the other hand, the fieldE is sup-
pressed long before saturation effects start to play a role,
hence the ionization level behind the front is set by the
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ternal dynamics of the front rather than by conservation la
~i.e., the gas density!.

~d! The electron drift2meE has no clear analog in com
bustion.

~e! Finally, the relevant asymptotic expansion for strea
ers is not quite like the ‘‘activation energy asymptotics’’
combustion@11,12#, since we consider here fields strengt
that are comparable to the characteristic field scaleE0 of the
ionization rate given in Eq.~2.6! before the front, whereas in
combustion activation energy asymptotics is often appro
ate since the flame temperature remains much smaller
the chemical activation energy. For streamers, an anal
like activation energy asymptotics is appropriate in the lim
of small fields uEu!E0. Of course, in streamers the rap
variation of the fieldE in the front region, and hence th
rapid suppression of the ionization rate, looks, at first sig
similar to the suppression of the chemical reaction rate w
decreasing temperature in flames. However, in flames th
due to the strongly nonlinear dependence of the reaction
on temperature before the front~so that a slight suppressio
of the temperature reduces the reaction rate dramatica!,
while in streamers in large external fields of orderE0 this is
due to the fact that the field itself is reduced significan
behind the streamer front, as a result of screening.
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