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Synchronization, chaos, and the breakdown of collective domain oscillations
in reaction-diffusion systems

C. B. Muratov
Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 19 August 1996!

The universal equations describing collective oscillations of the multidomain patterns of small period in an
arbitraryd-dimensional reaction-diffusion system of the activator-inhibitor type are asymptotically derived. It
is shown that not far from the instability leading to the formation of the pulsating multidomain pattern the
oscillations of different domains synchronize. In one dimension standing and traveling waves of the oscillation
phase are realized. In addition to these, in two dimensions target and spiral waves of the oscillation phase, as
well as spatiotemporal chaos of domain oscillations, are feasible. Further inside the unstable region the col-
lective oscillations break down, so the pulsating multidomain pattern transforms into an irregular pulsating
pattern, uniform self-oscillations, or turbulence. The parameter regions where these effects occur are analyzed.
The effects of the pattern’s disorder are also studied. The conclusions of the analysis are supported by the
numerical simulations of a concrete model. The obtained results explain the dynamics of Turing patterns
observed in experiments on the chlorite-iodide-malonic acid reaction.@S1063-651X~97!11002-9#

PACS number~s!: 05.70.Ln, 82.20.Mj, 47.54.1r
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I. INTRODUCTION

Complex dynamic patterns, such as traveling wav
breathers, or spatiotemporal chaos, are encountered in
riety of nonequilibrium physical, chemical, and biologic
systems@1–11#. These systems include electron-hole and
plasma, semiconductor and superconductor structures,
tems with uniformly generated combustion material, au
catalytic chemical reactions, models of population dynam
@1–11#. Recently, an intriguing phenomenon was observed
chemical experiments with Turing patterns@12#, a combus-
tion system with cellular flames@13#, and a catalytic reaction
on the surface@14#. In these experiments the patterns th
were observed consisted of many disk-shaped dom
whose radii oscillated in time. The oscillations of differe
domains either synchronized or exhibited complex s
tiotemporal behavior.

Many nonequilibrium systems in which patterns can for
including the systems mentioned above, are described by
reaction-diffusion systems of the activator-inhibitor type, t
simplest of which is a pair of reaction-diffusion equatio
@1–11#

tu

]u

]t
5 l 2Du2q~u,h,A!, ~1!

th

]h

]t
5L2Dh2Q~u,h,A!, ~2!

whereu is the activator,h is the inhibitor,l andL are the
characteristic length scales, andtu andth are the character
istic time scales of the activator and the inhibitor, resp
tively; q andQ are certain nonlinear functions, andA is the
system’s excitation level. For example, in the system w
the uniformly generated combustion material the activato
the temperature of the gas mixture, the inhibitor is the d
sity of the fuel,A is proportional to the rate of the fue
551063-651X/97/55~2!/1463~15!/$10.00
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supply, and the nonlinear functionsq andQ contain the dis-
sipation, supply, and reaction terms@8,9#. The length scales
l andL are related to the diffusion coefficients of the activ
tor and the inhibitorDu andDh , respectively:l5ADutu and
L5ADhth.

Kerner and Osipov showed that the properties of the p
terns forming in the systems described by Eqs.~1! and ~2!
are determined mainly by the parameterse5 l /L and
a5tu /th and the form of the nullcline of Eq.~1!. For many
systems this nullcline isN-shaped~Fig. 1! @8–10#. In such
N systems static domain patterns form whene!1 and
a@e (KN systems!, traveling waves~autowaves! at a!1
anda&e2 (VN systems!, and all sorts of dynamic pattern
at e!1 ande2&a&e (KVN systems! @8–10,15,16#. As a
result of the instability of the homogeneous state perio
and more complex patterns form in these system, whe
when the homogeneous state of the system is stable one

FIG. 1. The qualitative form of the nullclines of Eqs.~1! and
~2!.
1463 © 1997 The American Physical Society
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1464 55C. B. MURATOV
excite solitary patterns — autosolitons~AS! — by a suffi-
ciently strong localized external stimulus. InKN systems
these patterns are collections of static domains with sh
walls ~interfaces! whose width is of orderl @8,9,15,16#.
These domain patterns may undergo different kinds of in
bilities leading to the formation of complex dynamic patter
whena becomes sufficiently small. The simplest example
such a destabilization is the spontaneous transformation
static AS to a pulsating~breathing! AS. This effect was dis-
covered by Koga and Kuramoto in an axiomatic reactio
diffusion model@17# and subsequently studied by many a
thors, both for one-dimensional and higher-dimensio
radially symmetric AS@8–10,15,18,19#. Pulsating AS were
directly observed in semiconductors@20#, composite super-
conductors@21#, autocatalytic reactions@22#, and combustion
experiments@23#.

The situation becomes much more complicated when
stead of a single AS the pattern consists of many interac
domains. Several attempts to approach this problem w
made for one-dimensionalN systems. Kerner and Osipo
showed that the stationary periodic domain patterns~strata!
may undergo instability and transform into a breathing p
tern @8,10#. Ohta et al. were able to obtain the linearize
equation of motion for the periodic patterns in the piecewi
linear reaction-diffusion model and showed that the introd
tion of a simple nonlinearity to these equations leads to
synchronization of the domain oscillations@24,25#. Still, the
question of the effect of the interaction of domain patte
undergoing breathing motion, especially in highe
dimensional systems, remains largely unresolved.

It is easy to show that in the casee!1 the wavelength of
the fluctuation with respect to which the Turing instability
the homogeneous state of the system~1! and~2! is realized is
l;( lL )1/2 @8,10#. For this reason the periodic Turing stru
tures that form in the system have the peri
Lp;e1/2L!L. Moreover, in the higher-dimensional system
with e!1 any static pattern will consist of domains who
characteristic size is of ordere1/3L!L @15,16,26#. This
means that in a pattern consisting of many domains one
main interacts with a large number of other domains at
same time. This fact should significantly reduce the co
plexity of the interactions between different domains.

In this paper we will study the periodic one-dimension
and two-dimensional hexagonal patterns of small per
(Lp!L) undergoing the oscillatory instability in an arbitra
KVN system. Using the interfacial dynamics approach,
will derive the universal nonlinear equations describing
pulsations of the periodic multidomain patterns in arbitra
dimensions. We will analyze the conditions for the synch
nization and breakdown of the pulsations, the effects of
disorder, and study possible complex spatiotemporal beh
iors. Finally, we will compare the effects studied by us w
relevant experiments.

Our paper is organized as follows. In Sec. II we redu
Eqs.~1! and~2! to the problem of interfacial dynamics in th
limit e→0 and show a way to treat this problem in the ca
Lp!1. In Sec. III we apply this method to the on
dimensional periodic strata. In Sec. IV we consider tw
dimensional hexagonal patterns and also briefly discuss
case of the three-dimensional patterns. In Sec. V we ana
the domain oscillations in a disordered pattern with a rand
rp
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distribution of domain sizes. In Sec. VI we present the
sults of the numerical simulations for a concrete model, a
finally, in Sec. VII we discuss the relevancy of the obtain
results to the experiments and draw conclusions.

II. INTERFACIAL DYNAMICS PROBLEM

Let us measure the length and time in the units ofL and
th , respectively. Then Eqs.~1! and ~2! become

a
]u

]t
5e2Du2q~u,h,A!, ~3!

]h

]t
5Dh2Q~u,h,A!. ~4!

The boundary conditions for these equations may be neu
or periodic. From the mathematical point of view the fa
that u is the activator andh is the inhibitor means that fo
some values ofu andh we havequ8,0, and that for allu
andh @8–10#

Qh8.0, qh8Qu8,0, ~5!

and the derivativesQh8 , Qu8 , andqh8 do not change sign.
The dynamics of the domain patterns forming inKN and

KVN systems can be reduced to the interfacial dynam
problem in which the dynamics of the pattern interfaces
coupled to the bulk field@18,26#. Far enough from the do
main interfaces~at distances much greater thane) the bulk
field must satisfy the equation of smooth distributions~outer
solution!

]h

]t
5Dh2Q„u~h!,h,A…, ~6!

in which u andh are related by the equation of local co
pling

q~u,h,A!50, ~7!

that is, far from the domain interfacesu and h lie on the
nullcline of Eq.~3! @8–10#. This relation is multivalued~see
Fig. 1!, so one has to choose the branch withu,u0 in the
‘‘cold’’ regions ~the domains of low values ofu) and
u.u08 in the ‘‘hot’’ regions ~the domains of high values o
u). The dynamics of the interface is governed by the follo
ing equation:

nW •
]rW

]t
52e2a21K~rW !1v„h~rW !…, ~8!

whererW is a point on the interface,nW is the normal vector to
the interface pointing into the cold region,K(rW) is the cur-
vature at the pointrW of the interface, andv„h(rW)… is the
velocity of the interface in the absence of curvature a
function of the value of the bulk fieldh(rW) at the interface.
The functionv(h) is a solution to the nonlinear eigenvalu
problem and is in general some complicated nonlinear fu
tion of h @8–10,18,26#.
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55 1465SYNCHRONIZATION, CHAOS, AND THE BREAKDOWN . . .
The interfacial dynamics problem represented by Eqs.~6!
and~8! is a highly nonlinear problem. However, the situati
becomes simpler if the pattern consists of the alternating
and cold regions whose characteristic size is much sma
than 1. Kerner and Osipov showed that in this case the v
of h is close to a constant in the entire pattern@8,10#. The
reason is that because of its high diffusivity the inhibit
cannot react well on these variations of the activator wh
characteristic length is much smaller than the character
length scale of the inhibitor. This allows us to linearize E
~6! aroundh5hs , wherehs is the constant value of th
inhibitor. Introducing

h̃5h2hs , ~9!

we get

]h̃

]t
5Dh̃2c1h̃2~c32c1!h̃I ~x!2Q~us1 ,hs!2aI~x!,

~10!

where

c1,35Qh8 ~us1,3,hs!2
qh8 ~us1,3,hs!Qu8~us1,3,hs!

qu8~us1,3,hs!
, ~11!

a5Q~us3 ,hs!2Q~us1 ,hs!, ~12!

the values ofus1,3 satisfy

q~us1,3,hs!50, ~13!

whereus1 andus3 are the minimal and the maximal roots
Eq. ~13!, respectively;I (x) is the indicator function, which is
equal to 1 ifx is in the hot region and zero in the cold regio
Notice that, according to Eqs.~5!, the constantsc1 andc3 are
positive.

Obviously,hs should be equal to the value ofh at which
v(h)50 in order for the pattern to be stationary. The val
of hs must therefore satisfy@8,9,26#

E
us1

us3
q~u,hs!du50. ~14!

For small h̃ the functionv(h) may be linearized around
hs , so we obtain@26#

v5
eBh̃

aZa
, ~15!

where

B52aE
us1

us3
qh8 ~u,hs!du, ~16!

and

Z5E
us1

us3A22Uudu, Uu52E
us1

u

q~u,hs!du. ~17!

The constantsB andZ are of order 1. Notice that, accordin
to Eq. ~5!, the value ofB is positive.
ot
er
ue

e
ic
.

Although Eqs.~8! and~10! with ~15! are simpler than the
original interfacial dynamics equations, they are still difficu
to deal with. It appears, however, that these equations ca
further simplified for treating multidomain patterns by intr
ducing some averaged variables. We will outline this pro
dure in this section and demonstrate its application to
periodic patterns in the subsequent sections.

Let us introduce the number of domains per unit volum
n and the radius of the domainr ~in one dimensionr is the
half-width of a domain!. If we now average Eq.~10! over the
volume of sizes such thatr&s!1, we will obtain the
‘‘coarse-grained’’ equation for the average value of the
hibitor h̄5^h̃&:

]h̄

]t
5Dh̄2c1h̄~11c2nrdVd!2Q~us1 ,hs!2anrdVd ,

~18!

whereVd is the volume of thed-dimensional unit sphere
(V152), and

c25~c32c1!/c1 ~19!

measures the asymmetry between the hot and the cold
mains. According to Eq.~5!, the value ofc2.21. Besides
h̄, there is a local contribution toh̃ due to the variation of
h̃ on the length scales ofr!1. Let us introduce

ĥ5h̃2h̄. ~20!

Sinceĥ varies on the short length scales, the terms prop
tional to h̃ in the right-hand side of Eq.~10! are small com-
pared to the Laplacian. Also, when the characteristic ti
scale of the variation ofĥ is much greater thanr2, as is the
case in all interesting situations~see the following sections!,
the time derivative in Eq.~10! is small compared to the La
placian as well. Subtracting Eq.~18! from Eq. ~10! and ne-
glecting all these terms, we obtain

Dĥ5a$I ~x!2^I ~x!&%, ^ĥ&50. ~21!

From this equation one can obtain the value ofĥ5ĥs in the
wall of an individual domain, so from Eqs.~8! and ~15! it
follows that the equation for the radius is

]r

]t
52

e2~d21!

ar
1

eB~ h̄1ĥs!

aZa
. ~22!

The variablesh̄, ĥs , andr may now be considered as spa
and time dependent on the length scales much greater
s. Thus, we have a closed set of equations for these coa
grained variables, so the number of relevant dynamical v
ables in the problem is considerably reduced.

III. ONE-DIMENSIONAL PERIODIC STRATA
OF SMALL PERIOD

Let us consider the one-dimensional periodic strata of
periodLp!1 ~Fig. 2!. In this casen5Lp21 so Eq.~18! be-
comes
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1466 55C. B. MURATOV
]h̄

]t
5

]2h̄

]x2
2c1h̄~122c2Lp21r!22aLp21~r2r0!,

~23!

where we introduced

r052LpQ~us1 ,hs!/2a. ~24!

Equation~21! for a one-dimensional pattern with the perio
Lp becomes

d2ĥ

dx2
5aI~x!22aLp21r, ^ĥ&50 ~25!

with the neutral boundary conditions atx56Lp/2 ~because
of the translational invariance, we may choose the cente
the domain to be atx50). A straightforward calculation
gives

ĥs5aS 2
rLp
6

1r22
4r3

3LpD . ~26!

Rescaling the variablesh̄ andr

h̄85h̄/aLp2 , r̄5r/Lp , ~27!

and introducing the quantities

t15aZ/eBLp , v05A2eB/aZLp. ~28!

We write Eqs.~22! and ~23! ~dropping the primes! as

]h̄

]t
5

]2h̄

]x2
2c1h̄~112c2r̄ !2v0

2t1~ r̄2 r̄0!, ~29!

t1
]r̄

]t
5h̄2

r̄

6
1 r̄ 22

4r̄ 3

3
. ~30!

The parameters of the original reaction-diffusion syst
@Eqs. ~3! and ~4!# enter these equations only through co
stantsv0, t1, andc2 ~the value ofc1 can be absorbed in th
definitions of t1 and v0), and the excitation level enter
mainly throughr̄0. Note that since, according to its defin
tion, the value of 2r cannot exceedLp , we have 0, r̄, 1

2.
Also note that Eqs.~29! and ~30! with the spatial derivative
equal to zero describe the oscillations of a single domain
the system of sizeLp!1.

FIG. 2. The distributions ofu and h in a stationary one-
dimensional periodic strata.
of

-

in

Equations of the type of Eqs.~29! and ~30! have been
extensively studied in the context of oscillatory chemical
actions @2–6,27#. It was shown that these systems host
great richness of dynamic patterns, such as self-susta
uniform oscillations, traveling waves, target patterns and s
rals ~in higher dimensions!, and spatiotemporal chaos~turbu-
lence!. This is also true for Eqs.~29! and~30!. However, one
should keep in mind that these equations describe the
namics of the already existing multidomain pattern, in oth
words, the dynamical patterns described by Eqs.~29! and
~30! will be seen ‘‘on top’’ of the stationary multidomain
~Turing! patterns. This is an important distinction from th
oscillatory systems, such as oscillatory chemical reactions
which the dynamic patterns appear on top of the station
homogeneous state.

We are interested in the collective oscillations of the d
mains in the pattern. According to Eqs.~29! and ~30!, the
characteristic frequency of these oscillations is equal tov0.
In view of Eq. ~28!, the period of oscillations is the shorte
time scale in the problem if

eLp3!a!eLp21 . ~31!

Recall that in deriving Eq.~21! we neglected the time deriva
tive of ĥ. This is justified ifv0!Lp22 , which is equivalent
to a@eLp3 , so the first condition in Eq.~31! is in fact a
necessary condition for Eqs.~29! and ~30! to be valid.

Equations~29! and ~30! have a trivial solutionr̄5const,
h̄5const, which corresponds to the stationary multidom
pattern~strata!. Fora satisfying the condition in Eq.~31! we
havev0@1, so the value ofr̄ for the stationary pattern is
close to r̄0. Linear stability analysis of Eqs.~29! and ~30!
shows that att1.t1c , where

t1c>
12r̄0224r̄0

221

6c
, ~32!

and

c5c1~112c2r̄0!.0, ~33!

this solution is stable. Att15t1c it loses stability with re-
spect to the uniform oscillations with the frequencyv>v0
and the wave vectork50. The uniformly oscillating solution
corresponds to the pattern in which all domains are oscil
ing in phase with the frequencyv0. This is a supercritical
Hopf bifurcation~see below!. In view of Eq. ~28! and ~32!,
the value oft1c;1, so in terms of the original variables w
haveac;eLp andv0;Lp21 . Also, according to Eq.~32!,
the value oft1c.0 only if

1

4 S 12
1

A3D , r̄0,
1

4 S 11
1

A3D , ~34!

i.e., 0.11, r̄0,0.39. This is a completely universal result fo
all one-dimensional strata of small period inKVN systems.
It is easy to see from Eq.~32! that if the condition of Eq.~34!
is satisfied, for any acceptable value ofc2 there exists
t1c5t1c

max, such that the stationary pattern is stable
t1.t1c

max for any value ofr̄0. If the condition in Eq.~34! is
not satisfied, the pattern will still become unstable wh
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55 1467SYNCHRONIZATION, CHAOS, AND THE BREAKDOWN . . .
a;e2 @8–10,15#. This will happen at the values ofa that are
much smaller than in the former case. Indeed, accordin
Eq. ~32!, the oscillatory instability occurs ata@e2 since
Lp is always much greater thane @8,10#.

To study the destabilization in more detail we will use t
fact that the period of the oscillationsv0

21 is much smaller
than the characteristic relaxation timet1, so one can apply
the method of Bogoliubov and Mitropolsky to Eqs.~29! and
~30! @28#. To do this, we will use Eq.~30! to eliminateh̄
from Eq. ~29! and write

r̄5 r̄01Rcos~v0t1Q!, ~35!

whereR and Q are slowly varying functions oft and x.
Substituting Eq. ~35! into Eq. ~29!, multiplying it by
sin(v0t1Q) and cos(v0t1Q), and integrating over the pe
riod, we will get, respectively,

]R

]t
5

cR

2t1
~t1c2t1!2

R3

2t1
1
1

2

]2R

]x2
2
R

2 S ]Q

]x D 2, ~36!

and

]Q

]t
5
1

2

]2Q

]x2
1
1

R

]R

]x

]Q

]x
. ~37!

In deriving Eqs.~36! and ~37! we kept only the leading
terms.

Equations~36! and ~37! are equivalent to the equation
for the amplitude and phase for the well-known Newe
Whitehead equation@29#. An important class of solutions o
this equation isR5R0 andQ5kx, where

R05Ac~t1c2t1!2t1k
2 ~38!

and k,Ac(t1c2t1)/t1. It represents the nonlinear dispe
sionless traveling waves of the phase of the domain osc
tions with the wave vectork, which are stable if
k,Ac(t1c2t1)/3t1. A particular solution withk50 corre-
sponds to the synchronous oscillations of the domains
fact, if the boundary conditions for the original reactio
diffusion system~3! and~4! are neutral, as in most of the re
situations, this is the only admissible plane wave soluti
Since it is stable, a variety of initial conditions will evolv
into it, causing the oscillations of different domains to sy
chronize. This means that the synchronization of oscillati
of different domains is the major scenario of the develo
ment of the small-period patterns in one dimension. Eq
tions ~36! and ~37! also admit a solution in the form of
domain boundary~kink!, upon going through which the
phaseQ changes byp. These are the only stable stationa
solutions of Eqs.~36! and ~37!, so any initial condition will
in general produce a collection of regions in which the d
mains oscillate in phase. In the regions next to each othe
domains will oscillate in antiphase. Att1,t1c Eqs.~36! and
~37! also have the solutions in the form of the wave in whi
the stable stateR5R0 with k50 andQ5const invades the
unstable stateR50. This wave corresponds to the onset
the synchronous oscillations in the unstable stationary st
from a localized initial condition. The propagation veloci
of this wave isv*5Ac(t1c2t1)/t1 @30#.
to
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It is clear that small local inhomogeneities, both intrins
and extrinsic, may play the role of the organizing centers
the one-dimensional analog of the target patterns: wa
traveling away from the inhomogeneity in both direction
An example of an intrinsic inhomogeneity here is a nonu
form distribution of the domains along thex axis. In this case
instead of the constant density of domains we have a sm
function n(x), which can also vary in time and can be co
sidered as an extra degree of freedom in the problem.
density must satisfy the continuity equations

]n

]t
1

]

]x
~nv!50, ~39!

where

v5
r̄

t2

]h̄

]x
~40!

is the velocity of the domain as a whole due to the gradi
of h̄ @see Eq.~15!#, and

t25aZ/eBLp3 ~41!

is the characteristic time scale of the density variation. F
t1;1 we havet2;Lp22 , so the density relaxes on a muc
longer time scale and any nonuniform distribution ofn is
frozen on the time scale of the relaxation of the amplitu
and phase. This means that by setting a nonuniform den
of domains as the initial condition one can produce comp
spatiotemporal patterns of the domain oscillations that w
not synchronize for a very long time.

From the definition ofR it follows that it lies in the inter-
val from r̄0 to

1
22 r̄0. If R exceeds one of these values, t

domains will either merge or collapse in the course of
oscillations. On the other hand, according to Eq.~38!, the
value ofR0 may exceed eitherr̄0 or

1
22 r̄0 for some values

of t1. This can be seen from Fig. 3, in which the botto
solid line corresponds to the values oft1 at which this hap-
pens. Figure 3 thus shows that the synchronization of
domain oscillations occurs only in the relatively narrow r
gion of the system’s parameters. The merging or collaps

FIG. 3. The parameter regions for oscillations and breakdown
the one-dimensional periodic strata. The upper solid line is the
stability threshold for the multidomain pattern with respect to t
oscillations. Below the bottom solid line the collective oscillatio
of the strata break down.
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1468 55C. B. MURATOV
the domains will result in the breakdown of the collecti
domain oscillations and collapse of the strata. Indeed, s
pose that at some moment every two domains merged
one. This may be viewed as doubling of the pattern’s per
Lp . According to Eq.~28!, this will result in the decrease o
t1 and further increase ofR0. Therefore, the process of do
main merging will have an avalanche character and lead
complete destruction of the strata. The way the breakdow
the strata will follow will depend on whether or not the h
mogeneous state of the systems is stable with respect to
uniform self-oscillations of the homogeneous state at
value ofA. If the homogeneous state of the system is u
stable, the breakdown will result in the onset of the unifo
relaxation self-oscillations~the latter follows from the fact
that sincet1c&1 and e!1 we havea!1 and, therefore,
relaxation oscillations@8–10#!. If the homogeneous state o
the system is stable, the breakdown will result in the form
tion of traveling domain patterns~AS! or in the collapse of
the strata into the homogeneous state.

The scenarios of the evolution of one-dimensional str
of small period discussed in the previous paragraph are
cisely what we see in the numerical simulations of a conc
model. We also find a detailed quantitative agreement
tween the limit cycle oscillations of a single domain det
mined by Eqs.~29! and~30! and the results of the numerica
simulations of a reaction-diffusion model for small enou
e andLp .

Before concluding this section, let us discuss another
namic behavior of strata in one dimension. As was rece
shown by Osipov, fora&e periodic patterns may underg
the instability leading to the formation of the traveling stra
~a wave train! @31#. Osipov obtained the general criterion fo
this instability. In the case of the one-dimensional strata
small period it is possible to calculate the threshold value
a, since the spatial variation ofh is given byĥ(x). Substi-
tuting it into the criterion@Eq. ~4.5! of Ref. @31##, we obtain
that the transformation of the stationary strata to travel
occurs ataT;eLp3 . One can see that this instability occu
for much smaller values ofa than the oscillatory instability
for which ac;eLp . Therefore, the instability leading to th
formation of the traveling pattern can never be reached
the one-dimensional strata of small period.

Throughout the analysis presented above we used the
that the period of the pattern is small compared to the len
of the variation of the inhibitor and usedLp as the small
parameter in the expansions. The smallness of the param
Lp greatly simplified the treatment of the domain intera
tions and led to the universal results, which are practica
independent of the concrete nonlinearities of the syst
This is a general property of theKN and KVN systems
@15,16,26#. Unfortunately, no such treatment is possible
the one-dimensional periodic patterns whose period is of
der 1. In the latter case one is faced with the problem
treating the dynamics of each individual domain separa
and taking into account the complex memory effects ass
ated with the domain interactions, which cannot be solved
general. So, the problem of the interaction and dynamic
the one-dimensional patterns consisting of the doma
whose size if of order 1 remains open. This problem, ho
ever, does not exist in higher dimensions, ife is small
enough. In this case the domain sizes are necessarily s
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since the domains whose size is greater thane1/3 are always
unstable with respect to the transverse instability of th
walls and split into smaller domains@15,26#.

IV. HIGHER-DIMENSIONAL MULTIDOMAIN PATTERNS

Let us now study periodic multidomain patterns in high
dimensions. For definiteness we will consider a tw
dimensional hexagonal pattern of disk-shaped domains,
most frequent Turing pattern in chemical experiments@5#. As
was shown by Muratov and Osipov, in two dimensions
stable stationary multidomain pattern must consist of the
mains whose size is of ordere1/3 @15,16#. Since the period of
the pattern is of the same order as the domain size, it ca
used as a natural small parameter, so all the ideas of
analysis of the previous section should apply to the tw
dimensional multidomain patterns.

Let us proceed with the derivation of the equations d
scribing the collective oscillations of the domains in the p
tern. For a hexagonal pattern with the periodLp the density
of the domains isn52/A3Lp2 , so Eq.~18! becomes

]h̄

]t
5Dh̄2c1h̄S 11

2pc2r
2

A3Lp2
D 2

2pa~r22r0
2!

A3Lp2
, ~42!

where we introduced

r0
252

A3Lp2Q~us1 ,hs!

2pa
. ~43!

Because of the anisotropy of the hexagonal lattice the sh
of the domains will in general slightly deviate from the dis
shape. It is clear that this deviation is small and is sma
when the radius of the domains is smaller. So, for the sak
simplicity and without significantly affecting the results o
the analysis, we will ignore the effects of the anisotropy a
consider the domains to be ideally circular. Also, instead
considering the problem forĥ in the hexagonal cell, we will
solve it for a circular domain of radiusLp /2. Thus, we have

d2ĥ

dr2
1
1

r

dĥ

dr
5aI~r !2

4ar2

Lp2
, ^ĥ&50, ~44!

wherer is the radial coordinate and the boundary conditio
are neutral atr50 and r5Lp/2. Solving this equation for
ĥ and calculatingĥs5ĥ(r), we get

ĥs5aS 3r2

8
2
3r4

2Lp2
1

r2

2
ln
2r

LpD , ~45!

so, Eq.~22! becomes

]r

]t
52

e2

ar
1

eB

aZa S h̄1
3r2

8
2
3r4

2Lp2
1

r2

2
ln
2r

LpD . ~46!

Rescaling the variables according to Eq.~27! and dropping
the primes, from Eqs.~42! and ~46! we get
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]h̄

]t
5Dh̄2c1h̄S 11

2pc2

A3
r̄2D 2

p

A3
v0
2t1~ r̄22 r̄0

2!,

~47!

t1
]r̄

]t
5h̄2

ē

r̄
1
3r̄2

8
2
3r̄4

2
1

r̄2

2
ln2r̄, ~48!

where

ē5eZ/BLp3 . ~49!

As before, 0, r̄0,
1
2. The parameterē does not appear in th

one-dimensional case. It characterizes the stability of the
mains with respect to the transverse perturbations. Since
curvature radius of the stable domains must be of ordere1/3

@15,16#, the value ofē is of order 1 for the domains whos
size is comparable withLp;e1/3. Notice that Eqs.~47! and
~48! without the space dependence and with the coeffic
p/A3 replaced by 2 in Eq.~47! will describe the oscillations
of a single domain in a circular region of radiusLp!1. This
situation was realized in the experiment by Haimet al. on
the ferrocyanide-iodate-sulfite~FIS! reaction@22#.

When the condition of Eq.~31! is satisfied, Eqs.~47! and
~48! have two time scales, as in the one-dimensional ca
the short time scalev0

21 for the oscillations and the long
time scalet1 for the relaxation of their amplitude and phas
However, in contrast to the one-dimensional case, the an
sis is complicated by the fact that now the oscillations the
selves are nonlinear. To proceed further, we will use Eq.~48!
to expressh̄ in terms of r̄ and substitute it into Eq.~47!,
taking into account thatv0@1. We obtain

]2r̄

]t2
1

p

A3
v0
2~ r̄ 22 r̄ 0

2!52S f ~ r̄ !

t1
2D D ]r̄

]t
, ~50!

where

f ~ r̄ !5c1t1S 11
2pc2

A3
r̄ 2D 2

ē

r̄2
2
5r̄

4
16r̄ 32 r̄ ln2r̄.

~51!

The left-hand side of Eq.~50! is an equation of motion for
a particle of unit mass in the potentialV5(pv0

2/A3)
3( r̄3/32 r̄0

2r̄). For 0, r̄, 1
2 it describes finite motion be-

tweenr̄5 r̄min andr̄5 r̄maxwith the characteristic frequenc
v0. The right-hand side of Eq.~50! is a weak nonlinear fric-
tion force, which also contains the diffusion term th
couples the oscillators in a spatially distributed system.

As in the case of the one-dimensional patterns, the e
librium solutionr̄5 r̄0 of Eq. ~50! corresponds to the station
ary multidomain pattern. Equation~50! shows that the sta
tionary multidomain pattern becomes unstable~the friction
f becomes negative! with respect to the fluctuation with
v>v0 andk50 whent1,t1c , where

t1c5
4ē15r̄ 0

3224r̄ 0
514r̄ 0

3ln2r̄0

4c1r̄ 0
2@11~2pc2 /A3!r̄ 0

2#
. ~52!
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Going back to the original variables, we see that in the c
of the two-dimensional multidomain pattern the destabiliz
tion occurs at

ac;e4/3. ~53!

Note that the value ofac is smaller thanav;e at which a
localized domain~AS! is destabilized with respect to pulsa
tions @8,9,15#.

Figure 4 shows the possible forms of the dependen
t1c( r̄0) obtained from Eq.~52! for different values ofē. One
can see from Eq.~52! that for ē.0.031 for any value ofr̄0
there exists a value oft1 at which the instability occurs
When 0.000 45, ē,0.031 the instability is realized only fo
r̄0, r̄a3 with r̄a3,

1
2, whereas forē,0.000 45 the instability

is realized forr̄0, r̄a1 andr̄a2, r̄0, r̄a3 ~see Fig. 4!. When
ē. ē* ~for example,ē*50.0034 forc250) for a givent1
the instability is realized for a single value ofr̄0, whereas for
ē, ē* there are values oft1 for which the instability is
realized for three values ofr̄0.

Let us take a closer look at Eq.~50!. The behavior of the
oscillations is determined by the sign of the friction termf in
Eq. ~50!. Three possible forms of this term as a function
r̄ are shown in Fig. 5. The oscillation amplitude decrease
r̄ remains in the domain wheref.0, or increases ifr̄ is in
the domain wheref,0 ~indicated by arrows in Fig. 5!. In
the situation of Fig. 5~c! all values ofr̄ correspond to the
amplification region, so the amplitude of any oscillations w
increase untilr̄maxbecomes equal to

1
2 or until r̄min50. In the

first case the neighboring domains will merge while in t
second the domain will collapse. Both these effects w
cause the restructuring of the pattern and significant chan
in the collective domain oscillations. In the situation of Fi
5~b! the oscillations are amplified whenr̄, r̄c3 and attenu-
ated whenr̄. r̄c3. The stationary multidomain pattern wi
be stable whenr̄0. r̄c3 or unstable whenr̄0, r̄c3. Depend-
ing on the signs of the first and the second derivatives
f ( r̄) the bifurcation atr̄05 r̄c3 may be both supercritical an
subcritical~this is a Hopf bifurcation!. It is clear, however,
that deeper into the unstable regime the oscillations will
amplified until they collapse whenr̄min50 even in the case
of the supercritical bifurcation.

The most interesting situation is shown in Fig. 5~a!. There
the oscillations are amplified whenr̄, r̄c1 or r̄c2, r̄, r̄c3

FIG. 4. The dependencet1c( r̄0) from Eq. ~ 52! for different
values ofē.
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1470 55C. B. MURATOV
and attenuated for the rest of the values ofr̄, so the pattern is
stable only forr̄c1, r̄0, r̄c2 or r̄0. r̄c3. The bifurcation at
r̄c3 is supercritical, while the bifurcation atr̄05 r̄c1 is sub-
critical. This can be easily seen from the following argume
By varying the value oft1 one can make the minimum o
f betweenr̄c2 and r̄c3 arbitrarily shallow, thus controlling
the amplification of the oscillations in the regio
r̄c2, r̄, r̄c3. Since in this case the small region of ampli
cation is surrounded by a finite region of dissipation, t
bifurcation atr̄c2 andr̄c3 will be supercritical. Since the firs
and the second derivatives off at r̄c1 are opposite to the on
at r̄c2, the bifurcation atr̄c1 is subcritical. If the value of
t1 is decreased, the minimum off betweenr̄c2 and r̄c3 gets
deeper, and at some value oft1 the bifurcation atr̄c2 be-
comes subcritical. Upon further decreasing the value oft1
the limit cycle associated with the subcritical bifurcation

FIG. 5. The nonlinear friction termf ( r̄) in Eq. ~50!: ~a!
ē50.00025, t150.03; ~b! ē50.0075, t150.175; ~c! ē50.05,
t150.025. Other parameters arec151, c250.
t.

e

t

r̄c2 will become unstable and lead to the collapse of
oscillations. Thus, the most stable limit cycle oscillatio
should be expected whenr̄c2, r̄0, r̄c3 and the minimum of
f betweenr̄c2 andr̄c3 is sufficiently shallow. The analysis o
the bifurcation types for different values ofē andr̄0 is sum-
marized in Fig. 6~for simplicity we usedc250).

Up to now we have discussed the oscillations of a sin
domain in the multidomain pattern. What we found is that
certain situations the synchronous oscillations of all doma
in the pattern can be stable. This naturally implies that
synchronously pulsating multidomain pattern is an attrac
and the synchronization of the domain oscillations is the
fore one of the major scenarios of the development of
stationary multidomain patterns. However, the situation
richer in two dimensions because of the possibility of oth
classes of stable solutions, such as target patterns and s
waves. In principle, it is possible to use the fact th
v0

21!t1 and obtain the equations for the amplitude a
phase by averaging over the trajectories of the frictionl
oscillators in this case as well. This calculation, howev
cannot be carried out in the analytical form. On the oth
hand, in a wide region of the parameters the bifurcation
the stationary pattern is supercritical, so in its vicinity t
dynamics of the pattern is described by the complex Land
Ginzburg equation. In the appropriately scaled time a
space variables this equation in the considered case ha
form

]W

]t
5DW1W2~11 ib !uWu2W, ~54!

whereW is the appropriately normalized complex amplitu
and

b5
4321/2333/4p1/2r̄0

5/2v0t1c

~16p/A3!c1c2t1cr̄0
4256ē1216r̄0

51 r̄0
314r̄0

3ln2r̄0
.

~55!

The complex Landau-Ginzburg equation has been
subject of intensive studies for the last two decades~see, for
example, Refs.@2,27,32,33#!. Specifically, for the case of Eq

FIG. 6. The bifurcation diagram for the two-dimensional s
tionary multidomain pattern forc250. The numbers 1, 2, and 3 in
the figure correspond to the bifurcations atr̄05 r̄c1, r̄05 r̄c2, and
r̄05 r̄c3, respectively. The shaded regions are those where the
stability is not realized (t1c,0).
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55 1471SYNCHRONIZATION, CHAOS, AND THE BREAKDOWN . . .
~54! Hagan obtained the solution in the form of a stead
rotating spiral wave@34#. In our case this spiral wave will be
seen on top of the stationary multidomain pattern. Precis
this phenomenon was observed by Boissande, Dulos, an
Kepper in the experiments with the Turing patterns in
chlorite-iodide-malonic acid~CIMA ! reaction@12#.

Kuramoto and Koga showed that the spiral waves in
~54! become unstable at sufficiently largeb @35#. They
showed that the spiral breakup leads to the formation o
chaotic spatiotemporal pattern — spiral turbulence. This w
be the case in the situation we study. Indeed, throughout
analysis we assumed thatv0t1@1, which means tha
b@1, so in general the spiral wave solution is unstab
Note, however, that the value ofb decreases asLp increases,
so whenLp ~and e) is not very small, the value ofb may
become small enough, so that the spiral wave solution
stable. This can also be achieved by making the coup
constantB smaller.

Since generallyb@1, plane wave solutions will be stabl
only in a narrow range of the wave vectors aroundk50 @27#.
This is because, in contrast to the one-dimensional case
dispersion of the plane waves is high. However, for Eq.~54!
the Benjamin-Feir instability is not realized, so the synch
nous oscillations of the domains are always stable in
spatially distributed system close to the bifurcation point.

The stationary multidomain patterns are never perfe
The defects of the pattern will work as initiators for the spi
waves, which will in turn break up and produce more spi
waves invading the entire pattern, so the formation of
chaotically oscillating multidomain pattern is the more like
scenario for the development of the unstable stationary m
tidomain pattern in two dimensions.

The imperfections of the multidomain pattern may a
work as the guiding centers generating target waves of
oscillation phase@27#. An argument similar to the one ap
plied to the one-dimensional strata may be applied here.
target waves may be initiated by the smooth spatial va
tions of the density of domains. The equation for the den
will be given by Eqs.~39! and~40!, if one replaces]/]x by
¹, so the time scale of the density variation will once ag
be much longer thant1, and, therefore, the density can b
considered frozen on the latter time scale. However, si
the dispersion of the waves in the considered situation
high, the target patterns are likely to be unstable, wh
should also lead to the stochastization of the domain osc
tions.

It is clear that qualitatively the scenarios discussed ab
are also realized whent1 is not very close tot1c . Of course,
for arbitraryt1 one should also take into account the pos
bility of the collapse or merging of the domains in the cou
of the oscillations. To determine the values oft1 at which
the collapse or merging of the domains occur for a giv
value of r̄0 one can consider the oscillator in Eq.~50! with-
out the space dependence. The collapse or merging o
domains occurs whenr̄min50 or r̄max5

1
2, respectively. The

values ofr̄min andr̄maxcan be obtained from the condition o
energy balance for the steady oscillations. Recalling that
friction is weak, from the elementary mechanics we get

E
r̄min

r̄max
f ~ r̄ !A2FE2

pv0
2

A3 S r̄ 3

3
2 r̄ 0

2r̄ D Gdr̄50, ~56!
ly
De
e

.

a
ll
he

.

is
g

he

-
e

t.
l
l
e

l-

e

he
-
y

n

e
is
h
a-

e

-
e

n

he

e

whereE is the energy of the oscillator corresponding to t
values ofr̄min andr̄max. We solved this equation numericall
in the casec250. Figure 7 shows a typical dependence
the amplitude of the oscillations ont1 for a given value of
ē in the case of the supercritical bifurcation (r̄min and r̄max
correspond to the left and the right portions of the so
curve, respectively!. From this figure it can be seen that th
limit cycle oscillations are stable only ift1d,t1,t1c . If
t1,t1d , the amplitude of the oscillations will increase un
the domain collapses or merges with the neighbors. Sev
possibilities exist for the values ofr̄ min

d andr̄ max
d . The value

of t1d may happen to be negative, in this case the stability
the limit cycle oscillations will depend on whether the val
of r̄max becomes greater than12 at some value oft1. The
oscillations will be stable fort1 greater than this value if this
is the case, or stable for all values oft1 in the opposite case
The value ofr̄ max

d may also happen to be greater than1
2. In

this case the region of the stability of the domain oscillatio
will also be narrower. Notice thatr̄ min

d is always greater than
zero because of the singular character off ( r̄) at r̄50.

In the case of the subcritical bifurcation the limit cyc
oscillations are unstable for any values oft1, so collective
oscillations of the domains in the multidomain pattern
ways break down in this case. The most likely scenario h
is that some of the domains will shrink and collapse wher
some will grow, which can be effectively thought of as a
increase of the pattern’s period. As a result, the value oē,
which mainly determines the type of the bifurcation, will g
smaller, so in the new pattern of greater period the bifur
tion may happen to be supercritical. This means that
pattern may naturally evolve into a state in which the colle
tive domain oscillations are stable from more or less ar
trary initial conditions, provided that the initial conditio
consists of the alternating hot and cold domains of size
than or of ordere1/3. It is also possible that the pattern th
forms in this process is stable with respect to the dom
oscillations. Yet another possibility is that in this proce
some of the domains will merge, which will result in th
formation of an irregular pattern, which also may exhib
chaotic dynamics. The merging process may also lead to
destruction of the multidomain pattern. We will get back

FIG. 7. The sweep of the oscillations for given values oft1
~horizontal lines below the solid curve!, obtained from the solution
of Eq. ~56!. The parameters used areē50.00025, r̄050.25,
c151, andc250.
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1472 55C. B. MURATOV
these points when we discuss the results of the nume
simulations of a concrete model.

In the analysis presented in this section we did not spe
precisely the range of the values ofē. This range is deter-
mined by the stability of the stationary multidomain patte
with respect to the activator repumping and the transve
distortions of the walls of the domains. Whenē is greater
than some value for a givenr̄0, the pattern becomes unstab
with respect to the activator repumping effect leading to
doubling of the pattern’s period, whereas whenē is smaller
than some critical value at a givenr̄0, the domains destabi
lize with respect to the transverse instability of their wa
leading to the radially nonsymmetric distortions of the d
mains @8,10,16,36#. Both these instabilities occur whe
ē;1 in the limit e→0 regardless of the value ofa. It is
possible to show@36# that for the stable stationary multido
main pattern in two dimensions the value ofē;0.002, so the
scenarios discussed above are indeed realized. Also, ac
ing to Osipov’s criterion@31#, the transformation of a sta
tionary multidomain pattern into a traveling one will occ
whenaT;e2!ac .

For the purpose of completeness let us quote the e
tions obtained in the case of the three-dimensional multi
main pattern consisting of spherical domains situated o
closed-packing lattice. The derivation follows along t
same lines as the derivation in two dimensions. Introduc

r0
352

3Lp3Q~us1 ,hs!

4pA2a
, ~57!

and rescalingh̄ andr according to Eq.~27!, we obtain

]h̄

]t
5Dh̄2c1h̄S 11

4pA2
3

c2r̄
3D 2

2pA2
3

v0
2t1~ r̄ 32 r̄ 0

3!,

~58!

t1
]r̄

]t
5h̄2

2ē

r̄
2

r̄ 2

3
1
6r̄ 3

5
2
32r̄ 5

15
. ~59!

The properties of these equations are essentially the sam
in two dimensions.

V. ENTRAINMENT OF THE OSCILLATIONS
IN A DISORDERED PATTERN

The multidomain patterns that we studied so far consis
of domains situated on a regular lattice. We found that
motion of the domains occurs on two time scales: the sh
time scalev0

21, which is proportional to the period of th
oscillations of a single domain, and the long time scalet1.
The motion of the domains on the time scalev0

21 is conser-
vative, so the timet1 is associated with the relaxation of th
oscillator’s energy. In two dimensions we found many of t
situations in which the collective domain oscillations shou
become chaotic, either because of the nonlinear dynamic
the oscillation amplitude and phase, or because of the
fects. This chaotic dynamics, however, is realized on
long time scale and is essentially determined by the non
ear relaxation processes. Here we would like to ask the
lowing question. Suppose that instead of the domains o
al

fy
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fixed radius on a perfect lattice~hexagonal in two dimen-
sions!, we have a random arrangement of the domains wit
distribution of radii. What will be the dynamics of differen
domains on the short time scalev0

21?
To proceed, we will consider a simplified situation an

ignore the space dependence of all dynamical quantitie
the problem. One can think that the domains are conside
in the system whose size is much smaller than 1.
n(r,t) now be the distribution function of the domain rad
r. The distributionn(r,t) must satisfy the Liouville equation
obtained from Eq.~22!. Rescaling appropriatelyn, h̄, r, and
t, and neglecting the terms that are not significant on the t
scalev0

21, from Eqs.~18! and ~22! we get

]h̄

]t
5r0

d2E rdn~r,t !dr, ~60!

]n

]t
5h̄

]n

]r
, ~61!

where r0
d is a constant that comes from the ter

Q(us1 ,hs) in Eq. ~18! and the distributionn(r,t) is normal-
ized to unity:

E n~r,t !dr51. ~62!

The last condition implies the conservation of the number
the domains as a function of time. This condition is in fa
not always satisfied, since we have an absorbing bound
condition forn at r50 and even more sophisticated situ
tion at larger because of the possibility of the domain mer
ing. It is clear, however, that this condition will be satisfied
the distributionn has finite support at all times and the po
sibility of merging is excluded.

Let us introduce the quantities

m051, mk~ t !5E rkn~r,t !dr, ~63!

wherek51,2, . . . ,d. Then from Eqs.~60! and ~61! it fol-
lows that

dmk

dt
52kh̄mk21 , ~64!

dh̄

dt
5r0

d2md . ~65!

Equations~64! and ~65! can be solved exactly. One ca
use Eq.~64! with k50 to eliminateh̄ from Eq. ~64! with
k51 and integrate this equation to getm25m1

21C1, where
C1 is a constant of integration. This equation, together w
Eq. ~64! with k50 can be used to integrate Eq.~64! with
k52 to getm35m1

313C1m11C2, and so forth. Thus, the
whole set of Eqs.~64! and ~65! can be reduced to a singl
equation form1. The constants of integration are determin
by the initial distribution functionn0(r). If one knows the
solution of the equation form1, one then gets

n~r,t !5n0„r2m1~ t !1m1~0!…. ~66!
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55 1473SYNCHRONIZATION, CHAOS, AND THE BREAKDOWN . . .
The first conclusion one draws from the solution of Eq
~64! and~65! is that the oscillations of different domains in
random pattern are always entrained. This is in fact obvi
right from the start, since the rate of change of the radii
each domain is proportional toh̄, which in turn depends
integrally on the distribution of radii. However, the dynami
of the domains is determined by the initial distributionn0
and may be qualitatively different for different initial cond
tions, even if the parameters of the system are the same

Let us see what happens whend51,2,3. In the case
d51 the equation form1 is

d2m1

dt2
1m12r050. ~67!

One can see that for any distributionn0 ~with finite support
and assuming that no domain merging occurs! the motion is
that of a simple harmonic oscillator. The energy of the os
lator is determined by the value ofh̄ at t50. One can see
that dynamics of the random pattern on the time scalev0

21 is
identical to that of the ideally periodic pattern.

In d52 andd53 the situation becomes somewhat mo
complicated. Ind52 we have

d2m1

dt2
1m1

21C12r0
250. ~68!

Here again the dynamics is equivalent to that of an id
hexagonal pattern, but the equilibrium point is shifted. T
shift is determined byC15^r2&2^r&2 at t50. One can see
from Eq.~68! that whenC1.r0

2 the oscillations are not pos
sible. Ind53 we have

d2m1

dt2
1m1

313C1m11C22r0
350, ~69!

and the dynamics of the domains may be different from t
of the domains in an ordered pattern.

The main conclusion that follows from the analysis abo
is that the disorder, especially small, should not significan
affect the dynamics of the pattern and that the equations
h̄ andr̄ should adequately describe the behavior of irregu
multidomain patterns as well. It is also clear that the dist
tions of the domain shapes will not have significant eff
either.

VI. SIMULATIONS OF A CONCRETE MODEL

In this section we present the result of the numeri
simulations of the model with a simple cubic nonlinearity

q5u32u2h, ~70!

Q5u1h2A. ~71!

Recently, Muratov and Osipov performed extensive n
merical simulations of this model in two dimensions@16#.
The emphasis of their work was on the instabilities of t
localized solitary structures~AS! and the evolution of the
patterns excited by a short localized external stimulus in
stable homogeneous system. They were able to constru
state diagram showing what kinds of patterns are realized
.
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different values ofa andA for a fixed value ofe!1 from
localized initial conditions. Here we perform numeric
simulations of Eqs.~3! and~4! with ~70! and~71! with non-
localized initial condition.

The homogeneous state of the system under considera
is stable whenuAu.1/3A3.0.19. The various constants in
volved are@16,26#

a52, B54, Z5
2A2
3

, c15
3

2
, c250. ~72!

Unfortunately, the direct simulations of Eqs.~3! and ~4!
with e!1 in the system of sufficiently large size are e
tremely time consuming even on a very fast computer.
order for the equations forr̄ and h̄ to be in quantitative
agreement with the simulations we should havee&0.01.
Nevertheless, it is expected to have qualitative agreem
with the predictions of the preceding sections. All our sim
lations were performed withe50.05.

Our first observation is that if a stable stationary multid
main pattern is taken as an initial condition in the run w
sufficiently smalla, the pattern will destabilize with respec
to the synchronous oscillations of the domains, and its e
lution will depend on how small the value ofa is and on
whether the homogeneous state of the system is stable. W
a is slightly below the threshold value and the pattern’s p
riod is not very small, the oscillations of different domain
will synchronize. If the value ofa is smaller, the domains
may start to merge during the oscillations, which will res
in the formation of an irregular pulsating pattern. Ifa is even
smaller and the homogeneous state of the system is st
the pattern will collapse into the homogeneous state afte
few periods of oscillations or transform into a turbulent p
tern. The turbulence here is induced by the self-replication
the domains and is qualitatively different from the chao
behaviors discussed above@16#. If the value ofa is small
enough and the homogeneous state of the system is uns
with respect to the uniform self-oscillations, the multidoma

FIG. 8. The wave of the phase of the domain oscillations tr
eling from left to right. Distributions of the activator for differen
times. The parameters used aree50.05, a50.02, A520.4. The
system is 2034. The boundary conditions are periodic.
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FIG. 9. Breakdown of a target wave of th
oscillation phase. Distributions of the activato
for different times. The parameters used a
e50.05, a50.019, A520.2. The system is
20320. The boundary conditions are periodic.
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pattern will transform into the uniform self-oscillations. Th
is in agreement with the predictions of our analysis.

Besides the synchronous oscillations of the domains,
predicted traveling waves of the oscillation phase. Th
traveling waves are indeed realized in the simulations~Fig.
8!. One has to use the special initial conditions to excit
traveling wave. The distributions ofu should consist of the
domains whose radii vary smoothly along thex axis, and the
distribution ofh should follow this variation with the phas
difference ofp/2.

In addition to the plane waves, target waves of the os
lation phase are observed. Figure 9 shows a portion o
target wave emanating from the top left corner of the syst
The wave breaks down after a while, as the domains beg
merge during the oscillations. As a result, an irregular c
otically oscillating pattern forms in the system. Notice th
eventually, when no merging occurs any longer, the aver
size of the domains becomes greater than the size of
domains at the beginning. This can be interpreted as a
organized increase of the pattern’s period leading to the
bilization of the pattern’s oscillations.

In another simulation in which the value ofa was
smaller, the target pattern broke down not only because
merging, but also because of the collapse of the smaller
mains~Fig. 10!. As a result of the domain collapse, patch
e
e

a

l-
a
.
to
-
t
e
he
lf-
a-

of
o-

of the almost homogeneous state formed in the syst
These patches are then invaded by the domains, which l
to the formation of an irregular pulsating pattern. For sma
values ofa this may also lead to the formation of autowav
and turbulence induced by self-replication of domains@16#.

In the simulations above we used a hexagonal patter
the initial condition. Let us now see what happens in t
more realistic situation when the multidomain pattern is d
ordered. Figure 11 shows the evolution of such a patte
The initial stationary pattern was in fact generated as a re
of the Turing instability of the homogeneous state at la
a. In the simulation of this figure the value ofa is small
enough, so that the stationary multidomain pattern is
stable, and a small disturbance was added toh in the vicinity
of the top left corner of the system in order to make t
amplitude of the oscillations in this region bigger. We s
that at early times~the top three panels in Fig. 11! the oscil-
lations of the domains are indeed entrained, despite the
ferences in the domain sizes and shapes. Notice that in
simulation the homogeneous state of the system is unst
with respect to the uniform self-oscillations. One can see t
here the amplitude of the oscillations increases until merg
and collapse of the domains occur at the top left corn
which are then followed by the formation of the unifor
self-oscillations. The uniform self-oscillations eventually i
e

rs

e

FIG. 10. Breakdown of a target wave of th
oscillation phase for smallera. Distributions of
the activator for different times. The paramete
used are e50.05, a50.015, A520.2. The
system is 20320. The boundary conditions ar
neutral.
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FIG. 11. Breakdown of the collective domai
oscillations into the uniform self-oscillations
Distributions of the activator for different times
The parameters used aree50.05, a50.015,
A520.1. The system is 20320. The boundary
conditions are neutral.
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vade the whole system and destroy the multidomain patt
Yet the uniform self-oscillations and the multidomain patte
may coexist for quite a long time. This effect was observ
in the dynamics of the Turing pattern in the CIMA reactio
@12#.

Above we considered the dynamics of the patterns c
sisting of circular hot domains in the cold system. Clear
qualitatively the same dynamics is expected for the cold
mains in the hot system. In fact, by changingu→2u,
h→2h, andA→2A in the concrete system under consi
eration we will transform hot domains into cold and vi
versa. A possibility exists for such oscillations of the mul
domain pattern in which the hot domains will transform in
cold domains and back. This process is illustrated in Fig.
There a stationary multidomain pattern formed as a resu
the Turing instability atA520.1 when the hot domains ar
favorable was taken as the initial condition. The simulat
was performed atA50.1 when the cold domains are favo
able. One can see the sequence of transitions from the
domains to cold and back during the oscillations. A lot of t
domains merge as their size increases, so the multidom
pattern quickly transforms into an irregular pattern consist
of many disconnected pieces. The connectivity of the
mains changes with time. Aftert51.4 the system enters
n.

d

-
,
-

2.
of

n

ot

in
g
-

periodic cycle in which the pattern changes periodically fro
hot to cold. In the run with these parameters the patt
eventually collapsed into the homogeneous self-oscillatio

So, in summary, the collapse and merging of the doma
appear to be the major causes for the chaotic behavior o
oscillations. The chaos here is due to the underlying irre
larity of the domains themselves. The predicted chaotic
havior near the onset of synchronous domain oscillati
seems to be beyond the capabilities of the available com
tational power. While we were able to see steady nonunifo
oscillations of a hexagonal multidomain pattern of peri
Lp52.3 at e50.1, a50.05, andA520.1 in the system
40340, the system was yet too small to identify these os
lations with chaos.

VII. CONCLUSION

Thus, in this paper we studied the dynamics of the mu
domain patterns of small period inKVN systems. In order to
simplify the problem we took advantage of the smallness
e, the natural small parameter in the considered syste
@8–10,15#. In the limit e→0 the dynamics of the patter
reduces to the free boundary problem@18,26#. This problem
may be further simplified by using the smallness of the p
r-
ns.
.

FIG. 12. The oscillations leading to the inte
conversion between the hot and the cold domai
Distributions of the activator for different times
The parameters used aree50.05, a50.015,
A50.1. The system is 20320. The boundary
conditions are periodic.
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tern’s period. This approach is somewhat limited in one
mension, but is always applicable to higher-dimensio
multidomain patterns, ife is small enough. In the case of th
periodic patterns we managed to reduce the number of
namical variables involved to the average domain radiur
and the average value ofh. The equations for these quant
ties turned out to be universal. The nonlinearities of
original reaction-diffusion system enter only via a few n
merical constants of order 1. Ind>2 the dynamics studied
by us is in fact the asymptotic limit of the true dynamics
e→0. Note, however, that the value ofe has to be suffi-
ciently small in order for this approach to be in quantitati
agreement with the actual dynamics. For example, for
concrete model studied in Sec. VI this is the case only w
e&0.01 ~see also Ref.@16#!. Nevertheless, the qualitativ
agreement is good for 0.01&e!1.

The analysis performed by us predicts both synchron
tion and chaos in the collective domain oscillations of t
multidomain patterns. There are two types of chaos that
realized: the chaos associated with the effects of the inter
of the dissipation and dispersion of the nonlinear waves
the phase of the domain oscillations and the chaos assoc
with the irregularity of the underlying multidomain patter
The first kind of chaos is shown to correspond to the int
mittency and defect turbulence in the complex Land
Ginzburg equation. The second kind of chaos is due to
breakdown of the averaged dynamics description and is
sociated with the collapse and merging of the domains
the destruction of the regular multidomain pattern. Nevert
less, it is shown that even in an irregular pattern the dom
oscillations are synchronized locally, so the chaos is s
realized on the time and length scales of the dissipation
cesses.

Recall thate5AaDu /Dh, whereDu andDh are the dif-
fusion coefficients of the activator and the inhibitor, resp
tively. According to its definition, the value ofe is small as
long asa is small andDh*Du . However, if the values of
Du andDh are of the same order, as is the case in typi
experiments with the autocatalytic reactions@37#, this means
thata;e2. At this relationship betweena ande the station-
ary patterns are always unstable@8–10,15,37#, and only au-
towaves will be realized. Our analysis also shows that
will be the case for the multidomain patterns. In other wor
one should haveDh@Du in order for the stationary and
more complex dynamic patterns~not autowaves! to be fea-
sible in an experiment. As was emphasized by Epstein
Lengyel, in chemical systems, for example, one has to de
special methods to make the ratio of the diffusion coe
cients large@37#. On the other hand, the value ofa is deter-
mined by the kinetics of the chemical reactions involved a
can be easily made small.

It is well known that a solitary pattern~AS! in one dimen-
sion would destabilize and transform into a pulsating patt
whena;e, which implies thatDu /Dh;a @8–10,15,17,38#.
The same condition must be satisfied in order for the in
bility of the homogeneous state of the system with respec
the uniform self-oscillations be before the Turing instabil
of the homogeneous state@8–10,16#. This is a rather strict
requirement fora!1. On the other hand, as was shown
Sec. IV, the destabilization of the stationary multidoma
patterns in higher dimensions occurs whena;e4/3, which
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implies that in this caseDu /Dh;a1/2. This condition re-
quires considerably smaller difference in the diffusion co
ficients of the activator and the inhibitor.

Another interesting implication of our results is that
some situations it is possible that the oscillatory behavior
the ‘‘homogeneous’’ system is actually the consequence
the dynamics of the underlying multidomain pattern. Inde
for the reasonable values ofDh;231025 cm2 s21 and
th;10 s @37# we would have that the size of an individu
domain is much smaller thanL;1.531022 cm, so the do-
mains may actually lie beyond the resolution of the expe
ment. Notice that in the casee!1 the oscillatory instability
of the homogeneous state is always accompanied by the
ing instability @8–10#. Numerical simulations show that Tur
ing patterns may form as a result of the instability of t
homogeneous state even if the homogeneous state is uns
with respect to the uniform oscillations and may in fact p
sist for even smallera @16#. So, we suggest that in certai
situations it is the Turing patterns that exhibit the oscillato
behavior, whereas the system’s bulk kinetics has relaxa
character. If this is the case, one would expect to see
coexistence of the relaxation and oscillatory kinetics in
system, and multiplicity of the oscillation modes in a sing
system with the same parameters. The latter is the co
quence of the fact that the characteristic time and len
scales of the oscillations of the multidomain patter
strongly depend on the pattern’s period, which is n
uniquely determined by the system’s parameters.

The dynamics of the multidomain patterns discussed
the present paper was observed by Boissande, Dulos, an
Kepper in the experiments on CIMA reaction@12#. They
were actually able to follow the dynamics of the domai
and see synchronization, waves of the oscillation phase
cluding spirals on top of the multidomain pattern, merging
the domains, and the coexistence of the domain oscillati
and the uniform oscillations of the homogeneous state~the
Hopf holes, as they called them!. They also emphasized tha
the waves they observed are essentially different from th
in the Belousov-Zhabotinsky~BZ! reaction. In the CIMA
reaction these are phase waves, as opposed to the autow
in the BZ reaction. This is precisely the conclusion of o
analysis.

Synchronously oscillating domains were also observed
Roseet al. in the experiments on the catalytic CO oxidatio
on the platinum surface@14#. The authors suggested th
these oscillations may be explained by the introduction
global coupling. The results of the present paper sugge
more natural explanation for this phenomenon as dynam
of the multidomain pattern. To do this, one has to introdu
a diffusion term into the equation for the inhibitor in th
two-variable reaction-diffusion model of this reaction, whic
is otherwise known to have relaxation kinetics@39#. This
would also seem to explain the transition from a target p
tern into a cellular structure observed in these experime
We would also like to mention the observation of synch
nously pulsating cellular flames in the combustion expe
ments@13#.

Haim et al. observed experimentally a single breathi
domain in the FIS reaction in a circular reactor@22#. Their
results agree with the conclusions of Sec. IV concerning
motion of a single domain. Indeed, they see the supercrit
Hopf bifurcation from the stationary to the breathing doma
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growing anharmonicity of the oscillations for larger amp
tudes of the oscillations, and collapse of the domain for
larger amplitudes. In this situation Eq.~50! ~with p/A3 re-
placed by 2! might be used for the quantitative explanati
of these effects.
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@33# H. Chaté, Nonlinearity7, 185 ~1994!.
@34# P. Hagan, SIAM J. Appl. Math.42, 762 ~1982!.
@35# Y. Kuramoto and S. Koga, Prog. Theor. Phys.66, 1081~1981!.
@36# C. B. Muratov~unpublished!.
@37# I. R. Epstein and I. Lengyel, Physica D84, 1 ~1995!.
@38# Y. Nishiura and M. Mimura, SIAM J. Appl. Math.49, 481

~1989!.
@39# M. Bär, N. Gottschalk, M. Eiswirth, and G. Ertl, J. Chem

Phys.100, 1202~1994!.


