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Synchronization, chaos, and the breakdown of collective domain oscillations
in reaction-diffusion systems
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The universal equations describing collective oscillations of the multidomain patterns of small period in an
arbitrary d-dimensional reaction-diffusion system of the activator-inhibitor type are asymptotically derived. It
is shown that not far from the instability leading to the formation of the pulsating multidomain pattern the
oscillations of different domains synchronize. In one dimension standing and traveling waves of the oscillation
phase are realized. In addition to these, in two dimensions target and spiral waves of the oscillation phase, as
well as spatiotemporal chaos of domain oscillations, are feasible. Further inside the unstable region the col-
lective oscillations break down, so the pulsating multidomain pattern transforms into an irregular pulsating
pattern, uniform self-oscillations, or turbulence. The parameter regions where these effects occur are analyzed.
The effects of the pattern’s disorder are also studied. The conclusions of the analysis are supported by the
numerical simulations of a concrete model. The obtained results explain the dynamics of Turing patterns
observed in experiments on the chlorite-iodide-malonic acid readi®#063-651X97)11002-9

PACS numbegps): 05.70.Ln, 82.20.Mj, 47.54r

I. INTRODUCTION supply, and the nonlinear functiogsandQ contain the dis-
sipation, supply, and reaction terrf$39]. The length scales
Complex dynamic patterns, such as traveling wavesl andL are related to the diffusion coefficients of the activa-
breathers, or spatiotemporal chaos, are encountered in a vi@r and the inhibitoD , andD ,,, respectivelyl = D ,7, and
riety of nonequilibrium physical, chemical, and biological L=VD,7,.
systemg1-11]. These systems include electron-hole and gas Kerner and Osipov showed that the properties of the pat-
plasma, semiconductor and superconductor structures, sygrns forming in the systems described by Ed3.and (2)
tems with uniformly generated combustion material, auto-are determined mainly by the parameteessI/L and
catalytic chemical reactions, models of population dynamicgy = 74/ 7, and the form of the nullcline of Eq1). For many
[1-11]. Recently, an intriguing phenomenon was observed irsystems this nullcline idN-shaped(Fig. 1) [8—10]. In such
chemical experiments with Turing patterfi2], a combus- N systems static domain patterns form wherl and
tion system with cellular flamg4.3], and a catalytic reaction > ¢ (KN systemy traveling wavesautowaves at a<1
on the surfacd14]. In these experiments the patterns thatand a<e? (N systemg and all sorts of dynamic patterns
were observed consisted of many disk-shaped domaing e<1 ande?<a=<e (KQN system§[8-10,15,18 As a
whose radii oscillated in time. The oscillations of different resylt of the instability of the homogeneous state periodic
domains either synchronized or exhibited complex spaand more complex patterns form in these system, whereas

tiotemporal behavior. . . when the homogeneous state of the system is stable one can
Many nonequilibrium systems in which patterns can form,

including the systems mentioned above, are described by the
reaction-diffusion systems of the activator-inhibitor type, the M

Q=0 =0
simplest of which is a pair of reaction-diffusion equations . \ / \

[1-17] 0 \
a0 2 M
reﬁzl A6—q(6,7,A), 1) h
on 2 M
TT]a_t:L An_Q(ainyA)y (2)
where 6 is the activator,y is the inhibitor,| andL are the , \
characteristic length scales, angland ,, are the character- |
istic time scales of the activator and the inhibitor, respec-
tively; g andQ are certain nonlinear functions, aAdis the

system’s excitation level. For example, in the system with 8,6, % 9 9 % 9
the uniformly generated combustion material the activator is

the temperature of the gas mixture, the inhibitor is the den- FIG. 1. The qualitative form of the nullclines of Eg4) and
sity of the fuel, A is proportional to the rate of the fuel (2).
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excite solitary patterns — autosolitodS) — by a suffi-  distribution of domain sizes. In Sec. VI we present the re-
ciently strong localized external stimulus. KN systems sults of the numerical simulations for a concrete model, and,
these patterns are collections of static domains with sharfinally, in Sec. VII we discuss the relevancy of the obtained
walls (interface$ whose width is of orded [8,9,15,18. results to the experiments and draw conclusions.

These domain patterns may undergo different kinds of insta-

bilities leading to the formation of complex dynamic patterns Il. INTERFACIAL DYNAMICS PROBLEM

whena becomes sufficiently small. The simplest example of
such a destabilization is the spontaneous transformation of a
static AS to a pulsatingbreathing AS. This effect was dis- 77
covered by Koga and Kuramoto in an axiomatic reaction- 96
diffusion model[17] and subsequently studied by many au- a—=€’A0—q(0,7,A), (3
thors, both for one-dimensional and higher-dimensional Jt

radially symmetric A§8-10,15,18,19 Pulsating AS were

directly observed in semiconductdr&0], composite super- f9_’7_A 001 A 4
conductorg21], autocatalytic reactior22], and combustion o -7 Q0 m.A).
experimentg23].

The situation becomes much more complicated when inThe boundary conditions for these equations may be neutral
stead of a single AS the pattern consists of many interactingr periodic. From the mathematical point of view the fact
domains. Several attempts to approach this problem wertnat ¢ is the activator andy is the inhibitor means that for
made for one-dimensionadll systems. Kerner and Osipov some values of) and » we haveq,<0, and that for allg
showed that the stationary periodic domain pattéstsata ~ and » [8—10|
may undergo instability and transform into a breathing pat-
tern [8,10]. Ohta et al. were able to obtain the linearized Q,>0, q;,Q4<0, (5)
equation of motion for the periodic patterns in the piecewise-
linear reaction-diffusion model and showed that the introducand the derivative®,, Qj, andq;, do not change sign.
tion of a simple nonlinearity to these equations leads to the The dynamics of the domain patterns formingkiil and
synchronization of the domain oscillatiof4,25. Still, the  KQN systems can be reduced to the interfacial dynamics
guestion of the effect of the interaction of domain patterngproblem in which the dynamics of the pattern interfaces is
undergoing breathing motion, especially in higher-coupled to the bulk field18,26. Far enough from the do-
dimensional systems, remains largely unresolved. main interfacegat distances much greater thap the bulk

It is easy to show that in the cage<1 the wavelength of field must satisfy the equation of smooth distributi¢oster
the fluctuation with respect to which the Turing instability of solution
the homlc/)zgeneous state of the systdiand(2) is realized is
A~ (IL)*“[8,10]. For this reason the periodic Turing struc-
tures that form in the system have the period ot ~An=Q(0(n), n.A), ©®)

L,~ €L <L. Moreover, in the higher-dimensional systems

with e<<1 any static pattern will consist of domains whosein which # and » are related by the equation of local cou-
characteristic size is of ordeeL<L [15,16,2. This pling

means that in a pattern consisting of many domains one do-

Let us measure the length and time in the unitd aind
respectively. Then Egs¢l) and(2) become

main interacts with a large number of other domains at the q(8,7,A)=0, (7)
same time. This fact should significantly reduce the com- o _
plexity of the interactions between different domains. that is, far from the domain interfaces and » lie on the

In this paper we will study the periodic one-dimensionalnullcline of Eq.(3) [8-10. This relation is multivaluedsee
and two-dimensional hexagonal patterns of small periodid. 1), S0 one has to choose the branch with f, in the
(L,<L) undergoing the oscillatory instability in an arbitrary “cold” regions (the domains of low values o) and
KON system. Using the interfacial dynamics approach, wef> 6, in the “hot” regions (the domains of high values of
will derive the universal nonlinear equations describing the?). The dynamics of the interface is governed by the follow-
pulsations of the periodic multidomain patterns in arbitrarying equation:
dimensions. We will analyze the conditions for the synchro-
nization and breakdown of the pulsations, the effects of the - 5 1> -
disorder, and study possible complex spatiotemporal behav- n-—=--€a K(r)+ov(n(r)), ®
iors. Finally, we will compare the effects studied by us with

relevant experiments. wherer is a point on the interfacey is the normal vector to

Our paper is organized as follows. In Sec. Il we reduceh terf i o th Id K th
Egs.(1) and(2) to the problem of interfacial dynamics in the e interface poin |ng into the cold regio (r) is the cur-

limit e—0 and show a way to treat this problem in the casevature at the point of the interface, and (#(r)) is the
L,<1. In Sec. lll we apply this method to the one- velocity of the interface in the absence of curvature as a
dlmenS|onaI periodic strata. In Sec. IV we consider two-function of the value of the bulk fielap(r) at the interface.
dimensional hexagonal patterns and also briefly discuss thEhe functionv(#) is a solution to the nonlinear eigenvalue
case of the three-dimensional patterns. In Sec. V we analyzgroblem and is in general some complicated nonlinear func-
the domain oscillations in a disordered pattern with a randontion of » [8—-10,18,28

>
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The interfacial dynamics problem represented by Egjs. Although Egs.(8) and(10) with (15) are simpler than the
and(8) is a highly nonlinear problem. However, the situation original interfacial dynamics equations, they are still difficult
becomes simpler if the pattern consists of the alternating hdb deal with. It appears, however, that these equations can be
and cold regions whose characteristic size is much smalldurther simplified for treating multidomain patterns by intro-
than 1. Kerner and Osipov showed that in this case the valuducing some averaged variables. We will outline this proce-
of » is close to a constant in the entire patt¢8n10]. The dure in this section and demonstrate its application to the
reason is that because of its high diffusivity the inhibitor periodic patterns in the subsequent sections.
cannot react well on these variations of the activator whose Let us introduce the number of domains per unit volume
characteristic length is much smaller than the characteristin and the radius of the domajn(in one dimensiorp is the
length scale of the inhibitor. This allows us to linearize Eq.half-width of a domaih If we now average Eq10) over the
(6) around =55, where 7 is the constant value of the volume of sizes such thatp<s<1, we will obtain the

inhibitor. Introducing “coarse-grained” equation for the average value of the in-
_ hibitor »=(7%):
n=n"1s, 9 o
an -
we get —t = An=c1n(1+¢anp*0q) — Qbe1, 75) —anp Qg
i - (18
I:AW—CN]—(Cs—Cl)U'(X)—Q(asl,ﬂs)—a|(X), ) ) ) )
10 where )4 is the volume of thed-dimensional unit sphere
10 (0,=2), and
where

C,=(C3—Cy)/Cy (19
(01,3, 75) Qy( Os1.3, 75)

C15= Q) (0s1,3,75) — , (1) measures the asymmetry between the hot and the cold do-

Aol 0513, 75) mains. According to Eq(5), the value ofc,>—1. Besides
_ 7, there is a local contribution tey due to the variation of
a=Q(0s3,75) = Q(bs1, 7). (12) 7 on the length scales gf<1. Let us introduce
the values off, ; satis A e
w13 SaSlY 7=7-1. (20
a( 951,31 775) =0, (13

Since 5 varies on the short length scales, the terms propor-
wherefs, and 6 are the minimal and the maximal roots of tional to% in the right-hand side of Eq10) are small com-
Eq. (13), respectively] (x) is the indicator function, which is pared to the Laplacian. Also, when the characteristic time
equal to 1 ifx is in the hot region and zero in the cold region. gcaje of the variation of is much greater thap?, as is the
Notice that, according to Eq€5), the constants; andcz are  ¢ase in all interesting situatiorisee the following sectiois
positive. the time derivative in Eq(10) is small compared to the La-

Obviously, 7 should be equal to the value gfat which  piacian as well. Subtracting E¢L8) from Eq. (10) and ne-
v(n)=0 in order for the pattern to be stationary. The Va|UegIecting all these terms, we obtain

of ns must therefore satisf{8,9,26

o An=a{l()—=(1(x))}, (7)=0. (2D
J a(6,79de=0. (14) .

Os1 From this equation one can obtain the valuenof 7, in the
wall of an individual domain, so from Eq$8) and (15) it

For small » the functionv(%) may be linearized around follows that the equation for the radius is

7s, SO we obtair{26]

B dp _ €(d-1) eB(y+ 7y
=, (15) i + ~ . (22
aZa P ala
where The variablesy, 75, andp may now be considered as space
and time dependent on the length scales much greater than
B _afossq,(a 7 do 16 S Thus, we have a closed set of equations for these coarse-
oy ST grained variables, so the number of relevant dynamical vari-

ables in the problem is considerably reduced.
and
b 0 [1l. ONE-DIMENSIONAL PERIODIC STRATA
z:f J=2Udo, Ua:_f q(6,79d0. (17 OF SMALL PERIOD
Os1 Os1

Let us consider the one-dimensional periodic strata of the
The constant® andZ are of order 1. Notice that, according period £,<1 (Fig. 2). In this casenzcg1 so Eq.(18) be-
to Eq.(5), the value ofB is positive. comes
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FIG. 2. The distributions of¢ and % in a stationary one-
dimensional periodic strata.

&7] ﬁzn
T ———Ccin(1-2¢,L, " p)—2aL,  (p—po),
(23)
where we introduced
Po=— ['pQ( Os1,ms)/2a. (24)

C. B. MURATOV 55

Equations of the type of Eq$29) and (30) have been
extensively studied in the context of oscillatory chemical re-
actions[2-6,27. It was shown that these systems host a
great richness of dynamic patterns, such as self-sustained
uniform oscillations, traveling waves, target patterns and spi-
rals (in higher dimensions and spatiotemporal cha@sirbu-
lence. This is also true for Eq$29) and(30). However, one
should keep in mind that these equations describe the dy-
namics of the already existing multidomain pattern, in other
words, the dynamical patterns described by E@9) and
(30) will be seen “on top” of the stationary multidomain
(Turing) patterns. This is an important distinction from the
oscillatory systems, such as oscillatory chemical reactions, in
which the dynamic patterns appear on top of the stationary
homogeneous state.

We are interested in the collective oscillations of the do-
mains in the pattern. According to EqR9) and (30), the
characteristic frequency of these oscillations is equabdo
In view of Eq.(28), the period of oscillations is the shortest
time scale in the problem if

eLi<a<el,’. (32)

Equation(21) for a one-dimensional pattern with the period Recall that in deriving Eq.21) we neglected the time deriva-

L, becomes

d?y . -
d—x2—=al(x)—2a[;p p, (=0 (25

with the neutral boundary conditions @t = £,/2 (because

tive of . This is justified |fwo<£ , which is equivalent

to a> e£3 so the first condmon in Eq31) is in fact a

necessary condition for Eq&9) and(30) to be valid.
Equations(29) and (30) have a trivial solutiorp=const,

‘»=const, which corresponds to the stationary multidomain

pattern(stratd. For « satisfying the condition in Eq31) we

of the translational invariance, we may choose the center Qiavewo>1 so the value op for the stationary pattern is

the domain to be ak=0). A straightforward calculation
gives

close top,. Linear stability analysis of Eqg29) and (30)
shows that at-> 7., where

el Pl 2 AP 1209~ 24p5 -
758 T g, 9 e (32
Rescaling the variables andp and
7' =nlaL;, p=plLy, (27) c=Ca(1+2C,p0)>0, (33)
and introducing the quantities this solution is stable. At;= 7, it loses stability with re-
spect to the uniform oscillations with the frequenoy wq
ni=aZleBLy, wo=v2eBlaZL,. (28 and the wave vectdt=0. The uniformly oscillating solution
- ; ; corresponds to the pattern in which all domains are oscillat-
We write Egs.(22) and(23) (dropping the primesas ing in phase with the frequencay,. This is a supercritical
an 9%y Hopf bifurcation(see below. In view of Eq.(28) and(32),
v —cym(1+2¢,0)—wiri(p—po), (29  the value ofr;.~1, S0 in terms of the original variables we
have a.~€eL, and wo~£,§1. Also, according to Eq(32),
] (9_—2__B—+_2_ 4p3 - the value ofr{.>0 only if
Lot 6 P 73 1(
—|1-—=|<po<-|1+—]|, (34)
The parameters of the original reaction-diffusion system 4 V3 o=y V3

[Egs. (3) and (4)] enter these equations only through con-

stantswg, 71, andc, (the value ofc; can be absorbed in the i-€., 0.1 py<<0.39. This is a completely universal result for
definitions of 7, and wy), and the excitation level enters all one-dimensional strata of small periodH{)N systems.
mainly throughp,. Note that since, according to its defini- Itis easy to see from E¢32) that if the condition of Eq(34)

tion, the value of @ cannot exceed’,, we have 6<p<3.
Also note that Eqs(29) and (30) with the spatial derivative

is satisfied, for any acceptable value of there exists

T1c=Tie, such that the stationary pattern is stable for

equal to zero describe the oscillations of a single domain ir;> 7 for any value ofp,. If the condition in Eq.(34) is

the system of siz&€ <1.

not satisfied, the pattern will still become unstable when
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V.l

a~ €% [8-10,15. This will happen at the values of that are
much smaller than in the former case. Indeed, according to
Eq. (32), the oscillatory instability occurs a#> e since 0.08
L, is always much greater than[8,10].

To study the destabilization in more detail we will use the 0.06
fact that the period of the oscillations, * is much smaller &
than the characteristic relaxation time, so one can apply
the method of Bogoliubov and Mitropolsky to E&9) and
(30) [28]. To do this, we will use Eq(30) to eliminate s 0.02}
from Eq. (29) and write

stationary

oscillations
0.04

breakdown

p=po+Rcog wot+0), (35) 0.1 0.2 0.3 0.4 0.5
Po
where R and © are slowly varying functions of and x.
Substituting Eq. (35 into Eq. (29), multiplying it by FIG. 3. The parameter regions for oscillations and breakdown of
sin(wet+®) and cos@gt+®), and integrating over the pe- the one-dimensional periodic strata. The upper solid line is the in-
riod, we will get, respectively, stability threshold for the multidomain pattern with respect to the

oscillations. Below the bottom solid line the collective oscillations

JR cR R® 14°R R/90)\2 of the strata break down.
T R P ) g B

It is clear that small local inhomogeneities, both intrinsic
and extrinsic, may play the role of the organizing centers for
the one-dimensional analog of the target patterns: waves
90 1320 1 JR 90O traveling away from the inhomogeneity in both directions.
praai W'f‘ R % ox" (37)  An example of an intrinsic inhomogeneity here is a nonuni-

form distribution of the domains along tlxeaxis. In this case
instead of the constant density of domains we have a smooth
function n(x), which can also vary in time and can be con-
sidered as an extra degree of freedom in the problem. The
density must satisfy the continuity equations

and

In deriving Eqgs.(36) and (37) we kept only the leading
terms.

Equations(36) and (37) are equivalent to the equations
for the amplitude and phase for the well-known Newell-

Whitehead equatiof29]. An important class of solutions of on 9

this equation iR=R, and ® =kx, where = + &(na) =0, (39
RO= \/C( Tic— Tl) - lez (38) Where

and k<\/c(71.— 1)/ 71. It represents the nonlinear disper- p iy

sionless traveling waves of the phase of the domain oscilla- o= T, X (40)

tions with the wave vectork, which are stable if
k<yc(ric— 71)/371. A particular solution wittk=0 corre- s the velocity of the domain as a whole due to the gradient
sponds to the synchronous oscillations of the domains. 1&f 7 [see Eq(15)], and

fact, if the boundary conditions for the original reaction-

diffusion system(3) and(4) are neutral, as in most of the real To=aZl eBEg (41
situations, this is the only admissible plane wave solution.

Since it is stable, a variety of initial conditions will evolve is the characteristic time scale of the density variation. For
into it, causing the oscillations of different domains to syn-m;~1 we have7-2~£l;2, so the density relaxes on a much
chronize. This means that the synchronization of oscillationsonger time scale and any nonuniform distribution rofis

of different domains is the major scenario of the developfrozen on the time scale of the relaxation of the amplitude
ment of the small-period patterns in one dimension. Equaand phase. This means that by setting a nonuniform density
tions (36) and (37) also admit a solution in the form of a of domains as the initial condition one can produce complex
domain boundary(kink), upon going through which the spatiotemporal patterns of the domain oscillations that will
phase® changes byr. These are the only stable stationary not synchronize for a very long time.

solutions of Eqs(36) and (37), so any initial condition will From the definition oR it follows that it lies in the inter-

in general produce a collection of regions in which the do-val from p, to 3—p,. If R exceeds one of these values, the
mains oscillate in phase. In the regions next to each other thdomains will either merge or collapse in the course of the
domains will oscillate in antiphase. At <7, Egs.(36) and  oscillations. On the other hand, according to E8g), the

(37) also have the solutions in the form of the wave in whichvalue of R, may exceed eithep, or 3— p, for some values
the stable stat®=R, with k=0 and® =const invades the of 7,. This can be seen from Fig. 3, in which the bottom
unstable stat&=0. This wave corresponds to the onset ofsolid line corresponds to the values af at which this hap-
the synchronous oscillations in the unstable stationary strateens. Figure 3 thus shows that the synchronization of the
from a localized initial condition. The propagation velocity domain oscillations occurs only in the relatively narrow re-
of this wave isv* = \c( 71— 71)/ 71 [30]. gion of the system’s parameters. The merging or collapse of
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the domains will result in the breakdown of the collective since the domains whose size is greater tbdhare always

domain oscillations and collapse of the strata. Indeed, supinstable with respect to the transverse instability of their

pose that at some moment every two domains merged intevalls and split into smaller domairi45,26.

one. This may be viewed as doubling of the pattern’s period

Ly . According _to Eq(28), this will result in the decrease of IV. HIGHER-DIMENSIONAL MULTIDOMAIN PATTERNS

7, and further increase d®,. Therefore, the process of do-

main merging will have an avalanche character and lead to a Let us now study periodic multidomain patterns in higher

complete destruction of the strata. The way the breakdown adimensions. For definiteness we will consider a two-

the strata will follow will depend on whether or not the ho- dimensional hexagonal pattern of disk-shaped domains, the

mogeneous state of the systems is stable with respect to tlmost frequent Turing pattern in chemical experimé¢bisAs

uniform self-oscillations of the homogeneous state at thisvas shown by Muratov and Osipov, in two dimensions a

value of A. If the homogeneous state of the system is un-stable stationary multidomain pattern must consist of the do-

stable, the breakdown will result in the onset of the uniformmains whose size is of ordet’*[15,16]. Since the period of

relaxation self-oscillations(the latter follows from the fact the pattern is of the same order as the domain size, it can be

that sincer=1 and e<1 we havea<1 and, therefore, used as a natural small parameter, so all the ideas of the

relaxation oscillation$8—10]). If the homogeneous state of analysis of the previous section should apply to the two-

the system is stable, the breakdown will result in the forma-dimensional multidomain patterns.

tion of traveling domain pattern@S) or in the collapse of Let us proceed with the derivation of the equations de-

the strata into the homogeneous state. scribing the collective oscillations of the domains in the pat-
The scenarios of the evolution of one-dimensional strataern. For a hexagonal pattern with the perifgthe density

of small period discussed in the previous paragraph are pref the domains isi=2/y/3£2, so Eq.(18) becomes

cisely what we see in the numerical simulations of a concrete

model. We also find a detailed quantitative agreement be- — 2 2_ 2
tween the limit cycle oscillations of a single domain deter- _ﬂ:A7_ ciyl 1+ 2mCap ) - 2ma(p”— po) . (42
mined by Eqs(29) and(30) and the results of the numerical ot V3.3 V3c3
simulations of a reaction-diffusion model for small enough
eand.,. where we introduced
Before concluding this section, let us discuss another dy-
namic behavior of strata in one dimension. As was recently \/§£2Q(931,773)
shown by Osipov, fola=< e periodic patterns may undergo p§= — P . (43

the instability leading to the formation of the traveling strata 2ma

(a wave train [31]. Osipov obtained the general criterion for . )
this instability. In the case of the one-dimensional strata ofecause of the anisotropy of the hexagonal lattice the shape

small period it is possible to calculate the threshold value off the domains will in general slightly deviate from the disk

: : o o - . shape. It is clear that this deviation is small and is smaller
fil,ti?llg?te irt:g ti%aggtle\;?gtl?lggn(zfs;sogI\Igae? Fgl?ll](x\i/. es(;th))tztiln when the radius of the domains is smaller. So, for the sake of

that the transformation of the stationary strata to travelin implicity gnd Withpgt significantly affecting the_ results of
ta-~el3. O that this instabilit he analysis, we will ignore the effects of the anisotropy and
occurs ater~eL,. One can see that this instability occurs

) . - nsider th mains to be ideally circular. Also, instead of
for much smaller values ok than the oscillatory instability consider the doma y

for which a.~ €L, . Therefore, the instability leading to the considering the problem fop in the hexagonal cell, we will
formation of the traveling pattern can never be reached fopCIVe it for a circular domain of radius, /2. Thus, we have
the one-dimensional strata of small period. ) .

Throughout the analysis presented above we used the fact d’y 1dy ap -
that the period of the pattern is small compared to the length W“L T dar =al(r)— rZ (m=0, (44)
of the variation of the inhibitor and used, as the small P

parameter n the_gxpansmns. The smallness of the parame%herer is the radial coordinate and the boundary conditions
L, greatly simplified the treatment of the domain interac-

tions and led to the universal results, which are practically"f1re neutral ar=0 andr=/L,/2. Solving this equation for

independent of the concrete nonlinearities of the system? @nd calculatingps= 7(p), we get
This is a general property of thEN and KQN systems

2

[15,16,26. Unfortunately, no such treatment is possible for ~ (3p% 3p* p® 2p

the one-dimensional periodic patterns whose period is of or- ns=al g 2—1:2+7In£—p : (49
der 1. In the latter case one is faced with the problem of P

treating the dynamics of each individual domain separately, Eq.(22) becomes

and taking into account the complex memory effects associ-

ated with the domain interactions, which cannot be solved in J 2 B 3,2 34 2 o

general. So, the problem of the interaction and dynamics of ~ 2P __ € | € [Z7 2P L2+p_|n_p)_ (46)
the one-dimensional patterns consisting of the domains 9t ap  ala 8 2Ly 2 L

whose size if of order 1 remains open. This problem, how-
ever, does not exist in higher dimensions,eifis small  Rescaling the variables according to E87) and dropping
enough. In this case the domain sizes are necessarily smalie primes, from Eq942) and(46) we get
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0.5

7 A 14 2mcC, ™,
o An—ciy 3 p \/—wOTl(p Po)
(47 TS :
‘\:T?
. £[S
dp € 3p? 3p* p? __ 2 L i
o 2 2P + 025
e =+ 5 5 In2p, (48 x
where °omr i
- _ 3
e=€ZIBL,. (49) h 0s

As before, < p,< 3. The paramete¢ does not appear in the
one-dimensional case. It characterizes the stability of the do- — .
mains with respect to the transverse perturbations. Since the G- 4- The dependencey,(po) from Eq. ( 52) for different
curvature radius of the stable domains must be of oedér values ofe.

[15,16, the value ofe is of order 1 for the domains whose
size is comparable witlf,,~ "% Notice that Eqs(47) and
(48) without the space dependence and with the coefficie
/3 replaced by 2 in Eq47) will describe the oscillations

Going back to the original variables, we see that in the case
n?f the two-dimensional multidomain pattern the destabiliza-
tion occurs at

of a single domain in a circular region of radigg<1. This o~ M3 (53)
situation was realized in the experiment by Haémal. on ¢
the ferrocyanide-iodate-sulfité1S) reaction[22]. Note that the value ok, is smaller thanx,,~ € at which a

When the condition of Eq31) is satisfied, Eqsi47) and  |ocalized domainAS) is destabilized with respect to pulsa-
(48) have two time scales, as in the one-dimensional casg;jgg [8,9,19.
the short time scales, * for the oscillations and the long Figure 4 shows the possible forms of the dependences
time scaler; for the relaxation of their amplitude and phase. 7, () obtained from Eq(52) for different values ok. One
However, in contrast to the one-dimensional case, the analy-an see from Eq(52) that for e>0.031 for any value opg
sis is complicated by the fact that now the oscillations themthere exists a value of, at which the instability occurs.
selves are nonlinear. To proceed further, we will use(B8.  when 0.000 45 €< 0.031 the instability is realized only for
to expressy in terms ofp and substitute it into Eq(47), 5 <. with p,,< 2, whereas foe<0.000 45 the instability
taking into account thaby>1. We obtain is realized forpy< p.; andpa,<po<pas (See Fig. 4 When

€>¢* (for example,e* =0.0034 forc,=0) for a givenry

*p N le(_z__Z) _ f(p) A p (50) mel_rlstablllty is realized for a single \_/alue p)@,_where_as f(_)r
oat? 3 0 p 0 71 at’ e<e”* there are values of; for which the instability is
realized for three values gf,.
where Let us take a closer look at E¢G0). The behavior of the
oscillations is determined by the sign of the friction tefrnim
2 — Eq. (50). Three possible forms of this term as a function of
f(p)=cymy| 1+ Trczgz _L£_2F +6p3—p In2p. p are shown in Fig. 5. The oscillation amplitude decreases if
J3 p? 4 p remains in the domain wherfe>0, or increases ip is in

(52 the domain wherd <0 (indicated by arrows in Fig.)5In
the situation of Fig. &) all values ofp correspond to the
The left-hand side of Eq50) is an equation of motion for amplification region, so the amplitude of any oscillations will
a particle of unit mass in the potentidl=(mww3/\3)  increase untip,., becomes equal thor until p,,;,=0. In the
X(?/:%—m. For 0<p<3 it describes finite motion be- first case the neighboring domains will merge while in the
tweenp= pin and p= pmax With the characteristic frequency second the domain will collapse. Both these effects will
wo. The right-hand side of Eq50) is a weak nonlinear fric- cause the restructuring of the pattern and significant changes
tion force, which also contains the diffusion term thatin the collective domain oscillations. In the situation of Fig.
couples the oscillators in a spatially distributed system.  5(b) the oscillations are amplified when<p.; and attenu-
As in the case of the one-dimensional patterns, the equiated whenp>p.3. The stationary multidomain pattern will
librium solutionp=p, of Eq. (50) corresponds to the station- be stable whempy>p.3 or unstable whemy<p 3. Depend-
ary multidomain pattern. Equatiof®0) shows that the sta- ing on the signs of the first and the second derivatives of
tionary multidomain pattern becomes unstatitee friction  f(p) the bifurcation apy=p.3 may be both supercritical and
f becomes negatiyewith respect to the fluctuation with subcritical(this is a Hopf bifurcatiopn It is clear, however,

0=w, andk=0 whenr,;<7,., where that deeper into the unstable regime the oscillations will be
amplified until they collapse whep,,;,=0 even in the case
fe+5p3—24p3+4p3In2p, of the supercritical bifurcation. o
Tic= (52 The most interesting situation is shown in Figa)5 There

dcipo[1+(2mc,/\3)pg] the oscillations are amplified when<p.;, or po,<p<pcs
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FIG. 6. The bifurcation diagram for the two-dimensional sta-
tionary multidomain pattern fot,=0. The numbers 1, 2, and 3 in
the figure correspond to the bifurcations@t=pc1, po=pcz, and
po=pea: respectively. The shaded regions are those where the in-

stability is not realized £,,<0).

o2 b)

01

pe> Will become unstable and lead to the collapse of the
oscillations. Thus, the most stable limit cycle oscillations
should be expected when,< py<p.3 and the minimum of
021 ’ f betweerp., andp; is sufficiently shallow. The analysis of

0 ol 03 03 04 05 the bifurcation types for different values efandp, is sum-
marized in Fig. 6(for simplicity we usedc,=0).

Up to now we have discussed the oscillations of a single
domain in the multidomain pattern. What we found is that in
certain situations the synchronous oscillations of all domains
in the pattern can be stable. This naturally implies that the
synchronously pulsating multidomain pattern is an attractor
. and the synchronization of the domain oscillations is there-
fore one of the major scenarios of the development of the
stationary multidomain patterns. However, the situation is
richer in two dimensions because of the possibility of other
classes of stable solutions, such as target patterns and spiral
waves. In principle, it is possible to use the fact that
w61< 7, and obtain the equations for the amplitude and
phase by averaging over the trajectories of the frictionless

p oscillators in this case as well. This calculation, however,
cannot be carried out in the analytical form. On the other

FIG. 5. The nonlinear friction ternf(p) in Eq. (50): (a) hand, in a wide region of the parameters the bifurcation of
€=0.00025, 7;=0.03; (b) €=0.0075, 7;,=0.175; (c) €=0.05, the stationary pattern is supercritical, so in its vicinity the
7,=0.025. Other parameters azg=1, c,=0. dynamics of the pattern is described by the complex Landau-

Ginzburg equation. In the appropriately scaled time and
and attenuated for the rest of the valuep péo the patternis Space variables this equation in the considered case has the
stable only forp., < po<pes OF po>pes. The bifurcation at  form
pes is supercritical, while the bifurcation ab=p.,; is sub-
critical. This can be easily seen from the following argument. ‘9W_AWJr W—(1+ib)|W|2W, (54)

0.1 T

20k €) b

0.0

20

By varying the value ofr; one can make the minimum of gt

f betweenp., and p.; arbitrarily shallow, thus controlling . _ , ,

the amplification of the oscillations in the region whereW is the appropriately normalized complex amplitude
Per<p<pes. Since in this case the small region of amplifi- 2nd

cation is surrounded by a finite region of dissipation, the

. . — — . L . . 1/2 3/4__1/2_5/2
bifurcation atp, andpz will be supercritical. Since the first _ AX 27X 3% pg “wo Ty
and the second derivatives bhitp, are opposite to the one (1677 3)C1Co710pG— 566+ 21600+ p+ 4pgin2pg
at p,, the bifurcation atp¢, is subcritical. If the value of (55)
7, is decreased, the minimum éfoetweenp., andp¢; gets
deeper, and at some value of the bifurcation atp., be- The complex Landau-Ginzburg equation has been the

comes subcritical. Upon further decreasing the value,0of subject of intensive studies for the last two deca@e®, for
the limit cycle associated with the subcritical bifurcation atexample, Refd.2,27,32,33). Specifically, for the case of Eq.
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(54) Hagan obtained the solution in the form of a steadily u.us
rotating spiral wavé34]. In our case this spiral wave will be
seen on top of the stationary multidomain pattern. Precisely 0.06
this phenomenon was observed by Boissande, Dulos, and De
Kepper in the experiments with the Turing patterns in the 920‘05 ——————————————
chlorite-iodide-malonic acidCIMA) reaction[12]. e ,é\

Kuramoto and Koga showed that the spiral waves in Eq. 0.04 = : =N
(54) become unstable at sufficiently larde [35]. They - = : N
showed that the spiral breakup leads to the formation of a ~ ;70.03} " ! !
chaotic spatiotemporal pattern — spiral turbulence. This will . ! !
be the case in the situation we study. Indeed, throughout the 0.02b— = 53 53 " 75
analysis we assumed thaby7;>1, which means that 'ngin P pd
b>1, so in general the spiral wave solution is unstable. 0 max
Note, however, that the value bfdecreases a&, increases, p

so whenZ, (and ) is not very small, the value dé may
become small enough, so that the spiral wave solution is FIG. 7. The sweep of the oscillations for given valuesof
stable. This can also be achieved by making the Coup”n@orizontal lines below the solid curkeobtained from the solution
constant8 smaller. of EQ. (56). The parameters used are=0.00025, p,=0.25,
Since generallyo>1, plane wave solutions will be stable €1=1,andc;=0.
only in a narrow range of the wave vectors arolrd0 [27].
This is because, in contrast to the one-dimensional case, thehereE is the energy of the oscillator corresponding to the
dispersion of the plane waves is high. However, for &4)  values ofp i, andp .. We solved this equation numerically
the Benjamin-Feir instability is not realized, so the synchro-in the casec,=0. Figure 7 shows a typical dependence of
nous oscillations of the domains are always stable in thehe amplitude of the oscillations on for a given value of
spatially distributed system close to the bifurcation point. ¢ in the case of the supercritical bifurcatiop,{, and pmax
The stationary multidomain patterns are never perfectcorrespond to the left and the right portions of the solid
The defects of the pattern will work as initiators for the spiralcurve, respectively From this figure it can be seen that the
waves, which will in turn break up and produce more spiraliimit cycle oscillations are stable only #q<7,<7c. If
waves invading the entire pattern, so the formation of ther, <7, ,, the amplitude of the oscillations will increase until
chaotically oscillating multidomain pattern is the more likely the domain collapses or merges with the neighbors. Several
scenario for the development of the unstable stationary mU'possibiIities exist for the values ﬁ?ﬁin and?fﬁax- The value
tidomain pattern in two dimensions. of 7,4 may happen to be negative, in this case the stability of
The imperfections of the multidomain pattern may alsothe |imit cycle oscillations will depend on whether the value
work as the guiding centers generating target waves of thgs ,,  pecomes greater thahat some value ofr,. The
oscillation phas¢27]. An argument similar to the one ap- qscillations will be stable for; greater than this value if this

plied to the one-dimensional strata may be applied here. Thg the case, or stable for all valuesafin the opposite case.
target waves may be initiated by the smooth spatial variaThe value ofp®

may also happen to be greater tharin
tions of the density of domains. The equation for the densit)fhis case thep max &Y bp g ha

: . ) region of the stability of the domain oscillations
will be given by Eqs(39) and(40), if one replacesi/ox by will also be narrower. Notice tha_iﬂin is always greater than

Z' S0 thﬁ ltlme sct?lle of theddeiﬂsnyfvanattrl]ondwnl g)tnce agsmzero because of the singular charactef @f) at p=0.
€ much longer tham,, and, thereiore, the density can be . yhe case of the subcritical bifurcation the limit cycle

'fho nscli?ereg ifrrc:zefn tﬁn wevlatt?rz ttlk:ne sc;]ali%. r%wei\tler’tiS:]n(i:gscillations are unstable for any values if so collective

hieh fr?: tsa? e'? atteerng zfe Iikele fg bSe ir?stafalgavx(/)hic dscillations of the domains in the multidomain pattern al-
gn, get p Xely L . n/vays break down in this case. The most likely scenario here

should also lead to the stochastization of the domain oscnlai-S that some of the domains will shrink and collapse whereas

tions. some will grow, which can be effectively thought of as an

It is clear that qualitatively the scenarios discussed abov‘r:hcrease of the pattern’s period. As a result, the value, of

?rre Tgﬁrr?ahzedn\’vh? 'IS dnolt vetrykck?zte @y Or:‘tct?]urse, i which mainly determines the type of the bifurcation, will get
or arbitrary 7, onhe Shoulld also take Into accou € poss “smaller, so in the new pattern of greater period the bifurca-

bility of the_ co!lapse or merging of the domains in the COUrS&ion may happen to be supercritical. This means that the
of the oscillations. TO_ determine the \(alues of at Wh'Ch. attern may naturally evolve into a state in which the collec-
the collapse or mergmg_of the domams oceur for a gIVeMiive domain oscillations are stable from more or less arbi-
value of p, one can consider the oscillator in H&0) W'th' trary initial conditions, provided that the initial condition
out the space dependence. The coll?pse or merging of & ngists of the alternating hot and cold domains of size less
domains occurs Whepn=0 OF pmax=3, reSpectively. The ynan o of ordere! It is also possible that the pattern that
values 0fppin andpmax Can be obtained from the condition of ¢ i this process is stable with respect to the domain
energy balance for the steady oscillations. Recalling that th§sjjations. Yet another possibility is that in this process
friction is weak, from the elementary mechanics we get  gome of the domains will merge, which will result in the

_ 2/ —=3 formation of an irregular pattern, which also may exhibit
ﬁmaxf(m\/z E_ Wwo(p__pﬁoaldp—: 0, (569  chaotic dynamics. The merging process may also lead to the
Pmin

\/5 3 destruction of the multidomain pattern. We will get back to




1472 C. B. MURATOV 55

these points when we discuss the results of the numericdixed radius on a perfect latticehexagonal in two dimen-
simulations of a concrete model. siong, we have a random arrangement of the domains with a
In the analysis presented in this section we did not specifgistribution of radii. What will be the dynamics of different
precisely the range of the values ef This range is deter- domains on the short time scadg}l?
mined by the stability of the stationary multidomain pattern  To proceed, we will consider a simplified situation and
with respect to the activator repumping and the transversgnore the space dependence of all dynamical quantities in
distortions of the walls of the domains. Whenis greater the problem. One can think that the domains are considered
than some value for a gives, the pattern becomes unstable in the system whose size is much smaller than 1. Let
with respect to the activator repumping effect leading to then(p,t) now be the distribution function of the domain radii
doubling of the pattern’s period, whereas whers smaller  p. The distributiom(p,t) must satisfy the Liouville equation
than some critical value at a given, the domains destabi- obtained from Eq(22). Rescaling appropriately, 7, p, and
lize with respect to the transverse instability of their wallst, and neglecting the terms that are not significant on the time
leading to the radially nonsymmetric distortions of the dO-scaIewgl, from Eqs.(18) and(22) we get
mains [8,10,16,36. Both these instabilities occur when

‘€~1 in the limit e~0 regardless of the value af. It is /B d

possible to show36] that for the stable stationary multido- ot 0_f p'n(p,Hdp, (60
main pattern in two dimensions the valueesf 0.002, so the

scenarios discussed above are indeed realized. Also, accord- an  _dn

ing to Osipov’s criterion[31], the transformation of a sta- Ea 77%, (62)
tionary multidomain pattern into a traveling one will occur

when ar~€e*<ac. where p§ is a constant that comes from the term

~ For the. purpose of completeness Iet.us quote the equy( 4., , 7.) in Eq. (18) and the distributiom(p,t) is normal-
tions obtained in the case of the three-dimensional multido;,eq to unity:

main pattern consisting of spherical domains situated on a
closed-packing lattice. The derivation follows along the
same lines as the derivation in two dimensions. Introducing f n(p,t)dp=1. (62)

3 3£§Q(6’51.7ls) The last condition implies the conservation of the number of

Po= — W, (57) the domains as a function of time. This condition is in fact
not always satisfied, since we have an absorbing boundary

condition forn at p=0 and even more sophisticated situa-

lingy i Eq(2 i
and rescalingy andp according to Eq(27), we obtain tion at largep because of the possibility of the domain merg-

an A2 22 ing. It is clear, however, that this condition will be satisfied if
—7]=An—clﬁ<1+ Tr\/—czp_3) —’T—fwgn(?—;g), the distributionn has finite support at all times and the pos-
Jt 3 3 58 sibility of merging is excluded.
(58) Let us introduce the quantities
dp __ 2€ p? 6p° 32p°
— ==+ —-—. = = k
ng T =t g (59 =1, m(v= [ pnp0ds (63
The properties of these equations are essentially the same W8erek=1,2, ... d. Then from Eqs(60) and (61) it fol-
in two dimensions. ows that
dmy —
V. ENTRAINMENT OF THE OSCILLATIONS at =—Kkpymy_q, (64
IN A DISORDERED PATTERN
The multidomain patterns that we studied so far consisted dn d
of domains situated on a regular lattice. We found that the dt Po~Ma- (65)

motion of the domains occurs on two time scales: the short

time scalewgl, which is proportional to the period of the Equations(64) and (65) can be solved exactly. One can
oscillations of a single domain, and the long time scale use Eq.(64) with k=0 to eliminate from Eq. (64) with
The motion of the domains on the time sca;lg1 is conser- k=1 and integrate this equation to ge§=m§+ C4, where
vative, so the timer; is associated with the relaxation of the C; is a constant of integration. This equation, together with
oscillator’'s energy. In two dimensions we found many of theEq. (64) with k=0 can be used to integrate E@4) with
situations in which the collective domain oscillations shouldk=2 to getms=m3+3C;m;+C,, and so forth. Thus, the
become chaotic, either because of the nonlinear dynamics @fhole set of Eqs(64) and (65) can be reduced to a single
the oscillation amplitude and phase, or because of the desquation form,. The constants of integration are determined
fects. This chaotic dynamics, however, is realized on theyy the initial distribution functiomg(p). If one knows the
long time scale and is essentially determined by the nonlinsplution of the equation fom;, one then gets

ear relaxation processes. Here we would like to ask the fol-

lowing question. Suppose that instead of the domains of a n(p,t)=ng(p—my(t)+my(0)). (66)
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The first conclusion one draws from the solution of Egs.
(64) and(65) is that the oscillations of different domains in a
random pattern are always entrained. This is in fact obvious
right from the start, since the rate of change of the radii for
each domain is proportional tg, which in turn depends
integrally on the distribution of radii. However, the dynamics
of the domains is determined by the initial distributiag
and may be qualitatively different for different initial condi-
tions, even if the parameters of the system are the same.

Let us see what happens whe+1,2,3. In the case
d=1 the equation fom, is

d’m;
< TM=po=0. (67)

One can see that for any distributiog (with finite support
and assuming that no domain merging octtin® motion is
that of a simple harmonic oscillator. The energy of the oscil- FIG. 8. The wave of the phase of the domain oscillations trav-
lator is determined by the value Jat t=0. One can see eling from left to right. Distributions of the activator for different
that dynamics of the random pattern on the time segléis  times. The parameters used are0.05, a=0.02, A=—0.4. The
identical to that of the ideally periodic pattern. system is 2& 4. The boundary conditions are periodic.

In d=2 andd=3 the situation becomes somewhat more

complicated. Ind=2 we have different values ofae and A for a fixed value ofe<1 from
localized initial conditions. Here we perform numerical
d?m, 2 2 simulations of Egs(3) and(4) with (70) and(71) with non-
ae T my+Cy—pp=0. (68)  |ocalized initial condition.

The homogeneous state of the system under consideration
Here again the dynamics is equivalent to that of an ideais stable whenA|>1/3/3=0.19. The various constants in-
hexagonal pattern, but the equilibrium point is shifted. Thevolved are[16,26
shift is determined byC,=(p?)—(p)? att=0. One can see

from Eq.(68) that whenC1>pS the oscillations are not pos- 2.2 3
sible. Ind=3 we have a=2, B=4, ZZT, Clzi, c,=0. (72
d'my +m3+3C,m;+C,—p3=0 (69)
m m —pp=0, _ . .
dt? 1 1™ 27 Po Unfortunately, the direct simulations of Eq&) and (4)

) ) ) with e<1 in the system of sufficiently large size are ex-
and the dynamics of the domains may be different from thajremely time consuming even on a very fast computer. In
of the domains in an ordered pattern. _ order for the equations fop and 7 to be in quantitative

The main conclusion that follows from the analysis abo"eagreement with the simulations we should haye0.01.

is that the disord(_ar, especially small, should not Sig”iﬁcam'yNevertheless, it is expected to have qualitative agreement
affect the dynamics of the pattern and that the equations fafith the predictions of the preceding sections. All our simu-
n andp should adequately describe the behavior of irregulajations were performed witle=0.05.
multidomain patterns as well. It is also clear that the distor- o first observation is that if a stable stationary multido-
tions of the domain shapes will not have significant effectyain pattern is taken as an initial condition in the run with
either. sufficiently smalle, the pattern will destabilize with respect
to the synchronous oscillations of the domains, and its evo-
VI. SIMULATIONS OF A CONCRETE MODEL lution will depend on how small the value af is and on
Ivvhether the homogeneous state of the system is stable. When
«a is slightly below the threshold value and the pattern’s pe-
riod is not very small, the oscillations of different domains

In this section we present the result of the numerica
simulations of the model with a simple cubic nonlinearity:

q=6°-6— 7, (70)  will synchronize. If the value ot is smaller, the domains
may start to merge during the oscillations, which will result
Q=6+ n—A. (7D in the formation of an irregular pulsating patternalis even

smaller and the homogeneous state of the system is stable,

Recently, Muratov and Osipov performed extensive nuthe pattern will collapse into the homogeneous state after a
merical simulations of this model in two dimensiofk6].  few periods of oscillations or transform into a turbulent pat-
The emphasis of their work was on the instabilities of thetern. The turbulence here is induced by the self-replication of
localized solitary structure¢AS) and the evolution of the the domains and is qualitatively different from the chaotic
patterns excited by a short localized external stimulus in théehaviors discussed abo{&6]. If the value of @ is small
stable homogeneous system. They were able to constructesnough and the homogeneous state of the system is unstable
state diagram showing what kinds of patterns are realized fawith respect to the uniform self-oscillations, the multidomain
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pattern will transform into the uniform self-oscillations. This of the almost homogeneous state formed in the system.
is in agreement with the predictions of our analysis. These patches are then invaded by the domains, which leads
Besides the synchronous oscillations of the domains, wéo the formation of an irregular pulsating pattern. For smaller
predicted traveling waves of the oscillation phase. Thesealues ofa this may also lead to the formation of autowaves
traveling waves are indeed realized in the simulatidfig.  and turbulence induced by self-replication of domdib8].
8). One has to use the special initial conditions to excite a In the simulations above we used a hexagonal pattern as
traveling wave. The distributions af should consist of the the initial condition. Let us now see what happens in the
domains whose radii vary smoothly along thaxis, and the more realistic situation when the multidomain pattern is dis-
distribution of  should follow this variation with the phase ordered. Figure 11 shows the evolution of such a pattern.
difference of/2. The initial stationary pattern was in fact generated as a result
In addition to the plane waves, target waves of the oscil-of the Turing instability of the homogeneous state at large
lation phase are observed. Figure 9 shows a portion of @. In the simulation of this figure the value of is small
target wave emanating from the top left corner of the systemenough, so that the stationary multidomain pattern is un-
The wave breaks down after a while, as the domains begin tstable, and a small disturbance was addegl o the vicinity
merge during the oscillations. As a result, an irregular chaef the top left corner of the system in order to make the
otically oscillating pattern forms in the system. Notice thatamplitude of the oscillations in this region bigger. We see
eventually, when no merging occurs any longer, the averagthat at early timesthe top three panels in Fig. Lihe oscil-
size of the domains becomes greater than the size of thations of the domains are indeed entrained, despite the dif-
domains at the beginning. This can be interpreted as a selferences in the domain sizes and shapes. Notice that in this
organized increase of the pattern’s period leading to the staimulation the homogeneous state of the system is unstable
bilization of the pattern’s oscillations. with respect to the uniform self-oscillations. One can see that
In another simulation in which the value af was here the amplitude of the oscillations increases until merging
smaller, the target pattern broke down not only because adnd collapse of the domains occur at the top left corner,
merging, but also because of the collapse of the smaller dowhich are then followed by the formation of the uniform
mains(Fig. 10. As a result of the domain collapse, patchesself-oscillations. The uniform self-oscillations eventually in-
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l:.::n:n: ;: FIG. 10. Breakdown of a target wave of the
:n:u::"" o oscillation phase for smalles. Distributions of
Se2e%0 [ the activator for different times. The parameters

used are €=0.05, «a=0.015, A=—0.2. The
system is 2 20. The boundary conditions are
neutral.
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FIG. 11. Breakdown of the collective domain
oscillations into the uniform self-oscillations.
Distributions of the activator for different times.
The parameters used are=0.05, «=0.015,
A=—0.1. The system is 2020. The boundary
conditions are neutral.

vade the whole system and destroy the multidomain pattermperiodic cycle in which the pattern changes periodically from
Yet the uniform self-oscillations and the multidomain patternhot to cold. In the run with these parameters the pattern
may coexist for quite a long time. This effect was observedeventually collapsed into the homogeneous self-oscillations.
in the dynamics of the Turing pattern in the CIMA reaction  So, in summary, the collapse and merging of the domains
[12]. appear to be the major causes for the chaotic behavior of the
Above we considered the dynamics of the patterns conescillations. The chaos here is due to the underlying irregu-
sisting of circular hot domains in the cold system. Clearly,larity of the domains themselves. The predicted chaotic be-
qualitatively the same dynamics is expected for the cold dohavior near the onset of synchronous domain oscillations
mains in the hot system. In fact, by changimg- — 6, seems to be beyond the capabilities of the available compu-
n— —n, andA— — A in the concrete system under consid- tational power. While we were able to see steady nonuniform
eration we will transform hot domains into cold and vice oscillations of a hexagonal multidomain pattern of period
versa. A possibility exists for such oscillations of the multi- £,=2.3 ate=0.1, «=0.05, andA=—0.1 in the system
domain pattern in which the hot domains will transform into 40X 40, the system was yet too small to identify these oscil-
cold domains and back. This process is illustrated in Fig. 12lations with chaos.
There a stationary multidomain pattern formed as a result of
the Turing instability atA= —Q._llwhen th(_a hot dome_lins are VIIl. CONCLUSION
favorable was taken as the initial condition. The simulation
was performed aA=0.1 when the cold domains are favor-  Thus, in this paper we studied the dynamics of the multi-
able. One can see the sequence of transitions from the hdbmain patterns of small period KXON systems. In order to
domains to cold and back during the oscillations. A lot of thesimplify the problem we took advantage of the smallness of
domains merge as their size increases, so the multidomairy the natural small parameter in the considered systems
pattern quickly transforms into an irregular pattern consisting8-10,15. In the limit e—~0 the dynamics of the pattern
of many disconnected pieces. The connectivity of the doreduces to the free boundary probl¢b8,26. This problem
mains changes with time. Aftdr=1.4 the system enters a may be further simplified by using the smallness of the pat-

FIG. 12. The oscillations leading to the inter-
conversion between the hot and the cold domains.
Distributions of the activator for different times.
The parameters used are=0.05, «=0.015,
A=0.1. The system is 2020. The boundary
conditions are periodic.
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tern’s period. This approach is somewhat limited in one di-implies that in this cas®,/D,~ a2 This condition re-
mension, but is always applicable to higher-dimensionafjuires considerably smaller difference in the diffusion coef-
multidomain patterns, i€ is small enough. In the case of the ficients of the activator and the inhibitor. _ _
periodic patterns we managed to reduce the number of dy- Another interesting implication of our results is that in
namical variables involved to the average domain ragius SOMe situations it is possible that the oscillatory behavior of

and the average value of. The equations for these quanti- (N€ “homogeneous” system is actually the consequence of

ties turned out to be universal. The nonlinearities of thethe dynamics of the underlying multidomain paftern. Indeed,

> - e - for the reasonable values db,~2x10"° cnPs ! and
- - 7
e Sy e ol e " 11051571 e woud et e iz of a s
b i 1 fact th i t'. imit of th yt d - domain is much smaller than~1.5X10 2 cm, so the do-
y us s in fact the asymplotic imit ot the U dynamics as,, ;g may actually lie beyond the resolution of the experi-
e—0. Note, however, that the value efhas to be suffi-

. . : . . _ment. Notice that in the case<1 the oscillatory instability
ciently small in order for this approach to be in quantitative ¢ 1o homogeneous state is always accompanied by the Tur-

agreement with the actual dynamics. For example, for theg jnstability[8—10,. Numerical simulations show that Tur-
concrete model studied in Sec. VI this is the case only whef,g patterns may form as a result of the instability of the
€=<0.01 (see also Ref[16]). Nevertheless, the qualitative homogeneous state even if the homogeneous state is unstable
agreement is good for 0.8de<1. with respect to the uniform oscillations and may in fact per-

The analysis performed by us predicts both synchronizasjst for even smallerr [16]. So, we suggest that in certain
tion and chaos in the collective domain oscillations of thesjtuations it is the Turing patterns that exhibit the oscillatory
multidomain patterns. There are two types of chaos that argehavior, whereas the system’s bulk kinetics has relaxation
realized: the chaos associated with the effects of the interplayharacter. If this is the case, one would expect to see the
of the dissipation and dispersion of the nonlinear waves otpexistence of the relaxation and oscillatory kinetics in the
the phase of the domain oscillations and the chaos associatgglstem' and multiplicity of the oscillation modes in a single
with the irregularity of the underlying multidomain pattern. system with the same parameters. The latter is the conse-
The first kind of chaos is shown to correspond to the interquence of the fact that the characteristic time and length
mittency and defect turbulence in the complex Landauscales of the oscillations of the multidomain patterns
Ginzburg equation. The second kind of chaos is due to thgtrong|y depend on the pattern’s period, which is not
breakdown of the averaged dynamics description and is asmiquely determined by the system’s parameters.
sociated with the collapse and merging of the domains and The dynamics of the multidomain patterns discussed in
the destruction of the regular multidomain pattern. Neverthethe present paper was observed by Boissande, Dulos, and De
less, it is shown that even in an irregular pattern the domairkepper in the experiments on CIMA reactigfi2]. They
oscillations are synchronized locally, so the chaos is stillyere actually able to follow the dynamics of the domains
realized on the time and length scales of the dissipation prognd see synchronization, waves of the oscillation phase, in-
cesses. cluding spirals on top of the multidomain pattern, merging of

Recall thate= \aD,/D,, whereD, andD , are the dif-  the domains, and the coexistence of the domain oscillations
fusion coefficients of the activator and the inhibitor, respec-and the uniform oscillations of the homogeneous sttte
tively. According to its definition, the value af is small as  Hopf holes, as they called thenThey also emphasized that
long asa is small andD ,=D,. However, if the values of the waves they observed are essentially different from those
Dy andD, are of the same order, as is the case in typicain the Belousov-ZhabotinskyBZ) reaction. In the CIMA
experiments with the autocatalytic reactigB3], this means reaction these are phase waves, as opposed to the autowaves
that a~ €%, At this relationship betweea ande the station-  in the BZ reaction. This is precisely the conclusion of our
ary patterns are always unstalp-10,15,37, and only au-  analysis.
towaves will be realized. Our analysis also shows that this Synchronously oscillating domains were also observed by
will be the case for the multidomain patterns. In other words Roseet al. in the experiments on the catalytic CO oxidation
one should haveb,>D, in order for the stationary and on the platinum surfacgl4]. The authors suggested that
more complex dynamic patterrieot autowavesto be fea- these oscillations may be explained by the introduction of
sible in an experiment. As was emphasized by Epstein andlobal coupling. The results of the present paper suggest a
Lengyel, in chemical systems, for example, one has to devismore natural explanation for this phenomenon as dynamics
special methods to make the ratio of the diffusion coeffi-of the multidomain pattern. To do this, one has to introduce
cients largg37]. On the other hand, the value afis deter-  a diffusion term into the equation for the inhibitor in the
mined by the kinetics of the chemical reactions involved andwo-variable reaction-diffusion model of this reaction, which
can be easily made small. is otherwise known to have relaxation kinetig39]. This

It is well known that a solitary patterfAS) in one dimen-  would also seem to explain the transition from a target pat-
sion would destabilize and transform into a pulsating patternern into a cellular structure observed in these experiments.
whena~ €, which implies thaD ,/D ,~ « [8-10,15,17,38  We would also like to mention the observation of synchro-
The same condition must be satisfied in order for the instanously pulsating cellular flames in the combustion experi-
bility of the homogeneous state of the system with respect tenents[13].
the uniform self-oscillations be before the Turing instability = Haim et al. observed experimentally a single breathing
of the homogeneous staf8-10,14. This is a rather strict domain in the FIS reaction in a circular reacf@?]. Their
requirement fora<1. On the other hand, as was shown inresults agree with the conclusions of Sec. IV concerning the
Sec. IV, the destabilization of the stationary multidomainmotion of a single domain. Indeed, they see the supercritical
patterns in higher dimensions occurs wher €3 which  Hopf bifurcation from the stationary to the breathing domain,
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growing anharmonicity of the oscillations for larger ampli- ACKNOWLEDGMENT
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