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Theory of stochastic resonance in signal transmission by static nonlinear systems

François Chapeau-Blondeau and Xavier Godivier
Facultédes Sciences, Universite´ d’Angers, 2 boulevard Lavoisier, 49000 Angers, France

~Received 1 July 1996; revised manuscript received 24 September 1996!

A deterministic periodic signal plus a stationary random noise is applied to a static nonlinearity taking the
form of a monovariable arbitrary function on real numbers. The property of noise-enhanced signal transmission
through stochastic resonance is studied for this class of static nonlinear systems. A theory is developed that
provides expressions for the output autocorrelation function, power spectral density, signal-to-noise ratio, and
input-output phase shift, in the presence of a periodic input, a noise distribution, and a static nonlinearity, all
three being arbitrary. Both white and colored input noises are successively considered. For white input noise,
exact expressions are derived in a discrete-time framework directly confrontable to simulations or experiments.
The theory is applied to describe stochastic resonance in various examples of static nonlinear systems, for
instance, a diode nonlinearity. In addition, confrontations with experiments and simulations are given that
support the theory. In particular, interesting effects are reported such as a signal-to-noise ratio larger at the
output than at the input or stochastic resonance at zero frequency. Finally, the validity of the theory is extended
to dynamic nonlinear systems that can be decomposed into a static nonlinearity followed by an arbitrary
dynamic linear system.@S1063-651X~97!12002-5#

PACS number~s!: 05.40.1j, 02.50.2r, 07.50.Qx, 47.20.Ky
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I. INTRODUCTION

Stochastic resonance is a nonlinear phenomenon whe
the transmission of a coherent~usually periodic! signal by
certain nonlinear systems can be improved by noise add
in the system. This paradoxical nonlinear effect was fi
introduced in the domain of climate dynamics@1–3#. It has
since been observed in a variety of both model and nat
systems, including electronic circuits, lasers, electron pa
magnetic resonance, a magnetoelastic pendulum, chem
reactions, superconducting devices, and neurons@4–8#.

We specify that the stochastic resonance is here un
stood in a broad~modern! sense. It refers to an effect o
noise-enhanced signal transmission that can be characte
by a signal-to-noise ratio~or another measure of the effi
ciency of the transmission! displaying a nonmonotonic evo
lution with the noise level and peaking at a maximum va
for a sufficient noise level, whence we get the term ‘‘res
nance.’’ In particular, the condition present at the origin, o
matching between a characteristic frequency belonging to
system with another one belonging to the external forcing
no longer a requirement. Further developments have sh
that the noise-enhanced signal transmission effect, referre
as ‘‘stochastic resonance,’’ is preserved over broader co
tions that depart from that of a strict conventional resona
as in linear theory.

Several types of nonlinear systems have been show
exhibit stochastic resonance@6,7,9,8#. The effect was origi-
nally observed in nonlinear dynamic systems governed
bistable, or, more generally multistable, potentia
@2,3,10,11#. The stable states accessible to these system
separated by potential barriers and the transitions betw
these stable states under the influence of the coherent s
plus the noise are monitored to observe stochastic resona
Later, the works in@12–14# showed that multistability was
not required~only nonlinearity!, as they reported stochast
resonance in nonlinear dynamic systems governed
551063-651X/97/55~2!/1478~18!/$10.00
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monostable smooth single-well potentials. The effect w
then extended to excitable systems@15–18#, in which a noisy
signal is compared to a threshold, the crossing of which t
gers a deterministic excursion of the output before it retu
to its resting state. The deterministic excursion of the out
usually takes the form of a stereotypical pulse that is emit
each time the noisy input crosses the threshold, with poss
restrictions on the direction of the crossing. Recently, sim
threshold systems in which the notion of a deterministic re
of the output of excitable systems has disappeared were
shown to be capable of stochastic resonance@19–22#. Here
the state of the output, at any time, simply depends upon
position of the coherent input plus the noise relative to
threshold.

The nonlinear systems we shall consider in the pres
study can be viewed as an extension and generalizatio
these simple threshold systems, although some types o
citable systems will also be touched. Essentially, we sh
consider nonlinear systems where a deterministic perio
signal plus a stationary random noise is applied to a static~or
memoryless! nonlinearity taking the form of a monovariabl
arbitrary function on real numbers. Stochastic resonance
be demonstrated in various illustrative examples of sta
nonlinear systems of this type.

The theoretical description of stochastic resonant syst
is made difficult by their nonlinear and nonstationary ch
acters, and one usually has to resort to approximations.
quent approximations are that of a slow and small perio
input signal and are often restricted to a Gaussian in
noise. There have been several general approaches to
theoretical modeling of stochastic resonance~see@5,6,9,7,8#
and references therein!. As recently recognized in@8#, it has
now become difficult, in a limited space, to account for
the numerous theoretical methods by which stochastic re
nance has been approached. We simply sketch, in the fol
ing, important seminal theories that have been developed
1478 © 1997 The American Physical Society
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55 1479THEORY OF STOCHASTIC RESONANCE IN SIGNAL . . .
the various types of stochastic resonant systems as m
tioned above.

An important theory has been put forth@23# that essen-
tially applies to bistable dynamic systems. This theory@23# is
based on a rate equation determining the probability of
cupation of the two stable states. In the limit of a sm
periodic input, this theory derives approximate expressi
for the characteristics of the output that stochastically re
nates. Also, for complete applicability, a requirement is
explicit expression for the transition rate between sta
which is usually obtainable only within the approximation
a slow periodic input~adiabatic approximation! associated
with a Gaussian noise, often under the form of a modifi
Kramers rate. For the bistable dynamic systems, with w
noise, the approaches of@11,24# avoid the approximation o
a slow periodic input and derive important properties of
stationary asymptotic behavior@11# and an expression of th
output signal-to-noise ratio~SNR! valid for a small periodic
input and weak noise@24#. These works@11,24# are based on
the use of a Fokker-Planck equation that constitutes, in p
ciple, a general approach to treat Markovian stochastic
namics and characterize their second-order statistics requ
to analyze stochastic resonance. Yet, in this nonlinear c
text, a Fokker-Planck equation approach usually requires
proximations for practical tractability, as carried out
@11,24#.

The monostable nonlinear dynamic systems were
proached in@13# by linear-response theory to analyze s
chastic resonance. Linear-response theory is a perturb
method based on the linearization of the response of the
tem to a small periodic input when added to the noise.
principle, it can be applied to any nonlinear system@25–28#
in the small-signal limit, and for this reason it offers a un
fying framework for stochastic resonance in these conditi
@9#. However, there is an important range where stocha
resonance occurs~when the signal is not small!, which lies
beyond the domain of applicability of linear-response the
@9#. Also, in practice, linear-response theory usually requi
additional specific assumptions in order to make possible
explicit evaluation of a linear susceptibility, usually b
means of the fluctuation-dissipation theorem in the prese
of a thermal noise.

One type of excitable system has been theoretically a
lyzed in @17#, with the adiabatic approximation to derive th
output SNR for Gaussian input noise in the limit of a sm
periodic input. For the same system with Gaussian noise
treatment in@18# avoids the approximation of a slow an
small periodic input. For another type of excitable syste
the analysis in@15#, with Gaussian white input noise, im
poses a Kramers-type formula to obtain an expression for
output SNR.

For the simple threshold systems, under the form o
single-threshold Heaviside nonlinearity, the model in@19#
uses Gaussian white noise filtered by first-order or seco
order low-pass linear filters. Expressions are then derived
the correlation functions and power spectral densities, all
ing the characterization of the stochastic resonance by m
of a correlation coefficient equivalent to the output SNR
the limit of a small periodic input. For the case of whi
noise ~not necessarily Gaussian!, the model in@22# derives
an exact expression for the SNR with an arbitrary perio
n-
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input. The works in@20,21# consider double-threshold o
multithreshold systems and develop an approximate cha
terization of stochastic resonance.

Also, most of the aforementioned treatments deal with
transmission of a coherent signal under the form of a si
soid. Stochastic resonance in the transmission of nonsinu
dal periodic signals has been considered only rece
@29,22# and it finds interesting applications in the transm
sion of spike trains by neurons@30–32#.

As mentioned, the type of static nonlinear system we sh
consider here extends and generalizes the simple thres
systems and will also encompass a number of excitable
tems. For such static nonlinear systems, we develop a c
plete theory for the characterization of stochastic resona
This theory provides expressions for the output autocorr
tion function, power spectral density, signal-to-noise rat
and input-output phase shift, in the presence of a perio
input, a noise distribution, and a static nonlinearity, all thr
being arbitrary. Both white and colored input noise are s
cessively considered. The theory does not resort to comm
adiabatic approximations nor Kramers-type formulations a
is not restricted to small-signal or small-noise limits. Inste
it proceeds through a more direct statistical analysis m
possible with static nonlinearities. Confrontations with e
periments and simulations will be given. Finally, it will b
established that the applicability of the theory extends to
dynamic nonlinear system that can be decomposed in
static nonlinearity followed by an arbitrary dynamic line
system. We have to specify that only periodic stochas
resonance~the most common type studied to date! is consid-
ered here and new forms of aperiodic stochastic resona
@33# will not be explicitly addressed here.

II. GENERAL FRAMEWORK
FOR STOCHASTIC RESONANCE

We begin our analysis with the setting of a general fram
work for the description of stochastic resonance, which
generic and applies to any nonlinear system~static or dy-
namic!. Elements of this framework have already been pu
place, in other studies, in particular in@34,18#, but usually
with reference to specific nonlinear systems. We here set
framework in general form, with no reference to any partic
lar nonlinear system. We shall then show, in the followi
sections, how this general formulation can be explicitly re
ized for static nonlinear systems.

Let s(t) represent a periodic deterministic signal with p
riod Ts andh(t) a stationary random noise. We consider
time-invariant nonlinear system of general type~static or dy-
namic!, which receivess(t) andh(t) as inputs and produce
an outputy(t). We considery(t) as the steady-state respon
of the system or, in other words, we consider that the inp
s(t) andh(t) have been applied sincet→2`.

In general, because of the influence of the random in
h(t), the outputy(t) will be a random signal. Because of th
influence of the deterministic inputs(t), the outputy(t) will
be a nonstationary random signal. However, sinces(t) is
periodic, y(t) will in general be a cyclostationary random
signal with periodTs @35#.

At any time t, we express the random output signaly(t)
as the sum of its nonstationary meanE[y(t)] plus the statis-
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1480 55FRANÇOIS CHAPEAU-BLONDEAU AND XAVIER GODIVIER
tical fluctuationsỹ(t) around the mean:

y~ t !5 ỹ~ t !1E@y~ t !#. ~1!

Because of the cyclostationarity property ofy(t), the nonsta-
tionary meanE[y(t)] is a deterministic periodic function o
t with periodTs , for which we introduce the Fourier coeffi
cients

Ȳn5
1

Ts
E
0

Ts
E@y~ t !#expS 2 i2p

n

Ts
t Ddt. ~2!

For the purpose of computing a statistical autocorrelat
function for the output signaly(t), we now consider for fixed
t andt the expectation

E@y~ t !y~ t1t!#5E@ ỹ~ t !ỹ~ t1t!#1E@y~ t !#E@y~ t1t!#.
~3!

The expectationE[y(t)y(t1t)] of Eq. ~3! is a deterministic
function of the two variablest andt, which is periodic int
with periodTs . It is possible to construct a stationary~inde-
pendent of t! autocorrelation functionRyy~t! for y(t)
through a proper time averaging ofE[y(t)y(t1t)] over an
intervalTs , whent, or t modTs , uniformly covers@0,Ts@, as

Ryy~t!5
1

Ts
E
0

Ts
E@y~ t !y~ t1t!#dt. ~4!

According to Eq.~3! one also has

Ryy~t!5Cyy~t!1
1

Ts
E
0

Ts
E@y~ t !#E@y~ t1t!#dt, ~5!

with the stationary autocovariance function ofy(t) defined
as

Cyy~t!5
1

Ts
E
0

Ts
E@ ỹ~ t !ỹ~ t1t!#dt. ~6!

We now define the power spectral densityPyy~n! of y(t)
as the Fourier transform of the autocorrelation funct
Ryy~t!:

Pyy~n!5F @Ryy~t!#5E
2`

1`

Ryy~t!exp~2 i2pnt!dt.

~7!

Fourier transforming Eq.~5! then leads to

Pyy~n!5F @Cyy~t!#1 (
n52`

1`

ȲnȲn* dS n2
n

Ts
D . ~8!

The power spectral density of Eq.~8! has the typical form
generically encountered with stochastic resonant system
is formed by spectral lines with magnitudeuȲnu

2 at integer
multiples of the coherent frequency 1/Ts , superposed to a
broadband noise background represented byF @Cyy~t!#.

The autocovarianceE[ ỹ(t) ỹ(t1t)] is expected to go to
zero when ut u→1`, and so is its time averag
Cyy~t!. E[ ỹ(t) ỹ(t)]5var[y(t)] represents the nonstation
ary variance ofy(t), which, after time averaging over a pe
n

. It

riod Ts according to Eq.~6!, yieldsCyy(0)5var@y(t)#, the
stationary variance ofy(t). The deterministic function
Cyy~t! can thus be written as

Cyy~t!5var@y~ t !#h~t!, ~9!

whereh~t! is a deterministic even function describing th
normalized shape of the stationary autocovariance; it veri
h~0!51 andh~t!→0 whenut u→1` and has a Fourier trans
form F[h(t)]5H(n). The power spectral density of Eq.~8!
can then be expressed as

Pyy~n!5var@y~ t !#H~n!1 (
n52`

1`

ȲnȲn* dS n2
n

Ts
D .

~10!

A classical definition of the signal-to-noise ratio, at fr
quencyn/Ts on the output, follows as the ratio of the pow
contained in the spectral line alone to the power containe
the noise background in a small frequency bandDB around
n/Ts . The corresponding expression of the output SNR
then

RS n
Ts

D 5
uȲnu2

var@y~ t !#H~n/Ts!DB
. ~11!

Equation ~11! provides an exact expression for the outp
SNR, whose explicit evaluation requires the knowledge
the nonstationary output meanE[y(t)] and of the stationary
output autocovariance functionCyy~t!.

Another desirable characterization of a stochastic reson
system consists in the possibility of evaluating the ph
shift between the output and the coherent periodic inp
This can be achieved through the computation of an inp
output cross-correlation function. For fixedt andt, we first
consider the expectation

E@s~ t !y~ t1t!#5s~ t !E@y~ t1t!# ~12!

sinces(t) is deterministic.
E[s(t)y(t1t)] is periodic in botht and t, with period

Ts . For the definition of a ‘‘stationary’’ cross-correlatio
function, a time average is taken whent, or t modTs , uni-
formly covers@0,Ts@. This yields the cross-correlation func
tion

Rsy~t!5
1

Ts
E
0

Ts
s~ t !E@y~ t1t!#dt, ~13!

which is interpretable as the cross-correlation function
s(t) with the nonstationary output meanE[y(t)]. Rsy~t! of
Eq. ~13! is periodic with periodTs . Its frequency content ha
only components at integer multiples of 1/Ts . Through a
Fourier transform ofRsy~t! similar to Eq.~7!, one obtains a
cross-power spectral density

Psy~n!5 (
n52`

1`

SnȲn* dS n2
n

Ts
D , ~14!

whereSn , defined according to Eq.~2!, is the ordern Fourier
coefficient ofs(t).
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55 1481THEORY OF STOCHASTIC RESONANCE IN SIGNAL . . .
The phase shiftf between the mean outputE[y(t)] and
the coherent inputs(t), as it is also considered in@26#, can
be evaluated, for a component with frequencyn/Ts , from the
argument of the complex numberPsy(n/Ts) as

fS nTsD5arg~SnȲn* !. ~15!

The present framework shows how stochastic resona
in any nonlinear system, can be fully characterized, es
cially the output SNR and input-output phase shift, from t
sole knowledge of the nonstationary output meanE[y(t)]
over one period and of the stationary output autocovaria
function Cyy~t!. We shall now use this framework as
guideline to study stochastic resonance in static nonline
ties.

III. STATIC NONLINEARITIES WITH WHITE NOISE

A. General model

The nonlinear system under consideration will now be
static~or memoryless! nonlinearity realizing the input-outpu
transformation

y~ t !5g@s~ t !1h~ t !#, ~16!

whereg is any function operating on real numbers, who
form will have to be further specified in order to obtain sy
tems that exhibit stochastic resonance. As we shall see in
following, for the special case whereh(t) is a white noise,
the general formulation of Sec. II can be explicitly realiz
and, moreover, in an exact way. We thus consider in Sec
thath(t) is a stationary white noise, although arbitrarily di
tributed, with the probability density functionf h(u) and the
statistical distribution functionFh(u) 5* 2`

u f h(u8)du8.
The autocorrelation function of the white noise

Rhh(t)5E[h(t)h(t1t)]52Dd(t) and, as a consequenc
the white noise has an infinite powerE[h2(t)]5Rhh(0).
This singularity is a mark of the idealized character of t
white noise. In practice, one has access only to approxi
tions of a white noise, with a short but finite correlation tim
tc , a powerE[h2(t)]5Rhh(0) that is large but finite, and
verifying the conditionRhh(0)tc;2D.

We thus adopt such an embodiment for the input wh
noiseh(t) with a short but finite correlation timetc . Now, to
have the possibility of a direct numerical evaluation of eve
relevant quantity of the model, especially for the purpose
comparison with simulations or experimental implemen
tions of the nonlinear systems, we choose to move to
context of discrete-time signals. The time scale is thus
cretized with a stepDt!Ts such thatTs5NDt. In practice
now, the white noiseh(t) only needs to be a noise with
correlation time tc shorter thanDt and a finite power
E~h2!5sh

2 . Such a noise, when sampled everyDt, imple-
ments the discrete-time white noiseh(t5 jDt) endowed with
the autocorrelation functionRhh(kDt)5E[h( jDt)h( jDt
1kDt)]5s h

2Dt d̂(kDt), with the discrete-time version o
the Dirac delta function defined as

d̂~kDt !5 H1/Dt0
for k50
for kÞ0. ~17!
e,
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In this realization of the white noise, the power density
given by

2D5sh
2Dt. ~18!

Now, in this discrete-time framework, the treatment that w
follow is exact.

To proceed, we notice that a key simplification with
whitenoiseh(t) and astaticnonlinearityg(u) is that for any
fixed t and any fixedt Þ0, y(t) andy(t1t) are statistically
uncorrelated, just ash(t) andh~t1t! are. As a consequence
the expectations on the output, in the discrete-time fram
work, verify

E@y~ jDt !y~ jDt1kDt !#5E@y~ jDt !#E@y~ jDt1kDt !#
~19!

for any integersj andkÞ0. Only for the caset 5kDt50 one
has

E@y~ jDt !y~ jDt !#5E@ ỹ 2~ jDt !#1E2@y~ jDt !#

ÞE2@y~ jDt !#. ~20!

At any fixed timet5 jDt, sinceh(t) is distributed accord-
ing to f h(u), then s(t)1h(t) is distributed according to
f h[u2s(t)]. As a result of the functional relationship~16!,
the nonstationary output mean can then be explicitly co
puted as

E@y~ t !#5E
2`

1`

g~u! f h@u2s~ t !#du ~21!

and the nonstationary output degree-two moment as

E@y2~ t !#5E
2`

1`

g2~u! f h@u2s~ t !#du. ~22!

An expression is then accessible for the nonstationary ou
varianceE[ ỹ(t) ỹ(t)]5var[y(t)], as

var@y~ t !#5E
2`

1`

g2~u! f h@u2s~ t !#du

2S E
2`

1`

g~u! f h@u2s~ t !#duD 2. ~23!

Equations~19! and ~20! can be combined into a single ex
pression, in which every term is now explicitly known from
Eqs.~21! and ~23! and reads

E@y~ jDt !y~ jDt1kDt !#5var@y~ jDt !#Dt d̂~kDt !

1E@y~ jDt !#E@y~ jDt1kDt !#

~24!

for any integersj and k and d̂(kDt) defined by Eq.~17!.
Through a time average, we then define the output auto
relation function, in the discrete-time framework, corr
sponding to Eq.~4!, as
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1482 55FRANÇOIS CHAPEAU-BLONDEAU AND XAVIER GODIVIER
Ryy~kDt !5var~y!Dt d̂~kDt !1
1

N (
j50

N21

E@y~ jDt !#

3E@y~ jDt1kDt !#, ~25!

with the stationary output variance

var~y!5
1

N (
j50

N21

var@y~ jDt !#, ~26!

which is explicitly computable from Eq.~23!. The stationary
output autocovariance function of Eq.~9! is then simply, for
the case of white input noise and static nonlinearities,

Cyy~kDt !5var~y!Dt d̂~kDt !5var~y!h~kDt !. ~27!

In order to proceed into the frequency domain, the Fou
coefficients of the deterministic periodic signalE[y( jDt)]
are introduced as

Ȳn5
1

N (
j50

N21

E@y~ jDt !#expS 2 i2p
jn

N D . ~28!

The discrete Fourier transform ofRyy , over a time interval of
an integer number 2M of periodsTs , is defined as

Fdis@Ryy~kDt !#5 (
k52MN

MN21

Ryy~kDt !expS 2 i2p
kl

2MNDDt,

~29!

which affords a frequency resolutionDn51/(2MNDt!.
The autocorrelation function of Eq.~25! is formed by a

pulse at the origin with magnitudevar(y)Dt, superposed to a
periodic component with periodTs @the second term on th
right-hand side of Eq.~25!#. The Fourier transform ofRyy
defines the output power spectral densityPyy , which will
then be formed by a constant background with magnit
var(y)Dt, superposed to a series of spectral lines at inte
multiples of 1/Ts . Application of Eq.~29! leads to

PyyS nTsD5var~y!Dt1ȲnȲn*
1

Dn
. ~30!

Because of condition~18!, the quantityvar(y)Dt is expected
to remain finite. When the horizonM→1`, thenDn→0 and
the coherent spectral lines above the broadband noise b
ground tend to Diracd pulses. This is the typical form of th
power spectral density for the output of a stochastic reson
system. It comes here in Eq.~30! under a form appropriate
for direct numerical evaluation.

Since the functionh~t! is here simplyDt d̂(kDt), its dis-
crete Fourier transform isH(n)5Dt ;n. The SNR of Eq.
~11! follows as

RS nTsD5
uȲnu2

var~y!DtDB
. ~31!

The output SNR of Eq.~31! is then completely calculable
through Eqs.~21!, ~28!, ~23!, and ~26! for any noise distri-
bution f h(u) and any periodic inputs(t) transmitted through
an arbitrary nonlinearityg(u). The input-output phase shif
r

e
er

ck-

nt

f of Eq. ~15! is also completely calculable, in the discret
time framework, with the Fourier coefficientSn evaluated
through an equation similar to Eq.~28!.

With the SNR and phase shiftf, both accessible at the
different harmonics of the coherent frequency 1/Ts , we have
a complete characterization of the nonlinear system tha
suited to detect a stochastic resonance effect, with the
evant quantities lending themselves to direct numer
evaluation. The following illustrates the capability of th
present theory to analyze stochastic resonance in various
amples of static nonlinear systems.

B. Experimental test

The work in @22# considers a special case of the pres
general treatment, when the nonlinearityg(u) is a Heaviside
function

g~u!5 H01 for u<u
for u.u . ~32!

Numerical simulations of stochastic resonance in this sys
are performed in@22# and compared to the theoretical pr
dictions. The results show complete agreement.

It is also possible to experimentally implement a simp
nonlinear system belonging to the class of the static stoc
tic resonators considered here. We achieved this with
electronic circuit with two operational amplifiers of Fig. 1
The circuit of Fig. 1 behaves as a two-state comparator w
thresholdVth implementing a nonlinearityg(u) of the form
~with Vsat.0!

g~u!5 H 2Vsat

1Vsat

for u,Vth

for u.Vth.
~33!

One may note that the nonlinear circuit of Fig. 1 posses
only a threshold nonlinearity and falls in the class of sta
or memoryless, nonlinear systems. It has to be contra
with another nonlinear electronic circuit, a Schmitt trigge
also shown to exhibit stochastic resonance@36#. The Schmitt
trigger possesses both a threshold and hysteretic nonline
and falls in the class of dynamic nonlinear systems, or s
tems with memory, because of the hysteresis.

A detailed study of stochastic resonance in the circuit
Fig. 1 will be given elsewhere@37#. For the nonlinearity of
Eq. ~33!, Eq. ~21! of the general model of Sec. III A yields

E@y~ t !#5Vsat$122Fh@Vth2s~ t !#% ~34!

and Eq.~23! yields

FIG. 1. Experimental electronic circuit implementing the no
linearity of Eq.~33!.
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var@y~ t !#54Vsat
2 $12Fh@Vth2s~ t !#%Fh@Vth2s~ t !#.

~35!

For illustration, Fig. 2 shows the output autocorrelati
functionRyy~t! theoretically computed from Eqs.~25!, ~34!,
and ~35!, compared with an experimental estimation
Ryy~t!, obtained withDt5Ts/N, N5100, the periodTs510
ms, the noiseh(t) zero-mean Gaussian, and the period
input being successively a sinusoids(t)5VM sin(2pt/Ts)
and a triangular waves(t)5VMs1(t/Ts), with the zero-mean
symmetric normalized triangular wave

s1~ t !5H 124t for 0<t, 1
2

2314t for 1
2<t,1,

~36!

ands1(t) with period 1. The output autocorrelation functio
Ryy~t! was experimentally estimated on the circuit of Fig.
by averaging productsy(t)y(t1t), with values oft modTs
uniformly covering the interval@0,Ts@ for every value oft at
which Ryy~t! was estimated. The theory of Sec. III A in th

FIG. 2. Output autocorrelation functionRyy~t! in unitsVsat
2 as a

function of the time lagt in units Ts , for the two-state threshold
comparator with a zero-mean Gaussian input white noiseh(t). ~A!
Sinusoid s(t)5VM sin(2pt/Ts) and ~B! triangular wave s(t)
5VMs1(t/Ts) from Eq. ~36!. The signal amplitude isVM51.9 V,
the thresholdVth52.2 V, and the input noise rms amplitude is he
1.4 V. The smooth line is the theoretical expression from Eqs.~25!,
~34!, and ~35!; the noisy line~almost indistinguishable! is the ex-
perimental estimation on the circuit of Fig. 1.
f

discrete-time framework is exact and the very same exp
sions are evaluated in the theoretical analysis and in the
periment. Consequently, as expected, Fig. 2 shows very g
agreement between the theoretical and experimental auto
relation functions and both would tend to perfectly superp
if the averages in the experiment were performed with
number of samples tending to infinity.

Application of Eqs.~28! and~26! with Eqs.~34! and~35!
allows the explicit evaluation of the theoretical output SN
of Eq. ~31!. We chose ~arbitrarily! a band DB51/Ts
51/(NDt), with N5100, and we shall stick to these value
for the rest of the article. Figure 3 represents the SNR th
retically computed from Eq.~31!, compared with the SNR
experimentally measured from the circuit of Fig. 1, succ
sively with the sinusoids(t)5VMsin(2pt/Ts) and the trian-
gular waves(t)5VMs1(t/Ts) from Eq. ~36!. The nonmono-
tonic evolutions of the SNRs in Fig. 3 present the signat
of stochastic resonance: the SNRs peak at a maxim

FIG. 3. Output signal-to-noise ratioR in decibels, as a function
of the rms amplitude in volts of the input white noiseh(t) chosen to
be zero-mean Gaussian, for the two-state threshold comparator~A!
Sinusoid s(t)5VM sin(2pt/Ts) and ~B! triangular wave
s(t)5VMs1(t/Ts) from Eq. ~36!. The signal amplitude isVM51.9
V and the thresholdVth52.2 V. In each panel the solid line is th
theoretical expression from Eqs.~31!, ~34!, and~35! and the sets of
discrete data points were experimentally obtained with the circui
Fig. 1. In each panel, the SNR is shown at the fundamental
quency 1/Ts and at the two subsequent harmonicsn/Ts that give the
strongest SNR: at 1/Ts ~* !, at 2/Ts ~s!, and at 3/Ts ~1!.
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value for a sufficient level of the input noise and there ex
a range where increasing the input noise results in a hig
output SNR. The comparison of the SNRs of Fig. 3 sho
again the same very good agreement between theory
experiment, up to very small values of the SNR close to
limit of accuracy of the measurements.

C. Two-threshold nonlinearity

A special instance of a static nonlinear system exhibit
stochastic resonance has been considered in@20# under the
form of the two-threshold nonlinearity

g~u!5H 21 for u,20.5

0 for 20.5<u<0.5

1 for u.0.5.

~37!

Equation~21! of the general model yields in this case

E@y~ t !#512Fh@0.52s~ t !#2Fh@20.52s~ t !# ~38!

and Eq.~23! yields

var@y~ t !#5$12Fh@0.52s~ t !#%Fh@0.52s~ t !#

1$12Fh@20.52s~ t !#%Fh@20.52s~ t !#

12$12Fh@0.52s~ t !#%Fh@20.52s~ t !#.

~39!

From Eqs.~38! and ~39!, application of Eqs.~28! and ~26!
leads to an explicit expression for the SNR of Eq.~31!. Fig-
ure 4 represents this SNR of the stochastic resonator of
~37!, computed again withDB51/Ts51/(NDt) andN5100,
for different noise distributions and two different wave form
for the periodic input, a sinusoids(t)5A sin(2pt/Ts) and a
sawtooths(t)5As2(t/Ts), with

s2~ t !52112~ t mod1!. ~40!

The conventional SNR appearing in Fig. 4 is not co
puted in the study of@20#. Instead, in@20#, the stochastic
resonance effect in the transmission by Eq.~37! is character-
ized by means of the amplitude of the coherent spectral
at frequency 1/Ts on the output. One may note, however, th
such a quantity does not provide a strict assurance of
presence of stochastic resonance, because when the
noise level is raised, both the coherent line and the no
background may simultaneously increase at the output~see
Fig. 6!, while a preferable requirement is a coherent li
whose relative emergence out of the noise background
comes more pronounced. The amplitude of the output co
ent line at 1/Ts used in@20# corresponds to ouruȲ1u from Eq.
~28!. No comparable general expression is offered for t
quantity in@20#, yet whens(t)5A sin(2pt/Ts) this quantity
is approximated in@20# askAy , with

Ay5Fh~0.51A!2Fh~0.52A! ~41!

andk anad hocproportionality constant.
Figure 5 compares the approximationkAy from Eq. ~41!

with the valueuȲ1u from Eqs.~28! and~38!. As noted in@20#,
the approximationkAy is good for small values ofA, and we
s
er
s
nd
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g
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e
put
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can see in Fig. 5 that it degrades for largerA’s. Also, as
mentioned in @20#, the approximation ignores the actu
shape of the periodic inputs(t) and as is visible in Fig. 5, the
discrepancy is increased whens(t) is changed from a sinu
soid to a sawtooth.

The present theory has also the ability to describe stoc
tic resonance in multithreshold systems as considered in@21#
and to predict the SNRs that are approximated in the stud
@21#. We can also illustrate, with the two-threshold nonli
earity of Eq.~37!, the evolution of the output stationary var
ance var(y) from Eqs. ~26! and ~23!, which controls the
noise background in the SNR of Eq.~31!. This evolution of
var(y) with the rms amplitude of the input noiseh(t) is
represented in Fig. 6 in the presence of a periodic in
s(t)5A sin(2pt/Ts) with A50.45 and also, for comparison
in the absence of any periodic input. From Fig. 6, it is visib
that in the region of the resonance, the output noise ba
ground may differ significantly in the presence of the pe
odic input from its value in the absence of this periodic
put. This is the case here, where the amplitudeA50.45 of
the periodic input is of the same order of magnitude as

FIG. 4. Output signal-to-noise ratioR at frequency 1/Ts com-
puted from Eqs.~31!, ~38!, and ~39! for the two-threshold nonlin-
earity of Eq.~37!, as a function of the rms amplitude of the inp
white noiseh(t). ~A! h(t) a zero-mean Gaussian noise and~B! h(t)
a zero-mean uniform noise. In each panel, the pair of solid curve
with a sinusoidals(t)5A sin(2pt/Ts) and the pair of dotted curve
with a sawtooths(t)5As2(t/Ts) from Eq. ~40!. In each pair, the
upper curve is withA50.45 and the lower curve withA50.3.
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characteristic amplitudes in the system@the threshold 0.5 in
Eq. ~37! and the noise rms amplitude of around 0.3 at
peak of the resonance#. Under these conditions, the period
input cannot be considered small and its implication in s
chastic resonance cannot be treated accurately if the n
background in the presence of the periodic input is sim
replaced by this background in its absence. This is w
would have been assumed in a perturbative treatment of
chastic resonance, yet efficient in its own domain of appli
bility. Perturbative treatments, such as linear-response th
@25,26#, are general in the sense that they can be applie
any nonlinear systems, but they are restricted to the sm
signal limit. In contrast, our present approach applies only
static nonlinearities, but for this type of system it provide
general description, not restricted to the small-signal lim
The conditions illustrated in Fig. 6 lead us here to view s
chastic resonance not as a perturbative effect, but as a
cooperative effect in which two signals with comparable i

FIG. 5. Amplitude of the coherent spectral line at frequen
1/Ts on the output of the two-threshold nonlinearity of Eq.~37!, as
a function of the rms amplitude of the input white noiseh(t). ~A!
h(t) a zero-mean Gaussian noise, a sinusoidal inputs(t)
5A sin(2pt/Ts), andk50.50.~B! h(t) a zero-mean uniform noise
a sawtooth inputs(t)5As2(t/Ts) from Eq. ~40!, and k50.37. In
each panel, the pair of solid curves is the exact expression give
uȲ1u from Eqs. ~28! and ~38! and the pair of dotted curves is th
approximationkAy from Eq.~41! after @20#. In each pair, the uppe
curve is withA50.45 and the lower curve withA50.3.
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portance~no one dominates the other!, a periodic one and a
noise, efficiently cooperate to overcome a nonlinearity.

D. Diodelike nonlinearity

As another application of the present theory, we now
amine the case where

g~u!5 H0 for u<u
~u2u!/l for u.u. ~42!

Equation ~42! is a simple model for the nonlinearity of
diode with thresholdu. The diode is one of the most eleme
tary nonlinear electronic components. With the pres
theory, we can verify that this component, with the model
Eq. ~42!, is capable of stochastic resonance.

Following the procedure of Sec. III A, we computed wi
the nonlinearity~42! the output SNR of Eq.~31!. This was
performed withh(t) a zero-mean Gaussian noise with va

by

FIG. 6. Output noise backgroundvar(y) from Eqs.~26!, ~23!,
and~39!, which controls the denominator of the SNR of Eq.~31! for
the two-threshold nonlinearity of Eq.~37!, as a function of the rms
amplitude of the input white noiseh(t). ~A! h(t) a zero-mean
Gaussian noise and~B! h(t) a zero-mean uniform noise. In eac
panel, the solid curve isvar(y) in the presence of the periodic inpu
s(t)5A sin(2pt/Ts) with A50.45 and the dashed curve isvar(y)
in the absence of any periodic input. To locate the resonance
have redrawn~dotted curves! the corresponding SNRs from Fig.
after renormalization of their maximum value to 0.65 to fit a
equately in the figure.
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ancesh
2 and a thresholdu51.2. For illustration, the periodic

input of period Ts was successivelys(t)5cos(2pt/
Ts) and s(t)5@cos(2pt/Ts)1cos(4pt/Ts1p/4)1cos(6pt/Ts)
12p/5]/3. Theresulting SNRs, plotted in Fig. 7 as a fun
tion of the rms amplitudesh of the noiseh(t), reveal sto-
chastic resonance in the diode nonlinearity. The SNR p
dicted by Eq.~31! is insensitive to the value of the paramet
l of Eq. ~42!. As visible in Fig. 7, no linear superpositio
applies since we are dealing with nonlinear systems and
behavior of the SNR for the component at frequency 1/Ts is
different whether this component is alone or accompanied
other components with different frequencies. Also visible
Fig. 7, as well as in Fig. 3, a single harmonic input at f
quency 1/Ts has the ability to generate higher-order harmo
ics at the output, since the context is nonlinear.

We can also illustrate, with the diode nonlinearity of E
~42!, the evolution of the input-output phase shift of Eq.~15!.
For the diode nonlinearity of Eq.~42! with the Gaussian
noiseh(t), application of Eq.~21! leads to

E@y~ t !#5
sh

lA2p
$exp@2z1

2~ t !#2Apz1~ t !erfc@z1~ t !#%,

~43!

with z1(t)5[u2s(t)]/(sh&!.
The resulting input-output phase shift of Eq.~15! is rep-

resented in Fig. 8 as a function of the rms amplitudesh of
the Gaussian noiseh(t). Three different periodic inputss(t)
with the same periodTs were successively applied in orde
to illustrate the rich variability of the evolution of the inpu
output phase shift with stochastic resonance in static non
earities. First, withs(t)5cos(2pt/Ts), the present theory
gives a phase shiftf~1/Ts!50 for any noise rms amplitude
sh . Second, we continued with the addition of a harmonic
frequency 2/Ts at the input, with s(t)5@cos(2pt/Ts)
1cos~4pt/Ts1p/4!#/2. As a result, the phase shiftf~1/Ts!,

FIG. 7. Output signal-to-noise ratioR computed from Eq.~31!
for the diode nonlinearity of Eq.~42! with u51.2, as a function of
the rms amplitudesh of the input white noiseh(t) chosen to be
zero-mean Gaussian. The pair of solid curves is w
s(t)5cos(2pt/Ts) and the pair of dotted curves wit
s(t)5@cos(2pt/Ts)1cos~4pt/Ts1p/4!1cos~6pt/Ts12p/5!#/3. In
each pair, the upper curve is the SNR at frequency 1/Ts and the
lower curve the SNR at 2/Ts .
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between the input and output components at the freque
1/Ts of the fundamental, experienced a dramatic change
depicted in Fig. 8. Third, we further added a harmonic
frequency 3/Ts at the input, with s(t)5@cos(2pt/Ts)
1cos(4pt/Ts1p/4!1cos~6p/Ts 12p/5!#/3. Again, as visible
in Fig. 8, the phase shiftf~1/Ts! at the fundamental was
further changed and also changed the phase shiftf~2/Ts! at
the second harmonic.

The results of Fig. 8 illustrate typical properties that c
be observed for the phase shift of Eq.~15!. Nonzero input-
output phase shifts can occur in stochastic resonance
static nonlinearities. The phase shift at a given frequenc
strongly dependent upon the overall frequency content of
coherent inputs(t), since adding higher harmonics 2/Ts ,
3/Ts , . . . at theinput can change the phase shift of the co
ponent at the fundamental 1/Ts . Such a behavior of the phas
shift is a typical nonlinear property, which is absent in line
systems. Monotonic or nonmonotonic evolutions of t
phase shift with the noise rms amplitude can be obser
~see also@22#!. Also, the present theory predicts that th
input-output phase shift of Eq.~15!, for a given periodic
input s(t), is influenced by the distribution of the input nois
h(t).

E. Nonsubliminal periodic input

It is interesting to examine the case whereg(u) is a
smooth nonlinearity, monotonically increasing from 0 to
with the sigmoidal form

g~u!5
1

11expS 2
u2u

l D . ~44!

The parameterl of Eq. ~44! measures the extension of th

FIG. 8. Input-output phase shiftf ~in degrees! computed from
Eqs. ~15! and ~43! for the diode nonlinearity of Eq.~42! in the
stochastic resonance regime of Fig. 7 withu51.2, as a function of
the rms amplitudesh of the Gaussian input white noiseh(t). The
pair of solid curves is withs(t)5@cos(2pt/Ts)1cos~4pt/Ts
1p/4!#/2 and the pair of dotted curves withs(t)5@cos(2pt/Ts)
1cos~4pt/Ts1p/4!1cos~6pt/Ts12p/5!#/3. In each pair, the uppe
curve isf at frequency 1/Ts and the lower curvef at 2/Ts .
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region aroundu over whichg(u) passes from 0 to 1. As
l→0, this nonlinearity approaches the Heaviside function
Eq. ~32!.

With the procedure of Sec. III A, we computed for th
nonlinearity~44! the SNR of Eq.~31!. This was performed
with h(t) a zero-mean Gaussian noise, the periodic in
s(t)5cos(2pt/Ts), and a thresholdu51.2. The resulting
SNR is plotted in Fig. 9 as a function of the rms amplitude
the noiseh(t) and for different values of the ‘‘smoothness
l of the nonlinearity~44!.

For l50, the nonlinearityg(u) reduces to the Heavisid
function and the periodic inputs(t) alone is strictly sublimi-
nal, unable to induce any transition of the output in the
sence of the noise. Then, an increase of the input noise l
from zero produces a conventional stochastic resonance
shown in Fig. 9~a!, where the SNR increases from zero up
a maximum and then back down toward zero. Forl.0, g(u)
is a smooth nonlinearity and the periodic inputs(t) is visible
at the output in the absence of the noise. Then, for a stri
zero input noise level, the output SNR tends to infinity.
the input noise level is increased above zero, for a steepg(u)
with small l.0, we observe in Fig. 9 that the output SN
can rapidly drop to small values, from where a further
crease of the noise level progressively raises the SNR as
conventional stochastic resonance. For smootherg(u) with
largerl the resonance disappears to give way to a monoto
decay of the SNR as the noise level is increased from z

The results of Fig. 9 demonstrate that a smooth nonline
ity can stochastically resonate, provided it contains pa
with sufficient steepness. The presence of a strict thres
~below which the output is strictly unresponsive! is not nec-
essary to obtain the possibility of a noise enhancement of
transmission. Figure 9 shows an example where a non
liminal coherent signals(t) corrupted by a small amount o
noise can benefit from further noise addition to improve
transmission.

A similar type of resonance can also be obtained w
nonmonotonic smooth nonlinearities, for instance a Gaus
one:

FIG. 9. Monotonic smooth nonlinearity. Output signal-to-noi
ratioR at frequency 1/Ts computed from Eq.~31! for the sigmoid
nonlinearity of Eq.~44! with u51.2, as a function of the rms am
plitude of the input white noiseh(t) chosen to be zero-mean Gaus
ian. The periodic input iss(t)5cos(2pt/Ts). a, l50; b, l50.05;
c, l50.1; andd, l50.2.
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g~u!5expF2S u2u

l D 2G . ~45!

For this nonlinearity of Eq.~45!, with a zero-mean Gaussia
input noiseh(t) of variancesh

2 , an explicit analytical ex-
pression can be written for Eq.~21! in the form

E@y~ t !#5F S sh&

l D 211G21/2

exp@2z2~ t !#, ~46!

with

z2~ t !5F s~ t !
sh&

G 21S u

l D 22F S sh&

l D 211G21

3F s~ t !
sh&

1
sh&

l

u

lG 2. ~47!

Then, substitution ofl by l/& in Eqs.~46! and~47! simply
yields the explicit expression forE[y2(t)] of Eq. ~22!, lead-
ing to the SNR of Eq.~31! depicted in Fig. 10. The results o
Fig. 10 demonstrate that a nonmonotonic smooth nonline
ity, with sufficiently steep parts, can also stochastically re
nate.

F. Influence of the noise distribution

The general treatment of Sec. III A applies to an arbitra
statistical distribution of the input noiseh(t) and thus allows
a direct examination of the influence of this distribution
stochastic resonance in static nonlinearities. We will not
dress here the problem of the determination of the optim
noise distribution to maximize stochastic resonance in gi
conditions, but rather we shall provide an illustration of t
explicit influence of the noise distribution that complemen
the results of Fig. 4. For this purpose, we return to the tw
threshold nonlinearity of Eq.~37!. With the sinusoidal peri-

FIG. 10. Nonmonotonic smooth nonlinearity. Output signal-
noise ratioR at frequency 1/Ts computed from Eqs.~31!, ~46!, and
~47!, for the Gaussian nonlinearity of Eq.~45! with u51.2, as a
function of the rms amplitude of the zero-mean Gaussian in
white noise h(t). The periodic input iss(t)5cos(2pt/Ts). b,
l50.05;c, l50.1; andd, l50.2.
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odic input s(t)5A sin(2pt/Ts), the results of Fig. 4 show
that the uniform noise leads to a higher maximum out
SNR compared to the Gaussian noise with the same
amplitude. Without proving the optimal noise distribution,
this case, we shall show that it is possible to do better t
the uniform noise.

Let us consider the family of noise distributions forh(t)
obtained by passing a zero-mean unit-variance Gaus
noisej(t) through the transformationh5Ahtanh~bj! param-
etrized byAh andb. For smallb’s, the density ofh tends to
concentrate around zero, qualitatively like a Gaussian d
sity, and with such a shape the noiseh(t) performs qualita-
tively like the Gaussian noise for the SNR in stochastic re
nance. For intermediateb’s, the density ofh tends to be
uniform in [2Ah ,Ah], and with such a shape the noiseh(t)
performs qualitatively like the uniform noise for the SNR
stochastic resonance. For largeb’s, the density ofh tends to
concentrate around the two modes2Ah andAh , and with
such a shape the noiseh(t) generally performs better tha
the uniform noise for the SNR in stochastic resonance
simple illustration can be obtained for the limit caseb→1`
where the noiseh(t) degenerates into a two-level symmetr
discrete noise with the densityf h(u)50.5[d(u1Ah)
1d(u2Ah)] and rms amplitudeAh . The corresponding dis
tribution functionFh(u) is readily written and substitute
into Eqs.~38! and ~39! to yield the SNR of Eq.~31!. This
SNR is represented in Fig. 11 and compared to the SNR
Fig. 4. The results of Fig. 11 show that, in general, neit
Gaussian nor uniform noise is optimal to maximize the S
in stochastic resonance with static nonlinearities. Continu
with the two-level discrete noise on the two-threshold no
linearity of Eq.~37!, it can be shown, with a slight change
the periodic inputs(t), that multiple resonant peaks can b
obtained for the SNR in stochastic resonance with static n
linearities, as illustrated in Fig. 12.

G. Output SNR versus input SNR

An important issue is to determine whether stocha
resonance, under given conditions, is able to deliver an

FIG. 11. Influence of the noise distribution. Output signal-
noise ratioR at frequency 1/Ts computed from Eqs.~31!, ~38!, and
~39!, for the two-threshold nonlinearity of Eq.~37!, as a function of
the rms amplitude of the zero-mean input white noiseh(t), with the
periodic inputs(t)5A sin(2pt/Ts) andA50.45.a, h(t) a Gauss-
ian noise;b, h(t) a uniform noise; andc, h(t) a two-level symmet-
ric discrete noise.
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put SNR larger than the input SNR. Relatively few stud
provide clear-cut answers on this issue. For bistable non
ear dynamic systems, the question is addressed in@38–40#.
In the small-signal limit with Gaussian noise, proofs a
given in @9,41# that the output SNR cannot exceed that at
input. Under different conditions and with a definition of th
SNR differing from the conventional SNR we are consid
ing here, the study in@29# comes to a larger SNR at th
output than at the input. We shall now show that, with s
chastic resonance in static nonlinearities, the classical S
defined in Sec. II can be found larger at the output than at
input. Again, we do not plan to elucidate here, in general
the conditions under which this important property can
obtained. Rather, we will simply produce an illustrative e
ample of its realization.

We consider the periodic inputs(t)5A sin(2pt/Ts) with
total power A2/2 and power spectral densityPss(n)
5A2[d(n11/Ts)1d(n21/Ts)]/4, since we chose in this
study, according to Eqs.~7! and~8!, to represent the spectra
distribution of the power with a bilateral power spectral de
sity. s(t) is corrupted by the white noiseh(t) with autocor-
relation functionRhh(t)52Dd(t) and power spectral den
sity Phh(n)52D, as introduced in Sec. III A. The inpu
SNR, with the definition of Sec. II, can be expressed as

Rin5
A2/4

2DDB
. ~48!

As explained in Sec. III A, the ideal white noise is rea
ized by a discrete-time noise, with a finite variancesh

2 re-
lated to the power density 2D of the white noise by Eq.~18!.
The input SNR of Eq.~48! thus becomes

Rin5
~A/sh!2

4DtDB
. ~49!

The output SNR of Eq.~31!, at frequency 1/Ts ,

FIG. 12. Multiple resonant peaks. Output signal-to-noise ratioR
computed from Eqs.~31!, ~38!, and~39!, for the two-threshold non-
linearity of Eq. ~37!, as a function of the rms amplitude of th
zero-mean two-level symmetric discrete input white noiseh(t),
with the periodic inputs(t)5A sin(2pt/Ts)10.15 andA50.3. The
solid line isR at frequency 1/Ts and the dotted lineR at frequency
2/Ts .
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Rout5
uȲ1u2

var~y!DtDB
, ~50!

leads to the ratio

Rout

Rin
54

uȲ1u2/var~y!

A2/sh
2 . ~51!

For the choice of the distribution of the input noiseh(t),
we return to the family of noisesh5Ahtanh~bj! of Sec. III F.
Finite values ofb sufficiently above 1 are adequate to o
serve the effect, but for a simple illustration we shall ag
consider the limit caseb→1`, which gives a two-level
symmetric discrete noise h(t) of density f h(u)
50.5[d(u1Ah)1d(u2Ah)]. Also, as in Sec. III F, we
choose the two-threshold nonlinearity of Eq.~37!.

With Eqs.~38! and ~39!, we computed the ratioRout/Rin
of Eq. ~51!, which is represented in Fig. 13, for differen
values of the amplitudeA of the periodic input. A compari-
son is also given in Fig. 13 with a numerical simulation
the system, which shows, as in Sec. III B, perfect agreem
with the theory. The results of Fig. 13 reveal that the ra
Rout/Rin resonates with the input noise rms amplitude,
though peaking at a slightly higher noise level than the o
put SNR shown in Fig. 11~c! for A50.45. The curves of Fig
13 also clearly demonstrate the possibility of an output S
larger than the input SNR. For very smallA’s it is even
possible to obtainRout@Rin .

For the case of a two-level discrete noi
h~t!P$2Ah ,Ah%, as pointed out in@41#, there exists a
scheme allowing a perfect recovery ofs(t) from the mixture

FIG. 13. Output SNR over input SNRRout/Rin , as a function of
the rms amplitudesh of the input white noiseh(t), with the two-
threshold nonlinearity of Eq. ~37! and the periodic-input
s(t)5A sin(2pt/Ts). With h(t) a zero-mean two-level symmetri
discrete noise, the four solid curves represent the theoretical ex
sion of Eq. ~51!, with a, A50.45; b, A50.3; c, A50.2; andd,
A50.15, and the discrete data points~open circles! are obtained for
the casec from a numerical simulation of the system. The dash
curve isRout/Rin of Eq. ~51! with A50.15 whenh5Ahtanh~2j!,
with j a zero-mean unit-variance Gaussian noise and the resu
probability densityf h(u) of h shown in the inset as a function o
the abscissau/Ah .
n

f
nt

-
t-

R

s(t)1h(t), provided that the amplitudeA of s(t) verifies
A,Ah . Simply, if the measurement isz5s1h.0, thens is
recovered ass5z2Ah , and if z5s1h,0, thens is recov-
ered ass5z1Ah . This represents another~nonlinear! recov-
ering scheme that achieves an infinite input-output gain
the SNR, but does not hinder the fact that the stocha
resonator is able to achieve a gain larger than unity. T
simple scheme is, however, limited by the condition
A,Ah , while the stochastic resonator is not and is able
realizeRout/Rin.1 also whenA.Ah , as visible in Fig. 13.
Moreover, the stochastic resonator is also able to rea
Rout/Rin.1 when the noiseh(t) ceases to be a two-leve
discrete noise, as illustrated in Fig. 13 byh5Ahtanh~2j!,
which approaches a uniform noise. In fact, the present the
has the ability to show that a SNR gain larger than unity
not a rare outcome with stochastic resonance in static n
linearities and it can even be obtained with Gaussian no
when the periodic input is no longer a sinusoid, but we lea
this for another study.

H. Stochastic resonance at zero frequency

The expression of the SNR of Eq.~31! of the general
model is in principle valid at any harmonicn/Ts of the co-
herent periodic input, especially forn50. This allows us to
investigate the possibility of stochastic resonance at zero
quency. We will consider a situation where both an act
observation and a meaningful interpretation can be given
this extension of stochastic resonance, at zero frequency

Consider the periodic inputs(t)5A sin~2pt/Ts! whose
wave form is symmetric relative to the time axis, superpos
to an input noiseh(t) with an even densityf h(u). These two
inputs are transmitted by the two-threshold nonlinearity
Eq. ~37!, which is an odd functiong(u). In this situation,
because of the symmetries of both the inputss(t) andh(t)
and the systemg(u), the output expectationE[y(t)] aver-
aged over one periodTs , i.e., the quantityȲ0 of Eq. ~2!, will
be zero. Indeed, because of the symmetry ofs(t), for any
time t1 in @0,Ts@, there always exists a timet2 in @0, Ts@ such
thats(t2)52s(t1); because of the symmetries of bothf h(u)
and g(u), the expectations of Eq. ~21! verify
E[y(t2)]52E[y(t1)] and thus cancel in pairs over one p
riod to yield a zero time-averaged expectationȲ0 . In such a
case, the SNR at zero-frequency,R~0! of Eq. ~31!, is also
identically zero for any value of the input noise rms amp
tude.

We now consider adding a constant components0 to the
periodic input, which becomess(t)5s01A sin~2pt/Ts!.
The dc components0 breaks the symmetry of the period
input, which is enough to makeȲ0 differ from zero, with the
assurance that any departure ofȲ0 from zero has its origin in
the presence of the input dc components0. One can be in-
terested in performing an estimation ofȲ0 at the output, in
order to extract information on the presence ofs0 at the
input. This estimation can be assisted by a stochastic r
nance effect, in which an optimum level of the input noi
h(t) maximizes the time-averaged output meanȲ0 relative to
the output fluctuations measured by the time-averaged v
ancevar(y). This is attested by the output SNR at zero fr
quencyR~0! computed from Eqs.~31!, ~38!, and ~39!, rep-
resented in Fig. 14. Also, the time-averaged output meanȲ0
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1490 55FRANÇOIS CHAPEAU-BLONDEAU AND XAVIER GODIVIER
alone undergoes, like the SNRR~0!, a nonmonotonic varia-
tion with the input noise rms amplitude, as visible in Fig. 1

It is also possible to obtain stochastic resonance at z
frequency when the periodic input degenerates into a sim
constants(t)5s0 ;t. The issue of stochastic resonance w
a constant coherent input has been addressed in@42,43# for
multistable nonlinear dynamic systems as discussed in Se
Here, for static nonlinear systems, we shall demonstrate
a form of stochastic resonance can be observed with a
stant coherent input. A constant input is a special case
periodic input and the uniform mode of calculation that h
been used throughout the present study can be kept in
case, with any finite value ofTs for the period of the constan
s(t), to perform the time averages as in Eqs.~2!, ~6!, ~28!, or
~26!. But, of course, with a constants(t) the results are no
different if these time averages are simply not perform
The SNR of Eq.~31! at zero frequency, in this case, can
computed as

R~0!5
E2~y!

var~y!DtDB
~52!

FIG. 14. SNR at zero frequency. Output signal-to-noise ratioR
computed from Eqs.~31!, ~38!, and~39! for the two-threshold non-
linearity of Eq.~37!, as a function of the rms amplitude of the inp
white noiseh(t). The periodic input iss(t)5s01A sin(2pt/Ts),
with A50.3 ands050.15.~A! h(t) a zero-mean Gaussian noise a
~B! h(t) a zero-mean uniform noise. In each panel, the solid lin
the SNRR~0! at zero frequency, the dashed line isR~1/Ts!, and the
dotted line isR~2/Ts!.
.
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and is represented in Fig. 16 together with the output m
E(y) from Eq.~38!, for the two-threshold nonlinearity of Eq
~37!.

Equation~52! shows thatAR(0) is simply proportional to
E(y)/Avar(y), which is interpretable as the relative accura
in estimating the constantE(y) embedded in fluctuations
with rms amplitudeAvar(y). The nonmonotonic variation o
AR(0) with the input noise level, as it follows from Fig
16~B! indicates that there is an optimal level where the e
mation of the constantE(y) can be performed with bes
accuracy. In other words, there is an optimal input no
level where the value of the output meanE(y) is maximized
relative to the rms output fluctuationAvar(y). If we return to
the strictly periodic, nonconstant, inputs(t)5s0
1A sin(2pt/Ts), for instance, a similar interpretation i
valid for the resonantAR(0) from Fig. 14, as proportional to
the relative accuracy in estimating the time-averaged ou
meanE(y)5Ȳ0 embedded in output fluctuations with time
averaged rms amplitudeAvar(y).

If the model of the process is known, especiallyf h(u) and

d
is

FIG. 15. Output coherent signal amplitudeuȲnu at frequency
n/Ts computed from Eqs.~28! and~38! for the two threshold non-
linearity of Eq.~37!, as a function of the rms amplitude of the inp
white noiseh(t). The periodic input iss(t)5s01A sin(2pt/Ts),
with A50.3 ands050.15.~A! h(t) a zero-mean Gaussian noise a
~B! h(t) a zero-mean uniform noise. In each panel, the solid line
Ȳ0 at zero frequency, the dashed line isuȲ1u at 1/Ts , and the dotted
line is uȲ2u at 2/Ts .
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55 1491THEORY OF STOCHASTIC RESONANCE IN SIGNAL . . .
g(u), the knowledge of the output meanE(y) will usually
allow one, through the use of a calculable calibration cur
to recover the input means0. An accurate estimation o
E(y) obtained at the maximum of the output SNRR~0! is
thus desirable to an accurate estimation ofs0.

Stochastic resonance at zero frequency leads thus to
possibility of maximizing, with an optimal input noise leve
the ratio of the time-averaged output meanE(y)5Ȳ0 to the
time-averaged output fluctuationsAvar(y). This property of
stochastic resonance at zero frequency can be related t
dithering effect@20#. Dithering takes place with static thresh
old nonlinearities intervening in analog-to-digital conversi
of a coherent signals(t) added to a noiseh(t). For the
two-threshold nonlinearityg(u) of Eq. ~37!, optimal dither-
ing is achieved by an input noiseh(t) uniform over
@20.5,0.5#. As it can be verified from Eq.~38!, optimal dith-
ering leads toE@y(t)#5s(t), when 20.5<s(t)<0.5. In

FIG. 16. Two-threshold nonlinearity of Eq.~37! with a constant
coherent inputs(t)5s0 ;t with s050.15.~A! Output coherent sig-
nal amplitudeY05E(y) at zero frequency from Eq.~38! and ~B!
output signal-to-noise ratioR~0! at zero frequency from Eqs.~52!
and ~39!, both as a function of the rms amplitudesh of the input
white noiseh(t). In each panel,a is with h(t) a zero-mean Gauss
ian noise andb with h(t) a zero-mean uniform noise. On the curv
b with the uniform noise, where the two dashed lines meet is
location of the optimal dithering, atsh50.5/)'0.29, correspond-
ing to h(t) uniform over @20.5, 0.5#, which allows one to obtain
E(y)5s0 ~A!, but with a SNR and thus a performance of estimat
of E(y), which is not optimal~B!.
,

he

the

other words, optimal dithering allows the time-averaged o
put meanE@y(t)# to reproduce the mean values(t) of the
periodic input. This is the very property that is sought w
dithering. Dithering can now be contrasted with stochas
resonance at zero frequency. Briefly, dithering is an out
mean that reproduces the input mean, while stochastic r
nance is an output mean that stands out maximally off
output fluctuations. However, as visible in Fig. 16, the inp
noise level that optimizes dithering, i.e., that realiz
E@y(t)#5s(t), is usually not the same as the noise level th
maximizes E@y(t)#/Avar@y(t)#, i.e., that maximizes the
SNR R~0!. The accuracy of a statistical estimation
E@y(t)# will generally be better at the maximum of stocha
tic resonance than at the optimal dithering.

I. Discussion of static nonlinearities with white noise

The discrete-time treatment of Sec. III A with a time st
Dt is exact for any physically realizable ‘‘white’’ noiseh(t)
endowed with a correlation timetc smaller than the time
resolutionDt. If the correlation of the noiseh(t) strictly
vanishes aboveDt, then all the numerical quantities theore
cally defined in Sec. III A exactly match, in principle, th
corresponding quantities experimentally measurable in
physical implementation of the process. This was verified
the experiment reported in Sec. III B, at least within the a
curacy of the experimental measurements and also in
computer experiments of the simulations of Fig. 13 and@22#.

Our modeling choice to handle the white-noise case
thus to develop a discrete-time treatment together with
consideration of a physical white noise defined by a corre
tion time smaller than the time resolution of the discrete-ti
treatment. Additionally, the discrete-time treatment has
advantage of yielding expressions that can be compute
the same way in a theoretical analysis, a computer sim
tion, and an experimental implementation. In particular, t
modeling strategy renders unnecessary the prior realiza
of filtering procedures aimed at taming undesirable patho
gies attached to an ideal white noise, such as infinite varia
or infinite zero-crossing rate, and as they are used in@19,18#.
In physical situations, these pathologies do not exist in
first place because the white noiseh(t) will have a short but
finite correlation time. In the following section we shall co
sider the case of a nonvanishing correlation time of the in
noiseh(t) that has to be explicitly taken into account.

IV. STATIC NONLINEARITIES WITH COLORED NOISE

We now consider the same static nonlinearity of Eq.~16!,
but when the stationary noiseh(t) is colored. The output
expectation introduced in Eq.~3! can then be evaluated un
der the form

E@y~ t !y~ t1t!#5E
2`

1`E
2`

1`

g~u1!g~u2! f hh@u12s~ t !,u2

2s~ t1t!;t#du1du2 , ~53!

where f hh(u1 ,u2 ;t) is the second-order probability densi
function of the stationary noiseh(t).

When f hh(u1 ,u2 ;t) is known for the input noiseh(t),
then the general scheme described in Sec. II can be expli

e
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realized, possibly with the aid of numerical integrations. A
ter evaluation ofE[y(t)y(t1t)] through Eq.~53!, a time
average overt has to be performed according to Eq.~4! to
obtain the autocorrelation functionRyy~t! whose Fourier
transform yields the power spectral densityPyy~n! appropri-
ate to evaluate the output SNRR. The input-output phase
shift f of Eq. ~15! is evaluated without additional difficulty
from Eqs.~21! and~2!, since this requires only the first-orde
probability densityf h(u) of the colored input noiseh(t).

The exact computation of the output SNR with a sta
nonlinearity and a colored noise thus requires, in general,
knowledge of the second-order probability dens
f hh(u1 ,u2 ;t) of the input noise. It is seldom the case th
such a multivariate function is known for a random no
h(t). What is much more common in practice is the so
knowledge of the single-variable autocorrelation functi
Rhh(t)5E[h(t)h(t1t)] of the stationary noiseh(t). In
general, with an arbitrary nonlinearityg(u), the knowledge
of Rhh~t! is not sufficient for the exact evaluation of th
output expectation of Eq.~53!, which opens the way to the
complete characterization of the SNR in stochastic re
nance. However, the knowledge ofRhh~t! will suffice in a
special case, which is often met in practice, whenh(t) is a
Gaussian noise, since in this casef hh(u1 ,u2 ;t) is com-
pletely defined onceRhh~t! is given @35#.

To circumvent this difficulty originating in the usuall
limited knowledge of the second-order statistics of the c
ored input noise, we shall now propose an approximat
that renders possible an evaluation of the output SNR ba
only on the knowledge of the input autocorrelation functi
Rhh~t!. We introduce the autocovariance function of the
put noise h(t) as Chh(t)5Rhh(t)2Rhh(1`)5Rhh(t)
2E2(h). For a colored noiseh(t), the autocovariance
Chh~t! is a symmetric pulse concentrated around the orig
which goes to zero whenut u→1`. The extension of this
pulse aroundt 50 can be measured with a correlation tim
tc , which estimates the duration over whichh(t) keeps sig-
nificant correlation. A key point then is that we are in t
presence of a static nonlinearityg(u), whose outputy(t) is
only influenced by the instantaneous value ofs(t)1h(t). It
is then natural to admit that the autocovariance funct
Cyy~t! of the output signaly(t) as defined by Eq.~6!, will
also be a pulse extending around the origin over a duratio
ordertc . Equation~11! shows that both the magnitude of th
autocovarianceCyy(0)5var@y(t)# and its normalized shap
h(t) 5Cyy(t)/ Cyy(0) via H~n! influence the output SNR
The magnitudeCyy(0)5var@y(t)# is a first-order statistica
quantity that can be computed, with a staticg(u), only with
the knowledge of first-order statistics of the input noiseh(t),
through Eq.~23!. After normalization by the factorCyy~0!,
which is exactly computable with first-order statistics, t
normalized output autocovarianceh(t)5Cyy(t)/Cyy(0) that
remains will display a pulselike shape of duration;tc just
like the normalized input autocovarianceChh(t)/Chh(0).
The form of h~t! can be taken as a distorted version
Chh(t)/Chh(0). Only in a few simple situations canh~t! be
explicitly deduced fromChh(t)/Chh(0). This is the case,
for instance, with a Gaussianh(t), no periodic modulation
s(t), and a signum function forg(u), with Price’s theorem
and the arcsine law@35#. An explicit expression forh~t! is
much more difficult to obtain in the presence of the perio
e
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n
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modulation s(t); when the Gaussian assumption brea
down, as mentioned,Chh(t)/Chh(0) or Rhh~t! are insuffi-
cient for an exact expression ofh~t!. Based on the propertie
that we have explained, forh~t! in the presence of a stati
nonlinearity, we propose to use the simple approximation

h~t!'
Chh~t!

Chh~0!
. ~54!

In this approximation scheme, in the evaluation of t
output autocovarianceCyy~t!, which controls the denomina
tor of the output SNR of Eq.~11!, only the exact magnitude
of Cyy~t! measured byCyy(0)5var@y(t)# is exactly moni-
tored. The normalized shapeh~t! of Cyy~t! is simply ap-
proximated, through Eq.~54!, which amounts to neglecting
the distortion introduced in the normalized autocovarian
by the static nonlinearityg(u). If the SNR of Eq.~11! is
expressed in decibels in the form

RS n
Ts

D 510 log10S uȲnu2

var@y~ t !#
D 210 log10@H~n/Ts!DB#,

~55!

then the first term on the right-hand side is exactly comp
able with first-order statistics on the input noise through E
~23!, while the second term will only be approximated fro
Eq. ~54!.

A further plausible expectation reinforcing the usefulne
of the present approximation appears when we come to
examination of the variation of the output SNR with th
input noise power. The normalized output autocovarian
h~t!, whether or not it is well approximated by Eq.~54!, may
be expected to display relatively little variation with the i
put noise power, with a static nonlinearity and after the n
malization, in comparison to the variations ofvar@y(t)# in
Eq. ~55! that alone are responsible for the resonance w
white noise. The normalized autocovarianceChh(t)/Chh(0)
at the input does not change with the input noise power,
we simply admit that this is also true, approximately, forh~t!
at the output. In this way, the approximation of Eq.~54! may
possibly lead to a loose approximation of the SNR in E
~55!, but this approximation may be expected to be satisf
tory within an additive constant, and for this reason app
priate to yield a representation of the variations of the S
with the input noise power and especially to estimate
noise level that produces the maximum SNR.

The validity of the present approximation scheme h
been tested with a very common correlation structure for
colored noiseh(t), namely, whenh(t) is Gaussian and ex
ponentially correlated with the autocorrelation function

Rhh~t!5
D

tc
expS 2

utu
tc

D ~56!

and the power spectral densityPhh(n)52D/[1
1(2ptcn)

2]. The theoretical SNR of Eq.~55! has been
computed with the approximation resulting from Eq.~54! for
H~n!5F@h~t!#. This theoretical SNR is compared in Fig. 1
with the experimental SNR resulting from a numerical sim
lation of the nonlinear system.
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The results of Fig. 17 show that the approximation of E
~54! is able to provide a satisfactory estimation of the out
SNR. In detail, the quality of the approximation is influenc
by the type of the periodic inputs(t) and that of the nonlin-
earityg(u) and by the correlation structure of the noiseh(t),
especially its correlation timetc . However, in general, the
approximation scheme of Eq.~54! is able to predict the ex
istence of stochastic resonance and to offer estimations
both the SNR values and the input noise rms amplitu
yielding the maximum of the resonance.

The approximation scheme of Eq.~54! is tested in Fig. 17
for a noise correlation timetc of the same order of magni
tude as the coherent periodTs . This approximation schem
can also be applied whentc@Ts , but in this case, the nois
with its frequency content up to;1/tc will have practically
no power in the region 1/Ts@1/tc of the coherent signal
making stochastic resonance of little use since the signa
1/Ts strongly dominates the noise. On the other hand,

FIG. 17. Output signal-to-noise ratioR~1/Ts! in decibels, as a
function of the rms amplitude of the Gaussian input colored no
h(t) with the exponential correlation of Eq.~56! and the coheren
periodic inputs(t)5A sin(2pt/Ts). The solid line is the theoretica
approximation of the SNR from Eqs.~55! and~54! and the discrete
data points represent the experimental SNR resulting from a
merical simulation of the nonlinear system.~A! Two-threshold non-
linear system of Eq.~37!, a coherent amplitudeA50.45, and a noise
correlation timetc5Ts . ~B! Diode nonlinearity of Eq.~42! with
u51.2, l51, a coherent amplitudeA51, and a noise correlation
time tc5Ts/2.
.
t

or
e

at
r

tc!Ts the white-noise treatment of Sec. III is expected
yield a correct approximation. Fortc;Ts , the approxima-
tion of Eq. ~54! offers a simple and general scheme, whi
may be the only one of its kind, readily and practically a
plicable, when the Gaussian hypothesis does not hold and
knowledge of the second-order statistics of the input no
h(t) is limited to the autocorrelation functionRhh~t!.

V. EXTENSION OF THE DOMAIN OF APPLICABILITY

The present theory, which allows the characterization o
stochastic resonance effect, applies to static nonlinear
tems of the form of Eq.~16!. However, the domain of appli
cability of this theory can readily be extended to dynam
nonlinear systems that can be decomposed into a static
linearity of the form ~16! followed by an arbitrarylinear
dynamic system. Indeed, a linear dynamic system on
output of a static nonlinearity~16! only multiplies the output
power spectral densityPyy~n! by a fixed function of the fre-
quencyn, the squared modulus of the transfer function of t
linear dynamic system@35#. As a result, the SNR as define
in the present study will be no different if evaluated at t
output of the linear system, since the spectral line and
noise background at a given frequency are multiplied by
same constant. The input-output phase shift, at a given
quency, will simply be changed by the constant phase s
added by the linear system at this frequency. In this way,
any nonlinear dynamic system formed by a static nonline
ity followed by a linear dynamic system, the property
stochastic resonance can be characterized by the sole ex
nation of the transfer by the static nonlinearity and the p
formance of the resonance in the transfer by the whole s
tem is equivalent to that in the transfer by the sole sta
nonlinearity.

This extension of the domain of applicability of th
present theory allows one to annex to its realm nonlin
systems that would have been categorized in the clas
excitable systems as discussed in Sec. I rather than s
nonlinear systems. Consider, for instance, a periodic in
plus noise compared to a threshold to generate a stereo
cal output pulse each time the threshold is crossed: a pos
pulse for an upward crossing and a negative pulse fo
downward crossing. This excitable system can be reprodu
with a Heaviside static nonlinearity with the same thresh
and receiving the periodic input plus noise. A derivation
then performed on its output to yield a train of Diracd pulses
at the locations of the threshold crossings. This train is th
convolved with a kernel representing the stereotypical pu
Since both the derivation and convolution are linear ope
tions, the stochastic resonance will occur in the same co
tions at the output of the whole excitable system and at
output of the Heaviside nonlinearity. In particular, the res
nance will be unaffected by the shape of the stereotyp
pulse.

VI. CONCLUSION

A theory has been developed that is able to describe
property of noise-enhanced signal transmission through
chastic resonance in a broad class of nonlinear systems.
theory applies to any nonlinear dynamic system that can
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1494 55FRANÇOIS CHAPEAU-BLONDEAU AND XAVIER GODIVIER
decomposed into a static nonlinearity followed by an ar
trary linear dynamic system. The possibility of such a ge
eral theory certainly relates to the separation between
nonlinear and the dynamic characters of the systems:
nonlinear part is static and the dynamic part is linear. T
contrasts the present theory with other approaches to stoc
tic resonance~see Sec. I! that deal with systems where th
nonlinear and dynamic characters are tightly mixed. T
static character of the present nonlinearities allows a di
statistical analysis, in which all the quantities relevant
characterize stochastic resonance in the output signal ca
obtained from statistics computed directly on the input no

The theory shows that, with static nonlinearities, stoch
tic resonance can be characterized, exactly with white n
and approximately with colored noise, by monitoring on
first-order statistical properties of the output signaly(t). The
essential quantities are the nonstationary output m
E[y(t)] and the time-averaged output variancevar@y(t)#.
Stochastic resonance with static nonlinearities can thus
seen as a redistribution of power~first-order statistics! rather
than a redistribution of correlation~second-order statistics!
between the noise and the coherent part in the output sig

For the case of white input noise, the theory offers
th
so
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al.
n

exact description in a discrete-time framework directly co
frontable to experiments or simulations. Reported exp
ments and simulations strongly support the theory.

The theory was used to demonstrate a wide range of
teresting effects in static nonlinearities such as stocha
resonance with nonsinusoidal periodic inputs and n
Gaussian noises; stochastic resonance with nonsublim
periodic inputs and monotonic or nonmonotonic smooth n
linearities; multiple resonant peaks in the SNR and nonz
input-output phase shifts; and a SNR larger at the output t
at the input. The theory has demonstrated stochastic r
nance in a simple diodelike nonlinearity, which offers a po
sibility for a physical~electronic! implementation of one of
the simplest conceivable stochastic resonators. The th
has shown the possibility of stochastic resonance at zero
quency, with a periodic input or with a constant input, a
suggested the relation of the known phenomenon of dith
ing to stochastic resonance at zero frequency. The pre
theory, offering a general description for a broad class
nonlinear dynamic systems, some of which are very ea
experimentally implementable, constitutes a unique fram
work for further investigations of stochastic resonance a
its applications.
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