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A deterministic periodic signal plus a stationary random noise is applied to a static nonlinearity taking the
form of a monovariable arbitrary function on real numbers. The property of noise-enhanced signal transmission
through stochastic resonance is studied for this class of static nonlinear systems. A theory is developed that
provides expressions for the output autocorrelation function, power spectral density, signal-to-noise ratio, and
input-output phase shift, in the presence of a periodic input, a noise distribution, and a static nonlinearity, all
three being arbitrary. Both white and colored input noises are successively considered. For white input noise,
exact expressions are derived in a discrete-time framework directly confrontable to simulations or experiments.
The theory is applied to describe stochastic resonance in various examples of static nonlinear systems, for
instance, a diode nonlinearity. In addition, confrontations with experiments and simulations are given that
support the theory. In particular, interesting effects are reported such as a signal-to-noise ratio larger at the
output than at the input or stochastic resonance at zero frequency. Finally, the validity of the theory is extended
to dynamic nonlinear systems that can be decomposed into a static nonlinearity followed by an arbitrary
dynamic linear systen{S1063-651X97)12002-3

PACS numbgs): 05.40+j, 02.50~r, 07.50.Qx, 47.20.Ky

[. INTRODUCTION monostable smooth single-well potentials. The effect was
then extended to excitable systeft§—18, in which a noisy
Stochastic resonance is a nonlinear phenomenon wherelsygnal is compared to a threshold, the crossing of which trig-
the transmission of a coherefusually periodi¢ signal by  gers a deterministic excursion of the output before it returns
certain nonlinear systems can be improved by noise additioto its resting state. The deterministic excursion of the output
in the system. This paradoxical nonlinear effect was firstusually takes the form of a stereotypical pulse that is emitted
introduced in the domain of climate dynamics-3]. It has  each time the noisy input crosses the threshold, with possibly
since been observed in a variety of both model and naturakstrictions on the direction of the crossing. Recently, simple
systems, including electronic circuits, lasers, electron parathreshold systems in which the notion of a deterministic reset
magnetic resonance, a magnetoelastic pendulum, chemicgf the output of excitable systems has disappeared were also
reactions, superconducting devices, and neufdrs). shown to be capable of stochastic resondri@e-22. Here
We .specify that the stochastic resonance is here undefne state of the output, at any time, simply depends upon the
stood in a broadmodern sense. It refers to an effect of position of the coherent input plus the noise relative to a
noise-enhanced signal transmission that can be characterizgglosnold.

by a signal—to—noise.ra.ticéo.r anot.her measure of the effi- The nonlinear systems we shall consider in the present
clency qf the tran_smlssu)rdlsplaymg_ a nonmonotonic evo- study can be viewed as an extension and generalization of
lution with the noise level and peaking at a maximum value,

. ; o these simple threshold systems, although some types of ex-
for a sufficient noise level, whence we get the term reso'citable systems will also be touched. Essentially, we shall
nance.” In particular, the condition present at the origin, of a id y i A h ' determini 3:.’ odi
matching between a characteristic frequency belonging to thgONSIder noniinéar systems where a deterministic: periodic

system with another one belonging to the external forcing, i$/9N@! Plus a stationary random noise is applied to a static
no longer a requirement. Further developments have showfi€morylessnonlinearity taking the form of a monovariable
that the noise-enhanced signal transmission effect, referred gbitrary function on real numbers. Stochastic resonance will
as “stochastic resonance,” is preserved over broader condRe demonstrated in various illustrative examples of static
tions that depart from that of a strict conventional resonanc&onlinear systems of this type.
as in linear theory. The theoretical description of stochastic resonant systems
Several types of nonlinear systems have been shown s made difficult by their nonlinear and nonstationary char-
exhibit stochastic resonan{6,7,9,9. The effect was origi- acters, and one usually has to resort to approximations. Fre-
nally observed in nonlinear dynamic systems governed byuent approximations are that of a slow and small periodic
bistable, or, more generally multistable, potentialsinput signal and are often restricted to a Gaussian input
[2,3,10,1]1. The stable states accessible to these systems amnise. There have been several general approaches to the
separated by potential barriers and the transitions betweeheoretical modeling of stochastic resonarsee[5,6,9,7,8
these stable states under the influence of the coherent sigreatd references therginAs recently recognized if8], it has
plus the noise are monitored to observe stochastic resonanacew become difficult, in a limited space, to account for all
Later, the works if12—14 showed that multistability was the numerous theoretical methods by which stochastic reso-
not required(only nonlinearity, as they reported stochastic nance has been approached. We simply sketch, in the follow-
resonance in nonlinear dynamic systems governed bing, important seminal theories that have been developed for
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the various types of stochastic resonant systems as memput. The works in[20,21 consider double-threshold or

tioned above. multithreshold systems and develop an approximate charac-
An important theory has been put forfi3] that essen- terization of stochastic resonance.
tially applies to bistable dynamic systems. This thd@3] is Also, most of the aforementioned treatments deal with the

based on a rate equation determining the probability of octransmission of a coherent signal under the form of a sinu-
cupation of the two stable states. In the limit of a smallSoid. Stochastic resonance in the transmission of nonsinusoi-
periodic input, this theory derives approximate expression§@l periodic signals has been considered only recently
for the characteristics of the output that stochastically resol29,22 and it finds interesting applications in the transmis-
nates. Also, for complete applicability, a requirement is ansion Of spike trains by neuroi80-32.

explicit expression for the transition rate between states, As_ mentioned, the type of static n(_)nlmear system we shall
which is usually obtainable only within the approximation of Consider here _extends and generalizes the 3|mple threshold
a slow periodic input(adiabatic approximationassociated systems and will also encompass a number of excitable sys-
with a Gaussian noise, often under the form of a modifiedMS- For such static ”0”"”9."” systems, we deyelop a com-
Kramers rate. For the bistable dynamic systems, with whit lete theory for the characterization of stochastic resonance.

noise, the approaches (1,24 avoid the approximation of _his theofy provides expressions fc_Jr the_ output au_tocorrela-
a slow periodic input and derive important properties of thetlon functlon, power spectr_al c_;len5|ty, signal-to-noise ratio,
stationary asymptotic behavipt1] and an expression of the gnd Input-output p_has_e shift, in the.preser)ce O.f a periodic
output signal-to-noise ratiSNR) valid for a small periodic input, a noise distribution, and a static nonlinearity, all three

input and weak noisE24]. These work§11,24 are based on being arbitrary: Both white and colored input noise are suc-
the use of a Fokker-Planck equation that constitutes, in princ_:esswely considered. The theory does not resort to common

ciple, a general approach to treat Markovian stochastic d __dlal?atlctqpfrgﬁlmatlons hor I|<ramers|-|typ_e folr_mL_JtIatllonf ar(;d
namics and characterize their second-order statistics requirétc.’j notrestricted to smail-signal or small-noise fimits. instead,

to analyze stochastic resonance. Yet, in this nonlinear corlt proceeds through a more direct statistical analysis made

text, a Fokker-Planck equation approach usually requires aFp_ossmle with static nonlinearities. Confrontations with ex-

roximations for oractical tractabilit i tin periments and simulatiops V\(i!l be given. Finally, it will be
Fli 24]a ons for practical tractability, as carried ou established that the applicability of the theory extends to any

The monostable nonlinear dynamic systems were aIOc_iynamlc nonlinear system that can be decomposed into a

proached in[13] by linear-response theory to analyze Sto_static nonlinearity followed by an arbitrary dynamic linear

chastic resonance. Linear-response theory is a perturbati\f‘é(Stem' We have to specify that only periodic stochastic

method based on the linearization of the response of the Syggsonancethe most common type studied to dakeconsid-

tem to a small periodic input when added to the noise. Irtered h_ere and new fprms of aperiodic stochastic resonance

principle, it can be applied to any nonlinear systgtt—2§ 33] will not be explicitly addressed here.

in the small-signal limit, and for this reason it offers a uni-

fying framework for stochastic resonance in these conditions

[9]. However, there is an important range where stochastic

resonance occuravhen the signal is not smallwhich lies

beyond the domain of applicability of linear-response theory We begin our analysis with the setting of a general frame-

[9]. Also, in practice, linear-response theory usually requiresvork for the description of stochastic resonance, which is

additional specific assumptions in order to make possible thgeneric and applies to any nonlinear systéstatic or dy-

explicit evaluation of a linear susceptibility, usually by namig. Elements of this framework have already been put in

means of the fluctuation-dissipation theorem in the presencglace, in other studies, in particular j84,18, but usually

of a thermal noise. with reference to specific nonlinear systems. We here set this
One type of excitable system has been theoretically andramework in general form, with no reference to any particu-

lyzed in[17], with the adiabatic approximation to derive the lar nonlinear system. We shall then show, in the following

output SNR for Gaussian input noise in the limit of a smallsections, how this general formulation can be explicitly real-

periodic input. For the same system with Gaussian noise, thiged for static nonlinear systems.

treatment in[18] avoids the approximation of a slow and Let s(t) represent a periodic deterministic signal with pe-

small periodic input. For another type of excitable systemyiod T4 and 7(t) a stationary random noise. We consider a

the analysis in15], with Gaussian white input noise, im- time-invariant nonlinear system of general tyseatic or dy-

poses a Kramers-type formula to obtain an expression for theamig, which receives(t) and 7(t) as inputs and produces

output SNR. an outputy(t). We considep(t) as the steady-state response
For the simple threshold systems, under the form of af the system or, in other words, we consider that the inputs

single-threshold Heaviside nonlinearity, the model[#8]  s(t) and 7(t) have been applied sinde-—co.

uses Gaussian white noise filtered by first-order or second- In general, because of the influence of the random input

order low-pass linear filters. Expressions are then derived for(t), the outputy(t) will be a random signal. Because of the

the correlation functions and power spectral densities, allowinfluence of the deterministic inps(t), the outputy(t) will

ing the characterization of the stochastic resonance by meab® a nonstationary random signal. However, sistg is

of a correlation coefficient equivalent to the output SNR inperiodic, y(t) will in general be a cyclostationary random

the limit of a small periodic input. For the case of white signal with periodT, [35].

noise (not necessarily Gaussigrthe model in[22] derives At any timet, we express the random output sigpét)

an exact expression for the SNR with an arbitrary periodicas the sum of its nonstationary meapy(t)] plus the statis-

Il. GENERAL FRAMEWORK
FOR STOCHASTIC RESONANCE
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tical fluctuationsy(t) around the mean:

y(t)=Y()+E[y(D)]. D

Because of the cyclostationarity propertyydt), the nonsta-
tionary mearkE[y(t)] is a deterministic periodic function of
t with period T, for which we introduce the Fourier coeffi-
cients

— 1 Ts . n
Yn=_|_—s fo E[y(t)]ex;{—|27-r_|_—st dt. (2

For the purpose of computing a statistical autocorrelation

function for the output signal(t), we now consider for fixed
t and 7 the expectation

Ely(D)y(t+ 1 ]=E[Y()y(t+7)]+E[y()]E[y(t+ T)].(3)

The expectatioE[y(t)y(t+ 7)] of Eq. (3) is a deterministic
function of the two variables and 7, which is periodic int
with periodTs. It is possible to construct a stationgiipde-
pendent oft) autocorrelation functionR,,(7) for y(t)
through a proper time averaging Bfy(t)y(t+ 7)] over an
interval T, whent, ort modT, uniformly cover§0,T [, as

1 (T
Ryy(T):T_S fo E[y()y(t+7)]dt. 4

According to Eq.(3) one also has
1 (Ts
Ryy(1)=Cyy(7)+ - fo E[y(t)JE[y(t+7)]dt, (5)

with the stationary autocovariance function yqft) defined
as

1 (Ts_
ny(T)ZT—S JO E[y(D)y(t+7)]dt. (6)

We now define the power spectral dendry,(v) of y(t)

as the Fourier transform of the autocorrelation function

Ryy(7):

Py(v)=F[Ryy(7)]= f,:Ryy( rexp —i2wvr)dr.

(7
Fourier transforming Eq(5) then leads to
+ o
— * n
Pyy(V)_]:I:ny(7-):|—’_n=27OC YnYn 5( v= T_s) (8)

The power spectral density of E@®) has the typical form
generically encountered with stochastic resonant systems.
is formed by spectral lines with magnitud¥,|? at integer
multiples of the coherent frequencyTl/ superposed to a
broadband noise background represented ¢, (7)].

The autocovarianc&[y(t)y(t+ 7)] is expected to go to
zero when |r|—+«, and so is its time average
Cyy(n. E[Yy(t)y(t)]=var[y(t)] represents the nonstation-
ary variance ofy(t), which, after time averaging over a pe-
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riod T according to Eq(6), yields C,,(0)=vafy(t)], the
stationary variance ofy(t). The deterministic function
Cyy(7) can thus be written as

Cyy(m)=valy(t)]h(7), 9)

where h(7) is a deterministic even function describing the
normalized shape of the stationary autocovariance; it verifies
h(0)=1 andh(7)—0 when|r |-+~ and has a Fourier trans-
form F[h(7)]=H(v). The power spectral density of E@®)

can then be expressed as

+ o
Pyy(v)zvar[y(t)]H(v)-i—nZ anza(

(10

A classical definition of the signal-to-noise ratio, at fre-
guencyn/T on the output, follows as the ratio of the power
contained in the spectral line alone to the power contained in
the noise background in a small frequency ba around
n/T,. The corresponding expression of the output SNR is

then
R(Q _ [Yo|? |
T/ vafy(t)]JH(n/T )AB

(11)

Equation(11) provides an exact expression for the output
SNR, whose explicit evaluation requires the knowledge of
the nonstationary output me&jy(t)] and of the stationary
output autocovariance functia, (7).

Another desirable characterization of a stochastic resonant
system consists in the possibility of evaluating the phase
shift between the output and the coherent periodic input.
This can be achieved through the computation of an input-
output cross-correlation function. For fixédand 7, we first
consider the expectation

E[s(t)y(t+7)]=s(E[y(t+7)]

sinces(t) is deterministic.

E[s(t)y(t+ 7)] is periodic in botht and 7, with period
Ts. For the definition of a “stationary” cross-correlation
function, a time average is taken whenor t modT,, uni-
formly covers[0,T . This yields the cross-correlation func-
tion

(12

1 (7
Rey(7)= T Jo s(t)E[y(t+ 7)]dt, (13

which is interpretable as the cross-correlation function of
s(t) with the nonstationary output med{y(t)]. Rs,(7) of

Eq. (13) is periodic with periodl. Its frequency content has
only components at integer multiples ofTl/ Through a
fourier transform oR,(7) similar to Eq.(7), one obtains a
cross-power spectral density

n
V— T—) y (14)

whereS,, defined according to E@2), is the orden Fourier
coefficient ofs(t).

Po(n)= 2 SV 6(
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The phase shifth between the mean outpE{y(t)] and In this realization of the white noise, the power density is
the coherent inpus(t), as it is also considered {26], can  given by
be evaluated, for a component with frequen¢y, from the
argument of the complex numb®%,(n/T) as 2D=of7At. (18
- Vv
=argS,Yn). (15 follow is exact.

n
o7,
To proceed, we notice that a key simplification with a
The present framework shows how stochastic resonanchitenoise»(t) and astaticnonlinearityg(u) is that for any
in any nonlinear system, can be fully characterized, espefixedt and any fixedr #0, y(t) andy(t+ 7) are statistically
cially the output SNR and input-output phase shift, from theuncorrelated, just ag(t) and 5(t+7) are. As a consequence,
sole knowledge of the nonstationary output mégy(t)] the expectations on the output, in the discrete-time frame-
over one period and of the stationary output autocovarianceork, verify
function C, (7). We shall now use this framework as a
guideline to study stochastic resonance in static nonlineari- E[Y(jAt)y(jAt+ kAt)]:E[y(iAt)]E[Y(iAHkAt)g 9
ties. 1

Now, in this discrete-time framework, the treatment that will

IIl. STATIC NONLINEARITIES WITH WHITE NOISE Loz;sany integerg andk#0. Only for the case =kAt=0 one

A. General model

The nonlinear system under consideration will now be a Ely(JADY(JAD]=E[y “(JAD]+ETy(jAD)]
static(or memorylesgnonlinearity realizing the input-output +Eqy(jAt)]. (20)
transformation

At any fixed timet=j At, since(t) is distributed accord-
ing to f,(u), thens(t)+ n(t) is distributed according to

whereg is any function operating on real numbers Whose]c ALU=S(V)]. As aresult of the functional relationshin©),
9 y P g on . the nonstationary output mean can then be explicitly com-
form will have to be further specified in order to obtain sys-

tems that exhibit stochastic resonance. As we shall see in ﬂ%uted as

following, for the special case whergt) is a white noise, o
the general formulation of Sec. Il can be explicitly realized E[y(t)]:f g(u)f,fu—s(t)]du (21
and, moreover, in an exact way. We thus consider in Sec. Ill —o
that 7(t) is a stationary white noise, although arbitrarily dis-
tributed, with the probability density functioh,(u) and the ~ and the nonstationary output degree-two moment as
statistical distribution functiofr,(u) =/ f, (u’)du’.
The autocorrelation function of the white noise is 2 [T
R, ,(7)=E[7(t) n(t+7)]=2D4é(7) and, as a consequence, Ely"(0]= f_w g (W, [u=s(t)]du. (22
the white noise has an infinite pow&i 7;2('[)]=R,M(O).
This singularity is a mark of the idealized character of thean, expression is then accessible for the nonstationary output
v_vh|te noise. _In pre_lctlce,. one has access only to approXimaya rianceE[y(t)y(t)] =varly(t)], as
tions of a white noise, with a short but finite correlation time
7., a powerE[ (t)] =R,,(0) that is large but finite, and o
verifying the conditionR, ,(0)7.~2D. var[y(t)]=J gz(u)f,][u—s(t)]du
We thus adopt such an embodiment for the input white -
noisen(t) with a short but finite correlation time.. Now, to 4o 2
have the possibility of a direct numerical evaluation of every —( f g(wf, [u—s(t)ldu| . (23
relevant quantity of the model, especially for the purpose of —
comparison with simulations or experimental implementa-
tions of the nonlinear systems, we choose to move to th&quations(19) and (20) can be combined into a single ex-
context of discrete-time signals. The time scale is thus disPression, in which every term is now explicitly known from
cretized with a stepA\t<T, such thatT,=NAt. In practice  Egs.(21) and(23) and reads
now, the white noisep(t) only needs to be a noise with a R
correlation time 7, shorter thanAt and a finite power E[y(jAt)y(jAt+KkAt)]=valy(jAt)JAtS(kAt)
E(#/)=0%. Such a noise, when sampled evexy, imple- _ _
ments the discrete-time white noigét=jAt) endowed with +E[Y(GADJE[y(jAt+KAD]

y(t)=g[s(t) + n(t)], (16)

the autocorrelation functionR,, (kAt)=E[n(jAt) n(jAt (24)
+kAt)]=a§]At6(kAt), with the discrete-time version of .
the Dirac delta function defined as for any integersj and k and (kAt) defined by Eq.(17).
Through a time average, we then define the output autocor-
3(kAt) = 1/At  for k=0 17 relation function, in the discrete-time framework, corre-
0 for k#0. sponding to Eq(4), as
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N—-1

— A 1
Ryy(kAt) =var(y) Ata(kAb) + > E[y(jAt)] R
i=0 U
R
XE[y(jAt+KAD], (25) YT
with the stationary output variance o]
1 N-1 ) T T T
vary) = > vafy(jat)], (26

=0 FIG. 1. Experimental electronic circuit implementing the non-

which is explicitly computable from Eq23). The stationary linearity of £q. (33).

output autocovariance function of E@) is then simply, for

the case of white input noise and static nonlinearities, ¢ of Eq. (15) is also completely calculable, in the discrete-

time framework, with the Fourier coefficier8, evaluated
—van At S —vanv)| through an equation similar to E(8).
Cry(kAD =varty) Ata(kA =varty)h(kAt). (27) With the SNR and phase shif, both accessible at the
In order to proceed into the frequency domain, the Fouriedifferent harmonics of the coherent frequencyl/we have
coefficients of the deterministic periodic signaly(jAt)] a complete characterization of the nonlinear system that is
are introduced as suited to detect a stochastic resonance effect, with the rel-
No1 evant quantities lending themselves to direct numerical
— 1 _ ) jn evaluation. The following illustrates the capability of the
Yn=yN JZO Ely(j At)]ex;{ —i2m W)- (28 present theory to analyze stochastic resonance in various ex-
amples of static nonlinear systems.

The discrete Fourier transform R(/y, over a time interval of

an integer number i of periodsT,, is defined as B. Experimental test
MN-1 Kl The work in[22] considers a special case of the present
Fad Ryy(kAD)]= > Ryy(kAt)ex;{ —i27 _) At, general treatment, when the nonlineagfu) is a Heaviside
k=-MN 2MN function
(29)
_ ) 0 for usé
which affords a frequency resolutigkw=1/(2MNA1). IW=11 for u>4. (32

The autocorrelation function of Eq25) is formed by a

pulse at the origin with magnitudear(y) At, superposed to a  Nymerical simulations of stochastic resonance in this system
periodic component with periods [the second term on the e performed iff22] and compared to the theoretical pre-
right-hand side of Eq(25)]. The Fourier transform oR,, dictions. The results show complete agreement.

defines the output power spectral denshy,, which will It is also possible to experimentally implement a simple
then be formed by a constant background with magnitudgoplinear system belonging to the class of the static stochas-
var(y)At, superposed to a series of spectral lines at integefic resonators considered here. We achieved this with the

multiples of 17s. Application of Eq.(29) leads to electronic circuit with two operational amplifiers of Fig. 1.
N 1 The circuit of Fig. 1 behaves as a two-state comparator with
P. | — | =vantv)At+Y.Y* —. 30 thresholdVy, implementing a nonlinearitg(u) of the form
W( Ts V) A (30 (with V,>0)
Because of conditiofiL8), the quantityvar(y)At is expected —Vgu for u<Vy,
to remain finite. When the horizav — +, thenA»—0 and W= yv,, for u>Vy, (33

the coherent spectral lines above the broadband noise back-
ground tend to Dira@ pulses. This is the typical form of the one may note that the nonlinear circuit of Fig. 1 possesses
power spectral density for the output of a stochastic resonardnly a threshold nonlinearity and falls in the class of static,
system. It comes here in E(B0) under a form appropriate or memoryless, nonlinear systems. It has to be contrasted
for direct numerical evaluation. - o with another nonlinear electronic circuit, a Schmitt trigger,
Since the functiorh(r) is here simplyAts(kAt), its dis- 150 shown to exhibit stochastic resonaf@é]. The Schmitt
crete Fourier transform isi(v)=At Vv. The SNR of EQ.  trigger possesses both a threshold and hysteretic nonlinearity
(11) follows as and falls in the class of dynamic nonlinear systems, or sys-
tems with memory, because of the hysteresis.

R(i _ [Yal? (31) A detailed study of stochastic resonance in the circuit of

Ts/  vary)AtAB’ Fig. 1 will be given elsewherg37]. For the nonlinearity of
Eq. (33), Eq. (21) of the general model of Sec. Il A yields

The output SNR of Eq(31) is then completely calculable,

through Eqs(21), (28), (23), and(26) for any noise distri- E[y(1)]=Veail—2F,[Vin—s(t) ]} (39

butionf,(u) and any periodic inpug(t) transmitted through
an arbitrary nonlinearitg(u). The input-output phase shift and Eq.(23) yields
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FIG. 2. Output autocorrelation functid®y(7) in units V2, as a ) _ _ ) _
function of the time lagr in units T, for the two-state threshold FIG. 3. Output signal-to-noise rati@ in decibels, as a function
comparator with a zero-mean Gaussian input white ng{sg. (A) of the rms amplitude in volts of the input white noisé&) chosen to
Sinusoid s(t)=V,, sin(2#t/Ty) and (B) triangular wave s(t) be zero-mean Gaussian, for the two-state threshold compaajor.
=Vys1(t/Tg) from Eq. (36). The signal amplitude i¥,=1.9 v,  Sinusoid s(t)=Vy sin(27t/T)) and (B) triangular wave
the thresholdvy,=2.2 V, and the input noise rms amplitude is here S(t) =Vys:(t/Ts) from Eq.(36). The signal amplitude i¥/y; =1.9
1.4 V. The smooth line is the theoretical expression from 2, V and the threshold/,=2.2 V. In each panel the solid line is the
(34), and (35); the noisy line(almost indistinguishabjeis the ex-  theoretical expression from Eq&1), (34), and(35) and the sets of

perimental estimation on the circuit of Fig. 1. discrete data points were experimentally obtained with the circuit of
Fig. 1. In each panel, the SNR is shown at the fundamental fre-
v —AV2 1—F [V — E [Vo— _ quency 1T and at the two subsequent harmomi¢$ that give the
afy(t)] sal AVin—S(OTIF [ Vin—s(t)] @5 strongest SNR:  at T, (*), at 2T (O), and at 3T (+).

For illustration, Fig. 2 shows the output autocorrelationdiscrete-time framework is exact and the very same expres-
function R,(7) theoretically computed from Eqf25), (34), ~ Slons are evaluated in the theoretical analysis and in the ex-
and (35), compared with an experimental estimation of periment. Consequently, as exp_ected, Fig. 2 s.hows very good
R,y(7), obtained withAt=T¢/N, N=100, the periodl =10  agreement between the theoretical and experimental autocor-
ms, the noisezn(t) zero-mean Gaussian, and the periodicrelation functions and both would tend to perfectly superpose
input being successively a sinusaift) =V,, sin(2wt/Ty) if the averages in the experiment were performed with a
and a triangular wave(t) = Vs, (t/T,), with the zero-mean Number of samples tending to infinity.

symmetric normalized triangular wave Application of Egs.(28) and(26) with Egs.(34) and(35)
allows the explicit evaluation of the theoretical output SNR
1—4t for O<t<1} of Eq. (31). We chose (arbitrarily)y a band AB=1/T,
s,(t)= (36) = 1/(NAt), with N=100, and we shall stick to these values
—3+4t for i<t<1, for the rest of the article. Figure 3 represents the SNR theo-

retically computed from Eq(31), compared with the SNR
ands;(t) with period 1. The output autocorrelation function experimentally measured from the circuit of Fig. 1, succes-
Ryy(7) was experimentally estimated on the circuit of Fig. 1sively with the sinusoid(t) = Vysin(27t/T) and the trian-
by averaging productg(t)y(t+ 7), with values oft modT,  gular waves(t) =Vys,(t/Ts) from Eq.(36). The honmono-
uniformly covering the intervdl0,T[ for every value ofrat  tonic evolutions of the SNRs in Fig. 3 present the signature
which R, (7) was estimated. The theory of Sec. lll A in the of stochastic resonance: the SNRs peak at a maximum
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value for a sufficient level of the input noise and there exists

a range where increasing the input noise results in a higher
output SNR. The comparison of the SNRs of Fig. 3 shows 2
again the same very good agreement between theory and ,“’_, 20
experiment, up to very small values of the SNR close to the 5_
limit of accuracy of the measurements. 315
C. Two-threshold nonlinearity
10t
A special instance of a static nonlinear system exhibiting
stochastic resonance has been considerd@0hunder the
form of the two-threshold nonlinearity 5r
-1 for u<—0.5 o
0 0.5 1 15
g(u)=40 for —0.5<u<0.5 37) noise rms amplitude
1 for u>0.5. 3
1
Equation(21) of the general model yields in this case pd
q (21) g Yy 5 od B
E[y(t)]=1—-F,[0.5-s(t)]-F,[-0.5-s(t)] (38 2
5 20
and Eq.(23) yields o
15
valy(t)]={1—-F,[0.5—s(t)]}F ,[0.5—s(1)]
+{1-F,[—0.5-s(t)]}F,[—0.5—s(1)] 10
+2{1-F,[0.5-s(t)]}F,[—0.5—s(t)]. sl
(39
o % 05 3 5
From Egs.(38) and (39), application of Eqs(28) and (26) : .

leads to an explicit expression for the SNR of Egfl). Fig- noise rms amplitude

ure 4 represents this SNR of the stochastic resonator of Eq. ] ] ]
(37), computed again with B=1/T,= 1/(NAt) andN=100, FIG. 4. Output signal-to-noise rati@ at frequency IV g com-
for different noise distributions and two different wave forms PUted from Eqs(31), (38), and(39) for the two-threshold nonlin-

PR . . _ . earity of Eq.(37), as a function of the rms amplitude of the input
for the peI’IOd_IC Input, a Slngsom(t) Asin(2mt/Ts) and a white noisezn(t). (A) 7(t) a zero-mean Gaussian noise &Bdl 7(t)
sawtooths(t) = As,(t/Ts), with : . ) . .
a zero-mean uniform noise. In each panel, the pair of solid curves is

with a sinusoidab(t) = A sin(2#t/Ts) and the pair of dotted curves
with a sawtooths(t) =As,(t/T,) from Eg. (40). In each pair, the
upper curve is withA=0.45 and the lower curve witA=0.3.

s,(t)=—1+2(t modl). (40

The conventional SNR appearing in Fig. 4 is not com-

puted in the stud_y of20]. Instgat_j, in[20], the stochastic can see in Fig. 5 that it degrades for larg€s. Also, as

resonance effect in the transmission by BY) is character-. mentioned in[20], the approximation ignores the actual

ized by means of the amplitude of the coherent spectral Im%hape of the periodic inps(t) and as is visible in Fig. 5, the

at frequency I.VS on the output. Qne may ﬂote, however, thatdiscrepancy is increased whs(t) is changed from a s,inu-

such a quantity does not provide a strict assurance of thgqi d 1o a sawtooth

ﬁ(r)eissgrlgs e?fi ;?;?::5 t'% ortis?rq]:nccoeﬁe?gﬁta ﬁﬁi \;v:der:h?iol?spu The present theory has also the ability to describe stochas-
' fic resonance in multithreshold systems as considerggllih

bgckgrounq may S|multaneously. Increase at the Ol(m. and to predict the SNRs that are approximated in the study of
Fig. 6), while a preferable requirement is a coherent line

whose relative emergence out of the noise background bé-zl]' We can also illustrate, with the two-threshold nonlin-

comes more pronounced. The amplitude of the output Cohere_arlty of Eq.(37), the evolution of the output stationary vari-

; . from Egs. (26) and (23), which controls the
ent line at 17 used in[20] corresponds to oul,| from Eq. ~ 2N¢€ var(y) , : :
(28). No comparable general expression is offered for thid10iS€ background in the SNR of E(1). This evolution of

quantity in[20], yet whens(t) =A sin(2xt/T,) this quantity ~ Varly) with the rms amplitude of the input noisg(t) is
is approximated i120] askA, , with represented in Fig. 6 in the presence of a periodic input

s(t)=A sin(2m7t/T,) with A=0.45 and also, for comparison,

in the absence of any periodic input. From Fig. 6, it is visible
that in the region of the resonance, the output noise back-
ground may differ significantly in the presence of the peri-

A,=F,(0.5+A)—F (0.5~ A) (41)

andk anad hocproportionality constant.

Figure 5 compares the approximatikA, from Eq. (41)
with the value]Y,| from Egs.(28) and(38). As noted in[20],
the approximatiork A, is good for small values oA, and we

odic input from its value in the absence of this periodic in-
put. This is the case here, where the amplitéde0.45 of
the periodic input is of the same order of magnitude as the
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FIG. 5. Amplitude of the coherent spectral line at frequency FIG. 6. Output noise backgroundr(y) from Egs.(26), (23),
1/T, on the output of the two-threshold nonlinearity of Eg7), as  and(39), which controls the denominator of the SNR of E8{l) for
a function of the rms amplitude of the input white noisg). (A) the two-threshold nonlinearity of E¢37), as a function of the rms
7(t) a zero-mean Gaussian noise, a sinusoidal inp()  amplitude of the input white noisext). (A) 7(t) a zero-mean
=A sin(2wt/Ty), andk=0.50.(B) 7(t) a zero-mean uniform noise, Gaussian noise an() 7(t) a zero-mean uniform noise. In each
a sawtooth inpus(t)=As,(t/T) from Eq. (40), andk=0.37. In  panel, the solid curve igar(y) in the presence of the periodic input
each panel, the pair of solid curves is the exact expression given bg(t) = A sin(27t/Tg) with A=0.45 and the dashed curvevar(y)
|Y,| from Egs.(28) and (38) and the pair of dotted curves is the in the absence of any periodic input. To locate the resonance, we
approximatiork A, from Eq.(41) after[20]. In each pair, the upper have redrawr(dotted curvesthe corresponding SNRs from Fig. 4
curve is withA=0.45 and the lower curve witA=0.3. after renormalization of their maximum value to 0.65 to fit ad-

equately in the figure.

characteristic amplit_udes in the s_yst@the threshold 0.5 in portance(no one dominates the other periodic one and a
Eq. (37) and the noise rms amplitude o_f_around 0.3 at t_henoise, efficiently cooperate to overcome a nonlinearity.
peak of the resonanteUnder these conditions, the periodic

input cannot be considered small and its implication in sto-
chastic resonance cannot be treated accurately if the noise
background in the presence of the periodic input is simply As another application of the present theory, we now ex-
replaced by this background in its absence. This is wha@Mmine the case where

would have been assumed in a perturbative treatment of sto- 0 for u=6
chastic resonance, yet efficient in its own domain of applica- g(u)= (u—0)/x for u>0
bility. Perturbative treatments, such as linear-response theory '

[25,26, are general in the sense that they can be applied tequation (42) is a simple model for the nonlinearity of a
any nonlinear systems, but they are restricted to the smalbjiode with thresholdh. The diode is one of the most elemen-
signal limit. In contrast, our present approach applies only tqary nonlinear electronic components. With the present
static nonlinearities, but for this type of system it provides atheory, we can verify that this component, with the model of
general description, not restricted to the small-signal limit.Eq. (42), is capable of stochastic resonance.

The conditions illustrated in Fig. 6 lead us here to view sto- Following the procedure of Sec. Il A, we computed with
chastic resonance not as a perturbative effect, but as a truthe nonlinearity(42) the output SNR of Eq(31). This was
cooperative effect in which two signals with comparable im-performed with#(t) a zero-mean Gaussian noise with vari-

D. Diodelike nonlinearity

(42
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FIG. 7. Output signal-to-noise rati8 computed from Eq(31) FIG. 8. Input-output phase shié (in degreescomputed from

for the diode nonlinearity of Eq42) with #=1.2, as a function of Egs. (15) and (43) for the diode nonlinearity of Eq(42) in the
the rms amplituder,, of the input white noisen(t) chosen to be stochastic resonance regime of Fig. 7 with1.2, as a function of
zero-mean Gaussian. The pair of solid curves is withthe rms amplituder, of the Gaussian input white noisgt). The
s(t)=cos(2mt/Ty) and the pair of dotted curves with pair of solid curves is withs(t)=[cos(2mt/T)+cog4mt/ T
s(t) =[cos(2mt/Ts) +cod4mt/Ts+ ml4)+codb6mt/Ts+2m/5)}/3. In - +7/4)}/2 and the pair of dotted curves with(t) =[cos(2rt/Ty)
each pair, the upper curve is the SNR at frequendy Bhd the  +cog4nt/ T+ 7/4)+cog67t/T+27/5)]/3. In each pair, the upper
lower curve the SNR at Z§. curve is¢ at frequency T and the lower curvep at 2/T;.

anceaf7 and a threshold=1.2. For illustration, the periodic
input of period T, was successivelys(t)=cos(2t/
T,) and s(t) =[cos(2mt/Ty)+cos(4rt/Ts+ w/4)+cos(6rt/Ty)
+2m/5]/3. Theresulting SNRs, plotted in Fig. 7 as a func-
tion of the rms amplituder,, of the noise(t), reveal sto-
chastic resonance in the diode nonlinearity. The SNR pre

dicted by Eq(31) is insensitive to the value of the parameter
\ of Eq. (42). As visible in Fig. 7, no linear superposition Iﬁghszrc(c)z?jnﬁ:rdm%rrlscalso changed the phase SHfT) at

applie; since we are dealing with nonlinear systems and the The results of Fig. 8 illustrate typical properties that can
bghawor of the SNR for the component at frequend;lslgé be observed for the phase shift of E45). Nonzero input-
different Whetherthls_ Compone”t is alone or accomp_anled_b%utput phase shifts can occur in stochastic resonance with
ther components _W'th_ dlfferent_ frequenC|es._AI§0 visible ingiatic nonlinearities. The phase shift at a given frequency is
Fig. 7, as well as in F_|g. 3, a single haymomc Input at fre'strongly dependent upon the overall frequency content of the
quency 1Ts has the_ ability to generate hlgh_er-order harmon-qerent inputs(t), since adding higher harmonicsT2/

ics at the output, since the context is nonlinear. 3/T,,... at theinput can change the phase shift of the com-

We can also illustrate, with the diode nonlinearity of Eq. -
X ; . ponent at the fundamentalTl/. Such a behavior of the phase
(42), the evolution of the input-output phase shift of ELf). shift is a typical nonlinear property, which is absent in linear

Fo_r the diodel_nonlinea][ig OélElq“%) with the Gaussian systems. Monotonic or nonmonotonic evolutions of the
noise 7(t), application of Eq(21) leads to phase shift with the noise rms amplitude can be observed
(see alsq[22]). Also, the present theory predicts that the
) 20\ input-output phase shift of Eq15), for a given periodic
Ely(®]= N2 {exd ~z(v)] \/;zl(t)erfc[zl(t)]}, inputs(t), is influenced by the distribution of the input noise
(43 7).

between the input and output components at the frequency
1/T of the fundamental, experienced a dramatic change, as
depicted in Fig. 8. Third, we further added a harmonic at
frequency 3T at the input, with s(t)=[cos(2mt/T,)
+cos(4mt/Tg+w/4)+cog6 7/ T, +27/5)]/3. Again, as visible

in Fig. 8, the phase shifth(1/T,) at the fundamental was

with z,(t) =[6—s(t)]/ (o ,v2).

The resulting input-output phase shift of H35) is rep-
resented in Fig. 8 as a function of the rms amplitudgof It is interesting to examine the case whegyéu) is a
the Gaussian noisg(t). Three different periodic inputs(t) smooth nonlinearity, monotonically increasing from 0 to 1,
with the same period’ were successively applied in order with the sigmoidal form
to illustrate the rich variability of the evolution of the input-
output phase shift with stochastic resonance in static nonlin- g(u) =
earities. First, withs(t)=cos(2#t/T,), the present theory u—=6\"
gives a phase shif$(1/T;)=0 for any noise rms amplitude 1+eXF< - T)
a,. Second, we continued with the addition of a harmonic at
frequency ZIy at the input, with s(t)=[cos(2mt/T)
+cod4nwt/T,+7/4)]/2. As a result, the phase shiff(1/T,),  The parametek of Eq. (44) measures the extension of the

E. Nonsubliminal periodic input

(44)
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FIG. 9. Monotonic smooth nonlinearity. Output signal-to-noise
ratio R at frequency IVs computed from Eq(31) for the sigmoid FIG. 10. Nonmonotonic smooth nonlinearity. Output signal-to-
nonlinearity of Eq.(44) with #=1.2, as a function of the rms am- ise ratioR at frequency I, computed from Eqs(31), (46), and
plitude of the input white noise(t) chosen to be zero-mean Gauss- (47), for the Gaussian nonlinearity of E¢45) with #=1.2, as a
ian. The periodic input is(t) =cos(2rt/Ty). &, A=0; b, A=0.05;  fynction of the rms amplitude of the zero-mean Gaussian input
¢, A=0.1; andd, A=0.2. white noise 7(t). The periodic input iss(t)=cos(2mt/T). b,

region aroundd over whichg(u) passes from 0 to 1. As *~0-05:¢, A=0.1; andd, A=0.2.
A—0, this nonlinearity approaches the Heaviside function of

_ 2
Eq. (32). g(u):exp{_(u

With the procedure of Sec. Il A, we computed for the A (45

nonlinearity (44) the SNR of Eq.(31). This was performed

with #(t) a zero-mean Gaussian noise, the periodic inpufor this nonlinearity of Eq(45), with a zero-mean Gaussian

s(t)=cos(2at/Ts), and a thresholdd=1.2. The resulting input noisez(t) of varianceof], an explicit analytical ex-

SNR is plotted in Fig. 9 as a function of the rms amplitude ofpression can be written for E€R1) in the form

the noisen(t) and for different values of the “smoothness”

A of the nonlinearity(44). [Ty
For A\=0, the nonlinearityg(u) reduces to the Heaviside Ely()]= A

function and the periodic inp(t) alone is strictly sublimi-

nal, unable to induce any transition of the output in the abWwith

sence of the noise. Then, an increase of the input noise level 2 5

from zero produces a conventional stochastic resonance, as _ s(t) 0

shown in Fig. 9a), where the SNR increases from zero up to 25(t)= P N~

a maximum and then back down toward zero. ko0, g(u) K

2
+1

~112
exf —z(t)], (46

2
+1

-1
n
A

(U\Q

is a smooth nonlinearity and the periodic ing(t) is visible s(t) 0'77\/2 0 2
at the output in the absence of the noise. Then, for a strictly —‘/2+ N (47)
zero input noise level, the output SNR tends to infinity. As T

the input noise level is increased above zero, fora sg¢ep 1, - V3 in Eds. (4 .
with small A>0, we observe in Fig. 9 that the output SNR en, substitution ok by Mv2in Eqgs. (46) and(47) simply

. " vields the explicit expression fa[y?(t)] of Eq. (22), lead-
can rapidly drop to small values, irom where a further ".]'ing to the SNR of Eq(31) depicted in Fig. 10. The results of

crease of the noise level progressively raises the SNR as m,ga}g_ 10 demonstrate that a nonmonotonic smooth nonlinear-

conventional stochastlc_resonance. Fpr smoog{e) with ity, with sufficiently steep parts, can also stochastically reso-
larger\ the resonance disappears to give way to a monotoni

decay of the SNR as the noise level is increased from zero.
The results of Fig. 9 demonstrate that a smooth nonlinear-
ity can stochastically resonate, provided it contains parts
with sufficient steepness. The presence of a strict threshold The general treatment of Sec. Il A applies to an arbitrary
(below which the output is strictly unresponsjve not nec-  statistical distribution of the input noisg(t) and thus allows
essary to obtain the possibility of a noise enhancement of thea direct examination of the influence of this distribution on
transmission. Figure 9 shows an example where a nonsulstochastic resonance in static nonlinearities. We will not ad-
liminal coherent signas(t) corrupted by a small amount of dress here the problem of the determination of the optimal
noise can benefit from further noise addition to improve itsnoise distribution to maximize stochastic resonance in given
transmission. conditions, but rather we shall provide an illustration of the
A similar type of resonance can also be obtained withexplicit influence of the noise distribution that complements
nonmonotonic smooth nonlinearities, for instance a Gaussiathe results of Fig. 4. For this purpose, we return to the two-
one: threshold nonlinearity of Eq37). With the sinusoidal peri-

F. Influence of the noise distribution
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FIG. 11. Influence of the noise distribution. Output signal-to-  FIG. 12. Multiple resonant peaks. Output signal-to-noise rRtio
noise ratioR at frequency I computed from Eqg31), (38), and ~ computed from Eqg31), (38), and(39), for the two-threshold non-
(39), for the two-threshold nonlinearity of E€R7), as a function of  linearity of Eq. (37), as a function of the rms amplitude of the
the rms amplitude of the zero-mean input white nojé8, with the ~ zero-mean two-level symmetric discrete input white noige),
periodic inputs(t) = A sin(27t/T,) andA=0.45.a, 5(t) a Gauss-  With the periodic inpus(t) = A sin(27t/T,)+0.15 andA=0.3. The
ian noiseb, 7(t) a uniform noise; and, 7(t) a two-level symmet-  solid line isR at frequency Il and the dotted lin&k at frequency
ric discrete noise. 2[Ts.

odic inputs(t)=A sin(2x#t/Tg), the results of Fig. 4 show
that the uniform noise leads to a higher maximum outp
SNR compared to the Gaussian noise with the same r
amplitude. Without proving the optimal noise distribution, in

this case, we shall show that it is possible to do better tham the_ small-signal limit with Gaussian noise, proofs are
the uniform noise given in[9,41] that the output SNR cannot exceed that at the

Let us consider the family of noise distributions fgft) input. Under different conditions and with a definition of the

obtained by passing a zero-mean unit-variance Gaussia_%NR differing from the conventional SNR we are consider-
noise£(t) through the transformation=A,tanh(3¢) param-  ing here, the study in29] comes to a larger SNR at the
etrized byA, and 8. For smallg’s, the density ofy tends to ~ Output than at the input. We shall now show that, with sto-
concentrate around zero, qualitatively like a Gaussian derghastic resonance in static nonlinearities, the classical SNR
sity, and with such a shape the noisgt) performs qualita- defined in Sec. Il can be found larger at the output than at the
tively like the Gaussian noise for the SNR in stochastic resoinput. Again, we do not plan to elucidate here, in generality,
nance. For intermediatg'’s, the density of» tends to be the conditions under which this important property can be
uniformin [-A, ,A,], and with such a shape the noisét) obtained. Rather, we will simply produce an illustrative ex-
performs qualitatively like the uniform noise for the SNR in ample of its realization.

stochastic resonance. For lar§s, the density ofy tends to We consider the periodic inp@(t) = A sin(2at/Ty with
concentrate around the two mode#\, andA,, and with  total power A%2 and power spectral densitP.(v)
such a shape the noisgt) generally performs better than = A2 5(v+ 1/T )+ 8(v—1/Ty)]/4, since we chose in this
the uniform noise for the SNR in stochastic resonance. Astydy, according to Eq$7) and(8), to represent the spectral
simple illustration can be obtained for the limit cg8e>+  gstribution of the power with a bilateral power spectral den-
where the noise(t) degenerates into a two-level Symmetric sjry (t) is corrupted by the white noisg(t) with autocor-
discrete noise with the densityf,(u)=0.5[5(u+A,)  (e[ation functionR,,(7)=2D &(7) and power spectral den-
+6(u—A,)] and rms amplitudé,,. The corresponding dis- g, P,,(v)=2D, as introduced in Sec. Il A. The input

tribution functionF_(u) is readily written and substituted { o
into Egs. (38) and (gg) t0 yield the SNR of Eq(31). This SNR, with the definition of Sec. Il, can be expressed as

SNR is represented in Fig. 11 and compared to the SNRs of A2/4
Fig. 4. The results of Fig. 11 show that, in general, neither Rm:m.
Gaussian nor uniform noise is optimal to maximize the SNR
in stochastic resonance with static nonlinearities. Continuing ) ) ) ) o
with the two-level discrete noise on the two-threshold non- AS explained in Sec. Ill A, the ideal white noise is real-
linearity of Eq.(37), it can be shown, with a slight change in ized by a discrete-time noise, with a finite varianeg re-
the periodic inputs(t), that multiple resonant peaks can be lated to the power density? of the white noise by Eq18).
obtained for the SNR in stochastic resonance with static nonFhe input SNR of Eq(48) thus becomes

linearities, as illustrated in Fig. 12.

rovide clear-cut answers on this issue. For bistable nonlin-

ﬁut SNR larger than the input SNR. Relatively few studies
Sar dynamic systems, the question is address¢88r4Q.

(48)

(A/U,7)2
G. Output SNR versus input SNR Rin=ZATtAB (49

An important issue is to determine whether stochastic
resonance, under given conditions, is able to deliver an outfhe output SNR of Eq(31), at frequency T,
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s(t) + »(t), provided that the amplitud@& of s(t) verifies
A<A, . Simply, if the measurement &5=s+ >0, thens is
recovered as=z—A,, and ifz=s+ <0, thens is recov-
ered as=z+A, . This represents anoth@ronlineay recov-
ering scheme that achieves an infinite input-output gain in
the SNR, but does not hinder the fact that the stochastic
resonator is able to achieve a gain larger than unity. This
simple scheme is, however, limited by the condition of
A<A,, while the stochastic resonator is not and is able to
realize R, {Ri,>1 also wherA>A, , as visible in Fig. 13.
Moreover, the stochastic resonator is also able to realize
RoulRin=>1 when the noisey(t) ceases to be a two-level
discrete noise, as illustrated in Fig. 13 by=A,tanh2$),
which approaches a uniform noise. In fact, the present theory
- has the ability to show that a SNR gain larger than unity is
0 0.2 04 06 0.8 litud 1 not a rare outcome with stochastic resonance in static non-
noise rms amplitude linearities and it can even be obtained with Gaussian noise
FIG. 13. Output SNR over input SNR,/R,, as a function of when the periodic input is no longer a sinusoid, but we leave
the rms amplituder,, of the input white noise(t), with the two- this for another study.
threshold nonlinearity of EQ.(37) and the periodic-input
s(t)=A sin(27t/Tg). With 7(t) a zero-mean two-level symmetric
discrete noise, the four solid curves represent the theoretical expres-
sion of Eq.(51), with a, A=0.45; b, A=0.3; ¢, A=0.2; andd, The expression of the SNR of E¢31) of the general
A=0.15, and the discrete data poiliepen circleare obtained for  model is in principle valid at any harmoniv' T, of the co-
the casec from a numerical simulation of the system. The dashedherent periodic input, especially for=0. This allows us to
curve isRoufRin 0f Eq. (51) with A=0.15 whenn=A,tanh2é),  investigate the possibility of stochastic resonance at zero fre-
with £ a zero-mean unit-variance Gaussian noise and the resultinquency_ We will consider a situation where both an actual
probability densityf,(u) of » shown in the inset as a function of gpservation and a meaningful interpretation can be given for
the abscissa/A,,. this extension of stochastic resonance, at zero frequency.
_ Consider the periodic inpus(t)=A sin(27t/T;) whose
[Y4|? wave form is symmetric relative to the time axis, superposed

N
o

—_
0
7T

output SNR/ input SNR
oo

H. Stochastic resonance at zero frequency

out™ Fr(y)AtAB ' (50) to an input noisey(t) with an even density,(u). These two
inputs are transmitted by the two-threshold nonlinearity of
leads to the ratio Eq. (37), which is an odd functiorg(u). In this situation,
_ because of the symmetries of both the inpay and »(t)
Rouwt  |Y1l?/vanly) and the systeng(u), the output expectatio&[y(t)] aver-
Rin = T‘Ti (51) aged over one perio@g, i.e., the quantityy, of Eq. (2), will

be zero. Indeed, because of the symmetns(@j, for any

For the choice of the distribution of the input noisét),  timet, in [0,T[, there always exists a tintgin [0, T4 such
we return to the family of noises=A tanh(8¢) of Sec. Il F.  thats(t;) = —s(t,); because of the symmetries of bdtj{u)
Finite values ofB sufficiently above 1 are adequate to ob-and g(u), the expectations of Eq.(21) verify
serve the effect, but for a simple illustration we shall againE[Y(t2)]=—E[y(t;)] and thus cancel in pairs over one pe-
consider the limit casg8—+o, which gives a two-level riod to yield a zero time-averaged expectation In such a
symmetric discrete noise 5(t) of density f (u) case, the SNR at zero-frequendy(0) of Eq. (31), is also
=0.5[8(u+A,)+8(u—A,)]. Also, as in Sec. IlIF, we identically zero for any value of the input noise rms ampli-
choose the two-threshold nonlinearity of E§7). tude.

With Egs.(38) and(39), we computed the rati®,,/Ri, We now consider adding a constant comporsgo the
of Eq. (51), which is represented in Fig. 13, for different periodic input, which becomes(t)=sy+A sin2#7t/T,).
values of the amplitud@ of the periodic input. A compari- The dc componens, breaks the symmetry of the periodic
son is also given in Fig. 13 with a numerical simulation of input, which is enough to mak¢, differ from zero, with the
the system, which shows, as in Sec. Il B, perfect agreemer@issurance that any departureYgffrom zero has its origin in
with the theory. The results of Fig. 13 reveal that the ratiothe presence of the input dc componept One can be in-
Rou/ Rin T€sonates with the input noise rms amplitude, al-terested in performing an estimation ¥f at the output, in
though peaking at a slightly higher noise level than the outorder to extract information on the presence sgfat the
put SNR shown in Fig. 1(t) for A=0.45. The curves of Fig. input. This estimation can be assisted by a stochastic reso-
13 also clearly demonstrate the possibility of an output SNRhance effect, in which an optimum level of_the input noise
larger than the input SNR. For very smalls it is even  7(t) maximizes the time-averaged output meégyrelative to
possible to obtairR >R, . the output fluctuations measured by the time-averaged vari-

For the case of a two-level discrete noiseancevar(y). This is attested by the output SNR at zero fre-
nt)e{—A, A}, as pointed out in[41], there exists a quencyR(0) computed from Eqst31), (38), and(39), rep-
scheme allowing a perfect recoverysgt) from the mixture resented in Fig. 14. Also, the time-averaged output méan
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FIG. 14. SNR at zero frequency. Output signal-to-noise r&tio FIG. 15. Output coherent signal amplitufé,| at frequency
computed from Eqs31), (38), and(39) for the two-threshold non-  n/T¢ computed from Eqs(28) and(38) for the two threshold non-
linearity of Eq.(37), as a function of the rms amplitude of the input linearity of Eq.(37), as a function of the rms amplitude of the input
white noisez(t). The periodic input iss(t) =sy+ A sin(27t/Ty), white noise(t). The periodic input iss(t) =sy+ A sin(27t/Ty),
with A=0.3 andsy,=0.15.(A) 7(t) a zero-mean Gaussian noise andwith A=0.3 ands;=0.15.(A) 7(t) a zero-mean Gaussian noise and
(B) n(t) a zero-mean uniform noise. In each panel, the solid line igB) #(t) a zero-mean uniform noise. In each panel, the solid line is
the SNRR(0) at zero frequency, the dashed linél$1/T,), and the Y, at zero frequency, the dashed lingYs| at 1/T¢, and the dotted
dotted line isR(2/T). line is Y, at 2/T;.

alone undergoes, like the SNR(0), a nonmonotonic varia- anq is represented in Fig. 16 together with the output mean

tion with the input noise rms amplitude, as visible in Fig. 15. E(y) from Eq.(39), for the two-threshold nonlinearity of Eq.
It is also possible to obtain stochastic resonance at zer

frequency when the periodic input degenerates into a simple

constanis(t) =s, Vt. The issue of stochastic resonance with C )
. . E(y)/var(y), which is interpretable as the relative accuracy
a constant coherent input has been address¢d243 for ip estimating the constarE(y) embedded in fluctuations

multistable nonlinear dynamic systems as discussed in Sec. |. : — : -
Here, for static nonlinear systems, we shall demonstrate th ith rms z_;\mphtuq var(y)_. The nonmonotonlc variation .Of
R(0) with the input noise level, as it follows from Fig.

a form of stochastic resonance can be observed with a co ) . . .
stant coherent input. A constant input is a special case of 6(B) indicates that there is an optimal level where the esti-

periodic input and the uniform mode of calculation that hasmation of the constanE(y) can be performed with best

been used throughout the present study can be kept in th Cl'llrazy' Inhothe: Wo;di’ thetre ;S ae% opt!mal mpqt r:jmse
case, with any finite value df, for the period of the constant '€V€! where the value of the output mei(y) is maximize

s(t), to perform the time averages as in E(®, (6), (28), or relative to the rms output fluctuatiogvar(y). I_f we return to
(26). But, of course, with a constas(t) the results are no (e strictly  periodic, ~nonconstant, — inputs(t)=s,
different if these time averages are simply not performed.tA Sin(27t/Ty), for instance, a similar interpretation is
The SNR of Eq(31) at zero frequency, in this case, can pe valid for the resonanyR(0) from Fig. 14, as proportional to

Equation(52) shows thatyR(0) is simply proportional to

computed as the relative accuracy in estimating the time-averaged output
) meanE(y) =Y, embedded in output fluctuations with time-
R(0)= EZ(y) (52 averaged rms amplitudgvar(y).
varly)AtAB If the model of the process is known, especidljyu) and
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FIG. 16. Two-threshold nonlinearity of E€37) with a constant
coherent inpus(t) =sy Vt with s,=0.15.(A) Output coherent sig-
nal amplitudeY,=E(y) at zero frequency from Ed38) and (B)
output signal-to-noise rati®(0) at zero frequency from Eq$52)
and (39), both as a function of the rms amplituds, of the input
white noisez(t). In each panela is with 7(t) a zero-mean Gauss-
ian noise and with 7(t) a zero-mean uniform noise. On the curves
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other words, optimal dithering allows the time-averaged out-
put meanE[y(t)] to reproduce the mean valsét) of the
periodic input. This is the very property that is sought with
dithering. Dithering can now be contrasted with stochastic
resonance at zero frequency. Briefly, dithering is an output
mean that reproduces the input mean, while stochastic reso-
nance is an output mean that stands out maximally off the
output fluctuations. However, as visible in Fig. 16, the input
noise level that optimizes dithering, i.e., that realizes
E[y(t)]=s(t), is usually not the same as the noise level that
maximizes E[y(t)]/vvafy(t)], i.e., that maximizes the
SNR R(0). The accuracy of a statistical estimation of
E[y(t)] will generally be better at the maximum of stochas-
tic resonance than at the optimal dithering.

|. Discussion of static nonlinearities with white noise

The discrete-time treatment of Sec. Il A with a time step
At is exact for any physically realizable “white” noisg(t)
endowed with a correlation time. smaller than the time
resolution At. If the correlation of the noisey(t) strictly
vanishes abovat, then all the numerical quantities theoreti-
cally defined in Sec. Ill A exactly match, in principle, the
corresponding quantities experimentally measurable in any
physical implementation of the process. This was verified in
the experiment reported in Sec. Il B, at least within the ac-
curacy of the experimental measurements and also in the
computer experiments of the simulations of Fig. 13 F2f.

Our modeling choice to handle the white-noise case is
thus to develop a discrete-time treatment together with the
consideration of a physical white noise defined by a correla-
tion time smaller than the time resolution of the discrete-time
treatment. Additionally, the discrete-time treatment has the
advantage of yielding expressions that can be computed in
the same way in a theoretical analysis, a computer simula-
tion, and an experimental implementation. In particular, this
modeling strategy renders unnecessary the prior realization
of filtering procedures aimed at taming undesirable patholo-

b with the uniform noise, where the two dashed lines meet is th&Ji€s attached to an ideal white noise, such as infinite variance

location of the optimal dithering, at,=0.5#/3~0.29, correspond-
ing to %(t) uniform over[—0.5, 0.5, which allows one to obtain
E(y)=sg (A), but with a SNR and thus a performance of estimation
of E(y), which is not optimalB).

g(u), the knowledge of the output medt(y) will usually

or infinite zero-crossing rate, and as they are usdd 91§

In physical situations, these pathologies do not exist in the
first place because the white noig&) will have a short but
finite correlation time. In the following section we shall con-
sider the case of a nonvanishing correlation time of the input
noise 7(t) that has to be explicitly taken into account.

allow one, through the use of a calculable calibration curve,

to recover the input meas,. An accurate estimation of
E(y) obtained at the maximum of the output SNRRO) is
thus desirable to an accurate estimatiorsgf

Stochastic resonance at zero frequency leads thus to t
possibility of maximizing, with an optimal input noise level,
the ratio of the time-averaged output m% =Y, to the
time-averaged output fluctuationgar(y). This property of

IV. STATIC NONLINEARITIES WITH COLORED NOISE

We now consider the same static nonlinearity of &d),

thut when the stationary noisg(t) is colored. The output

expectation introduced in E@3) can then be evaluated un-
der the form

+ oo + oo
stochastic resonance at zero frequency can be related to theE[y(t)y(t+7)]= f_ f_ g(upg(uy)f,,[u;—s(t),u,

dithering effec{20]. Dithering takes place with static thresh-
old nonlinearities intervening in analog-to-digital conversion
of a coherent signas(t) added to a noisey(t). For the
two-threshold nonlinearitg(u) of Eq. (37), optimal dither-
ing is achieved by an input noiseyt) uniform over
[—0.5,0.9. As it can be verified from Eq:38), optimal dith-
ering leads toE[y(t)]=s(t), when —0.5<s(t)<0.5. In

—s(t+7);7]dudu,, (53
Wher_ef,],i(ul,uz;a-). is the se_cond—order probability density
function of the stationary noisg(t).

When f, (u;,u,;7) is known for the input noisey(t),
then the general scheme described in Sec. Il can be explicitly
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realized, possibly with the aid of numerical integrations. Af-modulation s(t); when the Gaussian assumption breaks
ter evaluation ofE[y(t)y(t+ 7)] through Eq.(53), a time  down, as mentionedz, ,(7)/C,,(0) or R,,(7) are insuffi-
average ovet has to be performed according to H¢) to  cient for an exact expression bf7). Based on the properties
obtain the autocorrelation functioR,,(7) whose Fourier that we have explained, fd(7) in the presence of a static
transform yields the power spectral dendfy,(v) appropri- ~ honlinearity, we propose to use the simple approximation
ate to evaluate the output SNR. The input-output phase

shift ¢ of Eq. (15) is evaluated without additional difficulty, C,y(7)

from Egs.(21) and(2), since this requires only the first-order C,.(0)°
probability densityf ,(u) of the colored input noisey(t).

The exact computation of the output SNR with a static In this approximation scheme, in the evaluation of the
nonlinearity and a colored noise thus requires, in general, theutput autocovarianc€,,(7), which controls the denomina-
knowledge of the second-order probability densitytor of the output SNR of Eq(11), only the exact magnitude
f,,(U1,Up;7) of the input noise. It is seldom the case that of C,,(n) measured byC,,(0)=vary(t)] is exactly moni-
such a multivariate function is known for a random noisetored. The normalized shag®?) of Cyy(7) is simply ap-
7(t). What is much more common in practice is the soleproximated, through Eq(54), which amounts to neglecting
knowledge of the single-variable autocorrelation functionthe distortion introduced in the normalized autocovariance
R,,(1)=E[7n(t) n(t+ )] of the stationary noisex(t). In by the static nonlinearityg(u). If the SNR of Eq.(11) is
general, with an arbitrary nonlinearit(u), the knowledge expressed in decibels in the form
of R,,(7) is not sufficient for the exact evaluation of the
output expectation of Eg53), which opens the way to the n |Y_|2
complete characterization of the SNR in stochastic reso- R(—) =10 Ioglo<=n) —10log o[ H(n/T,)AB],
nance. However, the knowledge Bf,(7) will suffice in a s vary(t)]
special case, which is often met in practice, whgh) is a (55
Gaussian noise, since in this cabg,(u;,U,;7) is com- . ) o
pletely defined onc®,,(7) is given[35]. then the f|rst term on th_e rlght—hand _S|de is gxactly comput-

To circumvent this difficulty originating in the usually able with first-order statistics on the input noise through Eq.
limited knowledge of the second-order statistics of the col{23), while the second term will only be approximated from
ored input noise, we shall now propose an approximatiorEd- (54).
that renders possible an evaluation of the output SNR based A further plausible expectation reinforcing the usefulness
only on the knowledge of the input autocorrelation functionof the present approximation appears when we come to the
R,,(7). We introduce the autocovariance function of the in-€xamination of the variation of the output SNR with the
put_noise 7(t) as C, (1)=R,,(1)—R, (+*)=R,,(7) input noise power. The normalized output autocovariance
—E?(7). For a colored noisez(t), the autocovariance h(7), whether or notitis well approximated by E&4), may
C,,(7 is a symmetric pulse concentrated around the originP€ expected to display relatively little variation with the in-
which goes to zero whefr |-+, The extension of this Put noise power, with a static nonlinearity and after the nor-
pulse aroundr =0 can be measured with a correlation time malization, in comparison to the variations wfy(t)] in
7., which estimates the duration over whigfit) keeps sig- EQ. (55) that alone are responsible for the resonance with
nificant correlation. A key point then is that we are in the white noise. The normalized autocovaria@g,(7)/C,,,(0)
presence of a static nonlinearigfu), whose outpuy(t) is  at the input does not change with the input noise power, and
only influenced by the instantaneous values(tf) + »(t). It~ we simply admit that this is also true, approximately, lfi¢r)
is then natural to admit that the autocovariance functiorfit the output. In this way, the approximation of E&4) may
Cyy(7) of the output signal(t) as defined by Eq(6), will possibly lead to a loose approximation of the SNR in Eq.
also be a pulse extending around the origin over a duration db5), but this approximation may be expected to be satisfac-
orderr,. Equation(11) shows that both the magnitude of the tory within an additive constant, and for this reason appro-
autocovariance€,,(0)=varfy(t)] and its normalized shape priate to yield a representation of the variations of the SNR
h(7) =C,y(7)/ C,,(0) viaH(») influence the output SNR. WIt.h the input noise power and e_spemally to estimate the
The magnitudeC,,(0)=vary(t)] is a first-order statistical M0'S€ level that produces the maximum SNR.
quantity that can be computed, with a staji@), only with The vaI|d|ty of the present approan_atlon scheme has
the knowledge of first-order statistics of the input noige), been tested with a very common corr_elatlon structure for the
through Eq.(23). After normalization by the facto€,,(0), colored noiser(t), namely, whem(t) is Gaussian and ex-
which is exactly computable with first-order statistics, thePonentially correlated with the autocorrelation function
normalized output autocovarianb¢r) =C,(7)/C,,(0) that
remains will display a pulselike shape of duratiemn, just R, ()= E exp{ _ |l|> (56)
like the normalized input autocovariané,,(7)/C,,(0). nn
The form of h(7) can be taken as a distorted version of
C,m('r')/C,w(O). Only in a few simple situati'onls cdm(7) be and the2 power spe_ctral densityP, ,(v)=2D/[1
explicitly deduced fromC,,(7)/C,,(0). This is the case, +(2m7.v)°]. The theoretical SNR of Eq(55 has been
for instance, with a Gaussiaf(t), no periodic modulation computed with the approximation resulting from E84) for
s(t), and a signum function fog(u), with Price’s theorem H(v)=F{h(7)]. This theoretical SNR is compared in Fig. 17
and the arcsine lay35]. An explicit expression foh(7) is  with the experimental SNR resulting from a numerical simu-
much more difficult to obtain in the presence of the periodiclation of the nonlinear system.

h(r)~ (54)

-
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7.<Tg the white-noise treatment of Sec. Ill is expected to

o yield a correct approximation. Far,~T,, the approxima-

D sl tion of Eq. (54) offers a simple and general scheme, which
o may be the only one of its kind, readily and practically ap-
(% plicable, when the Gaussian hypothesis does not hold and the
5 knowledge of the second-order statistics of the input noise
,g— or 7(t) is limited to the autocorrelation functioR, (7).

o

5 V. EXTENSION OF THE DOMAIN OF APPLICABILITY
The present theory, which allows the characterization of a

stochastic resonance effect, applies to static nonlinear sys-

tems of the form of Eq(16). However, the domain of appli-

‘100 oi5 1 1:5 cability of this theory can readily be extended to dynamic
nonlinear systems that can be decomposed into a static non-
0 linearity of the form(16) followed by an arbitrarylinear
o dynamic system. Indeed, a linear dynamic system on the
) output of a static nonlinearit§16) only multiplies the output
o« -5 power spectral densit, () by a fixed function of the fre-
(% quencyw, the squared modulus of the transfer function of the
S _1of linear dynamic systerf85]. As a result, the SNR as defined
g— in the present study will be no different if evaluated at the
o output of the linear system, since the spectral line and the
-15¢

noise background at a given frequency are multiplied by the
same constant. The input-output phase shift, at a given fre-
_20H | quency, will simply be changed by the constant phase shift
added by the linear system at this frequency. In this way, for
any nonlinear dynamic system formed by a static nonlinear-
-25 : 4 P 8 ity foIIOV\_/ed by a linear dynamic system, the property of _
noise rms amplitude stochastic resonance can be characterized by the sole exami-
nation of the transfer by the static nonlinearity and the per-
formance of the resonance in the transfer by the whole sys-

FIG. 17. Output sugngl-to-nmse ram(lfr.s) n decibels, as & tem is equivalent to that in the transfer by the sole static
function of the rms amplitude of the Gaussian input colored noise

t) with the exponential correlation of E¢56) and the coherent nonllr_learlty. . . T
gfer%odic inputs(t;):A sin(2mt/Tg). The soliﬁﬁir)le is the theoretical This extension of the domain of appllcab|l|ty of _the
approximation of the SNR from Eqé55) and (54) and the discrete present theory allows one to annex to its rgalm nonlinear
data points represent the experimental SNR resulting from a nuSYStems that would have been categorized in the class of
merical simulation of the nonlinear systetd) Two-threshold non- ~ €Xcitable systems as discussed in Sec. | rather than static
linear system of Eq:37), a coherent amplituda=0.45, and a noise  Nonlinear systems. Consider, for instance, a periodic input
correlation timer,=Ts. (B) Diode nonlinearity of Eq(42) with ~ Plus noise compared to a threshold to generate a stereotypi-
6=1.2, \=1, a coherent amplitud&=1, and a noise correlation Cal output pulse each time the threshold is crossed: a positive
time 7,=T4/2. pulse for an upward crossing and a negative pulse for a

downward crossing. This excitable system can be reproduced

The results of Fig. 17 show that the approximation of Eq.With @ Heaviside static nonlinearity with the same threshold
(54) is able to provide a satisfactory estimation of the outputdnd receiving the periodic input plus noise. A derivation is
SNR. In detail, the quality of the approximation is influencedthen performed on its output to yield a train of Dirdpulses
by the type of the periodic inpu(t) and that of the nonlin-  at the Iocauqns of the threshold crossings. This train is then
earityg(u) and by the correlation structure of the noigg), ~ convolved with a kernel representing the stereotypical pulse.
especially its correlation time,. However, in general, the Since both the derivation and convolution are linear opera-
approximation scheme of E¢54) is able to predict the ex- 1ions, the stochastic resonance will occur in the same condi-
istence of stochastic resonance and to offer estimations fdions at the output of the whole excitable system and at the
both the SNR values and the input noise rms amplitud@utput of. the Heaviside nonlinearity. In particular, the reso-
yielding the maximum of the resonance. nance will be unaffected by the shape of the stereotypical

The approximation scheme of E@4) is tested in Fig. 17  Pulse.
for a noise correlation time, of the same order of magni-

tude as the cohe_rent peridd . This a_ppro_ximation scheme VI. CONCLUSION
can also be applied when>T, but in this case, the noise
with its frequency content up te-1/7, will have practically A theory has been developed that is able to describe the

no power in the region T/>1/7. of the coherent signal, property of noise-enhanced signal transmission through sto-
making stochastic resonance of little use since the signal ahastic resonance in a broad class of nonlinear systems. This
1/T, strongly dominates the noise. On the other hand, fotheory applies to any nonlinear dynamic system that can be
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decomposed into a static nonlinearity followed by an arbi-exact description in a discrete-time framework directly con-
trary linear dynamic system. The possibility of such a gen{rontable to experiments or simulations. Reported experi-
eral theory certainly relates to the separation between thments and simulations strongly support the theory.
nonlinear and the dynamic characters of the systems: the The theory was used to demonstrate a wide range of in-
nonlinear part is static and the dynamic part is linear. Thigeresting effects in static nonlinearities such as stochastic
contrasts the present theory with other approaches to stochagsonance with nonsinusoidal periodic inputs and non-
tic resonancdsee Sec.)lthat deal with systems where the Gaussian noises; stochastic resonance with nonsubliminal
nonlinear and dynamic characters are tightly mixed. Theeriodic inputs and monotonic or nonmonotonic smooth non-
static character of the present nonlinearities allows a diredinearities; multiple resonant peaks in the SNR and nonzero
statistical analysis, in which all the quantities relevant toinput-output phase shifts; and a SNR larger at the output than
characterize stochastic resonance in the output signal can bg the input. The theory has demonstrated stochastic reso-
obtained from statistics computed directly on the input noisenance in a simple diodelike nonlinearity, which offers a pos-
The theory shows that, with static nonlinearities, stochassibility for a physical(electroni¢ implementation of one of
tic resonance can be characterized, exactly with white noisghe simplest conceivable stochastic resonators. The theory
and approximately with colored noise, by monitoring only has shown the possibility of stochastic resonance at zero fre-
first-order statistical properties of the output signé). The  quency, with a periodic input or with a constant input, and
essential quantities are the nonstationary output measuggested the relation of the known phenomenon of dither-
E[y(t)] and the time-averaged output varianeafy(t)]. ing to stochastic resonance at zero frequency. The present
Stochastic resonance with static nonlinearities can thus bieory, offering a general description for a broad class of
seen as a redistribution of powdirst-order statisticgsrather  nonlinear dynamic systems, some of which are very easily
than a redistribution of correlatio(second-order statistics experimentally implementable, constitutes a unique frame-
between the noise and the coherent part in the output signakork for further investigations of stochastic resonance and
For the case of white input noise, the theory offers ants applications.
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