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Unified model for the study of diffusion localization and dissipation

Doron Cohen
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 26 August 1996; revised manuscript received 8 October 1996!

A model that generalizes the study of quantum Brownian motion~BM! is constructed. We consider disor-
dered environment that may be either static~quenched!, noisy or dynamical. The Zwanzig-Caldeira-Leggett
BM model formally constitutes a special case where the disorder autocorrelation length is taken to be infinite.
Alternatively, a localization problem is obtained if the noise autocorrelation time is taken to be infinite. Also
the general case of weak nonlinear coupling to a thermal, possibly chaotic bath is handled by the same
formalism. A general, Feynman-Vernon type path-integral expression for the propagator is introduced. A
Wigner transformed version of this expression is utilized in order to facilitate comparison with the classical
limit. It is demonstrated that nonstochastic genuine quantal manifestations are associated with the model. It is
clarified that such effects are absent in the standard BM model, either the disorder or the chaotic nature of the
bath are essential. Quantal correction to the classical diffusive behavior is found even in the limit of high
temperatures. The suppression of interference due to dephasing is discussed, leading to the observation that due
to the disorder the decay of coherence is exponential in time, and no longer depends on geometrical consid-
erations. Fascinating non-Markovian effects due to time-correlated~colored! noise are explored. For this, a
strategy is developed in order to handle the integration over paths. This strategy is extended in order to
demonstrate how localization comes out from the path-integral expression.@S1063-651X~97!08102-6#

PACS number~s!: 05.40.1j, 03.65.Sq, 71.55.Jv, 05.45.1b
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I. INTRODUCTION

The dynamics of a particle that interacts with its enviro
ment constitutes a basic problem in physics. Classica
upon elimination of the environmental degrees of freedo
the reduced dynamics is most simply described in terms
Langevin equation. Solution of this equation, by utilizing t
Fokker-Planck equation, is well known@1#. In the absence o
an external potential, it yields spreading and diffusion. T
latter effect is due to the interplay of noise and dissipati
However, diffusion may arise also from the interaction w
disordered environment. This kind of nondissipati
‘‘random-walk’’ diffusion is encountered, for example, i
solid state physics, while analyzing electrical conductivity
is well known @2# that this latter type of diffusion may b
suppressed quantum mechanically due to localization eff
Still, diffusivelike behavior is recovered if noise and dissip
tion are taken into account.

The unified modeling of the environment in terms
noise, dissipation, and disorder is the first stage of
present study. One may take the notion of particle litera
and identify the environment as either an external or inter
bath that consists of infinitely many degrees of freedom. T
bath may be a large collection of other particles or fie
modes~photons, phonons!. Or else, the internal degrees
freedom of the particle itself are considered to be the b
The latter point of view has been suggested by Gross@3# in
order to analyze inelastic scattering of heavy ions.

A totally different point of view, promoted by Caldeir
and Leggett~CL! @4#, consider the notion of a particle as
token for some macroscopic degree of freedom. A lin
interaction with a speculated bath that consists of infinit
many uncoupled harmonic oscillators, is assumed~Zwanzig
@3#!. The known classical limit, namely, a Langevin-typ
551063-651X/97/55~2!/1422~20!/$10.00
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equation, serves as a guide for the construction of the pro
Hamiltonian. ~Phenomenological rather than microscop
considerations are used, hence the usage of the term ‘‘sp
lated bath.’’! The power inherent in this approach is the c
pability to introduce an explicit path-integral expression f
the propagator, using the Feynman-Vernon~FV! @5# formal-
ism. This FV-CL propagator constitutes a quantized desc
tion of Brownian motion~BM!. The term ‘‘BM model’’ will
be associated from now on with this propagator.

The first question which should be asked concerning
applicability of the CL approach is obviously whether eith
the coupling, the bath, or both are ‘‘too simple’’ in order
account for the variety of physical phenomena that are a
ciated with a generalized BM. The term ‘‘generalized BM
is used in order to describe any dynamical behavior that c
responds in the classical limit to a Langevin-like equation.
the simplest case, the Langevin equation ismẍ1h ẋ5F,
wherem and h are the mass and the friction coefficien
respectively. One should specify the stochastic forceF. This
force may arise from interaction with some fluctuating h
mogeneous field@F5F(t)#, which is the usual formulation
However,more generally, this force may arise from the in
teraction with adisorderedpotential@F52¹U(x,t)#. In the
latter case the spatial autocorrelations of the force are sig
cant. To avoid misunderstanding it should be emphasi
that there are other aspects in which the BM can be gene
ized ~for a review see@6#!.

In the present paper we construct a unified model for
study of diffusion, localization, and dissipation~DLD!. This
model describes generalized BM in the sense speci
above. The disordered environment may be either st
~quenched!, noisy, or dynamical. The model is treated with
the framework of the FV formalism. The resultant pat
integral expression for the propagator contains a functio
1422 © 1997 The American Physical Society
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55 1423UNIFIED MODEL FOR THE STUDY OF DIFFUSION . . .
SF with kernela(t2t8) that corresponds to friction, and
functionalSN with kernelf(t2t8) that corresponds to th
noise. Both functionals also depend on a suitably defi
autocorrelation functionw(r2r 8) that characterizes the dis
order. The BM model constitutes~formally! a special case
where the disorder autocorrelation length is taken to be i
nite. Optional derivations of the resultant path-integral e
pression are presented for the particular cases of either
sical or quantal systems with nondynamical disorde
potential. Obviously, in the latter case the friction function
SF is not generated by the derivation. The localization pro
lem is obtained if the noise autocorrelation time is taken
be infinite @f(t2t8)5const#.

An explicit computation of both the classical and t
quantal propagatorsK(R,PuR0 ,P0) will be carried out. This
propagator generates the time evolution ofr(R,P), which is
either the Wigner function or the corresponding classi
phase-space distribution. Spreading and diffusion profiles
found for either a noisy or an Ohmic environment. Quan
corrections to the classical result are discussed. A new s
egy is developed in order to handle the integration o
paths. This strategy is utilized in order to study the anom
lous ‘‘diffusion’’ profiles due to colored noise. Later it i
extended in order to demonstrate how localization comes
from the path-integral expression.

Again, one may ask, whether the DLD model is the ‘‘u
timate’’ model for the description of BM in the most gene
alized way~as far as generic effects are concerned!. In the
case of two-dimensional~2D! generalized BM one should
consider also the effect of ‘‘geometric magnetism’’@7#,
which is not covered by the 1D DLD model. Here we lim
the discussion to 1D BM. In order to answer this quest
one should consider a general nonlinear coupling to a t
mal, possibly chaotic bath. In the limit of weak coupling o
may demonstrate@see Sec. VI B# that indeed the bath can b
replaced by an equivalent ‘‘effective bath’’ that consists
harmonic oscillators, yielding the DLD model. A further r
duction to the BM model is achieved if the coupling is linea
The derivation also demonstrates why the so ca
‘‘Ohmic’’ bath is generic. However, we cannot prove th
the path-integral expression that corresponds to the D
model is the most generalized description of BM~in the
sense of this paper!. Gefen and Thouless@8#, Wilkinson @9#
and Shimshoni and Gefen@8# have emphasized the signifi
cance of Landau-Zener transitions as a mechanism for d
pation. The weak coupling approximation misses this effe
Still, there is a possibility that some future, more sophis
cated derivation, will demonstrate that an equivalent ‘‘osc
lators bath’’ can be defined also in the case of strong c
pling. The existence of such derivation is most significa
since it implies that no ‘‘new effects’’~such as ‘‘geometric
magnetism’’ in the case of 2D generalized BM! can be found
in the context of 1D generalized BM. Referring again to t
Landau-Zener mechanism, Wilkinson has demonstrated
anomalous friction, which is not proportional to velocit
may arise @9#. The BM model cannot generate such
anomalous effect. However, we shall demonstrate that
non-OhmicDLD model can be used in order to generate t
effect.

We turn to review previous works that are related to
present study. The traditional approach to the study of di
d
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pation is based on the master equation formalism@10#, which
is the quantal analog of the classical Fokker-Planck tre
ment @1#. Systematic derivations are usually based, in so
stage, on the Markovian approximation. An alternative ro
is to apply the FV formalism@5#. This has been done b
Möhring and Smilansky@11#, following Gross@3#, in order
to study deep inelastic collisions of heavy ions. Later, the
formalism has been applied by CL@4# and followers@6#, in
particular, to the study of macroscopic quantum tunneli
Hakim and Ambegaokar@12# has applied the FV model in
order to compute the spreading and the diffusion of the qu
tum Brownian particle. Cohen and Fishman@13# have com-
puted the full Wigner propagator in the case of the gene
quadratic Hamiltonian, possibly time dependent. The la
study has demonstrated more clearly the significance
noise time autocorrelations. Nontrivial autocorrelations may
lead to non-Markovian effects due to the nonlocal~in time!
nature of the noise functionalSN . The simplest example is
the suppression of diffusion at low temperatures@12# due to
negative power-law correlations of the noise@13#. A less
trivial manifestation of the non-Markovian effect has be
found by Cohen@14# while analyzing diffusion due to the
destruction of localization by colored noise.

Non-Markovian features are usually speculated to be
relevant if disorder is taken into account. One may exp
that for generalized BM, disorder will lead, at all temper
tures, to normal diffusion. We shall find later in this pap
that non-Markovian effects are quite effective also in case
the DLD model, and lead to anomalous spreading profi
However, it will be clear that these effects, though coun
intuitive at first sight, are of classical nature. Non-Markovi
effects can also arise from the nonlocality of the frictio
functionalSF , this is the case for non-Ohmic bath. The r
tarded response of the bath then has a long memory for
particle’s dynamics, see, for example, the review papers
Grabert, Schramm, and Ingold and by Ha¨nggi, Talkner, and
Borkovec @6#. In particular, for unbounded motion, in th
absence of disorder~BM model!, it will be demonstrated tha
one encounters infinities in computations of the friction a
of the effective mass. These infinities are avoided if disor
is taken into account~Sec. IV B!.

The suppression of quantal interference due to the dep
ing process is an important issue for both semiclassical@11#
and mesoscopic@15# physics. The dephasing of interferenc
in metals due to electromagnetic fluctuations has been
cussed by Al’tshuler, Aronov, and Khmelnitskii@16#. Gen-
eral considerations have been presented by Stern, Aharo
and Imry@15#. The strong dimensionality dependence of t
dephasing process has been emphasized. In this pape
DLD model is used in order to study the suppression
quantal interference due to the local interaction with eith
noisy or dynamicaldisorderedenvironments. The dephasin
is determined by the noise functionalSN@x9(t),x8(t)#. Due
to the local nature of the dephasing process, the deca
coherence is exponential in time, and no longer depends
geometrical considerations.

In the case of quenched disordered environment the D
model reduces to a localization problem whose solution
well known @17#. In particular, ford correlated potential the
result for the localization length has been pointed out
Thouless@18#. As far as we know, the real-time Feynma
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1424 55DORON COHEN
path-integral formalism has not been utilized so far in or
to rederive this result, though functional integration is fr
quently employed in closely related computations. The c
of noisy disordered environment, where the potential isd
correlated both in time and in space has been considere
Jayannavar and Kumar@19#. In the latter reference the spati
spreading has been computed, and a classical-like resul
been obtained. Quantal corrections to the dispersion pro
has not been discussed in the latter reference. No solu
exists for a model that ‘‘interpolates’’ the crossover fro
quenched noise, via colored noise, to white noise disorde
potential. Marianer and Deutsch@20# have considered the
problem of white noisy disordered potential with added d
sipation. Using the BM model, they have demonstrated th
classical-like results is obtained for the spatial spread
Again, neither the spreading profile nor quantal correctio
have been considered.

The outline of this paper is as follows: In Sec. II th
unified model for the study of diffusion, localization, an
dissipation~DLD! is constructed. Derivation of the reduce
classical dynamics is presented in Secs. III and IV. It
shown that a well defined Langevin equation is obtained
both subohmic and superohmic bath, as well as for Oh
bath. This is contrasted with the BM model, where only t
Ohmic case is well defined. In Secs. V and VI, four deriv
tions of the FV path-integral expression for the propaga
are presented:~a! A classical derivation that is based o
Langevin equation;~b! A quantum mechanical derivation fo
nondynamical noisy or quenched disordered potential;~c! A
quantum mechanical derivation for the full DLD model;~d!
A quantal derivation for the general case of weak nonlin
coupling to a thermal, possibly chaotic bath. Appendix
clarifies the relation of BM model and DLD model to th
case of interaction with external bath that consists of
tended field modes. In Sec. VI C the explicit expression
the influence functional allows concrete predictions conce
ing the loss of interference due to dephasing. Appendix
introduce a gedanken experiment that clarifies the mani
tation of interference and dephasing in the presence of
namical disordered environment. In Secs. VII and VIII thr
strategies for the computation of the quantal propagator
discussed. Spreading and diffusion profiles are found for
ther noisy or Ohmic environment. The DLD model is com
pared with the BM model. In the latter case the result
classical-like, while in case of the DLD model, a singu
‘‘quantal correction’’ should be included. The significance
this ‘‘correction’’ is further clarified in Appendix B. The
strategy of Sec. VIII, which enables computation of diffusi
profiles in the presence ofcolorednoise, is extended in Sec
IX. We use this strategy in order to demonstrate how, in
case ofquenchednoise, localization comes out from the ge
eral FV path-integral expression. Summary and conclusi
are presented in Sec. X.

II. CONSTRUCTION OF THE DLD MODEL

A. Langevin equation

As a starting point for later generalization we consider
classical Langevin equation. This equation describes the
evolution of Brownian particle under the the influence of
called ‘‘Ohmic’’ friction and stochastic force.
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mẍ1h ẋ1V8~x!5F . ~2.1!

In the standard Langevin equation the stochastic force re
sents stationary ‘‘noise’’ which is zero upon ensemble av
age, and whose autocorrelation function is

^F~ t !F~ t8!&5f~ t2t8!. ~2.2!

Usually white noise, which isd correlated in time, is consid
ered. The standard Langevin equation can begeneralizedby
assuming that the stochastic force is due to some noisy
tential, namely,F(x,t)52U8(x,t), where the prime denote
spatial derivative. One may assume thatU is zero upon en-
semble averaging, and satisfies

^U~x,t !U~x8,t8!&5f~x2x8,t2t8!. ~2.3!

The autocorrelation function of the stochastic forceF at
some specified pointx is f(t2t8)[2f9(0,t2t8). In prac-
tice f(x2x8,t2t8) will be assumed to have the factorize
form

f~x2x8,t2t8!5f~ t2t8!w~x2x8!, ~2.4!

where, without loss of generality,w(r ) is normalized so that
w9(0)521, the normalization constant being absorbed in
f(t).

For distribution of particles, thestandardLangevin equa-
tion predicts rigid motion with no diffusion. This feature
eliminated if an average over realizations ofF is performed.
The standardLangevin equation can be viewed as a spec
case of thegeneralizedversion ~2.3!. For this one should
takeU(x,t)52x•F(t). Alternatively,

w~x2x8!52
1

2
~x2x8!2. ~2.5!

Another choice for spatial autocorrelations that correspo
to a disordered environment is

w~x2x8!5 l 2expF2
1

2 S x2x8

l D 2G . ~2.6!

The parameterl constitutes a measure for the microscop
scale of the disorder. For distribution of particles, the res
ant motion will be diffusivelike rather than rigid, even with
out averaging over realizations. It is crucial to do this impo
tant observation if one wishes to introduce aquantized
version of Langevin equation.

B. Hamiltonian formulation

Disregarding the friction term, the Langevin equation m
be derived from the Hamiltonian
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H5
p2

2m
1V~x!1U~x,t !, ~2.7!

where average over realizations ofU is implicit. If U is time
independent, we shall use the notionquencheddisordered
environment. IfU is uncorrelated also in time, we shall us
the notionnoisyenvironment.

If h is nonzero, energy may dissipate, and we sho
consider ‘‘dynamical’’ environment rather than ‘‘noisy’’ o
‘‘quenched’’ one. In order to model the environment we ge
eralize the FV-CL approach. Namely, to facilitate later ma
ematical treatment, the interaction potential is assumed t
linear in the bath coordinates

U~x,t !→Hint52(
a

caQaua~x!, ~2.8!

whereQa denotes the dynamical coordinate of thea scat-
terer or bath mode.ua(x) is the normalized interaction po
tential, andca are coupling constants. In case of dynamic
environment, theQa are assumed to be oscillators’ coord
nates. The bath Hamiltonian is

Hbath5(
a

S Pa
2

2ma
1
1

2
mva

2Qa
2 D . ~2.9!

The total Hamiltonian of the system plus the heat bath is

H5
p2

2m
1V~x!1Hint1Hbath . ~2.10!

In order to further specify the DLD model, we should cha
acterize the spectral distribution of the bath oscillators,
well as their interaction with the particle@21#.

In what follows we consider the case of localized scatt
ers. The scatterers are assumed to be uniformly distribute
space withua(x)5u(x2xa). The bath will be characterize
by the spectral function

J~v![
p

2(a
ca
2

mava
d~v2va!. ~2.11!

The joint distribution of the bath oscillators with respect
va andxa is assumed to be factorized. Thus if we conside
partition of the bath oscillators into subsets of oscillato
whose positionsxa are the same, then locally, within eac
subset, theva are distributed in accordance to Eq.~2.11!.
The interaction is characterized by well defined spatial au
correlation functionw(x2x8), namely,

w~r !5(
a

ua~R1r !ua~R!5E
2`

`

u~r2x8!u~x8!dx8 .

~2.12!

The scattering potentialu(x) will be normalized so that
w9(0)521, the normalization constant being absorbed
the coefficientsca . Disregarding for a moment the dynam
cal nature of the bath, thus considering again the cas
either ‘‘noisy’’ or ‘‘quenched’’ environment, one obtain
^U(x,t)U(x8,t8)&5(aca

2^Qa(t)Qa(t8)&ua(x)ua(x8) which
upon recalling previous definitions, leads to Eq.~2.4! with
d

-
-
be

l

-
s

r-
in

a
s

-

n

of

f(t2t8)5(aca
2^Qa(t)Qa(t8)&. Thus if the dynamical na-

ture of the bath is ignored, the problem reduces to solv
Langevin equation with the appropriatew(x2x8) and
f(t2t8).

The spectral functionJ(v) and the spatial autocorrelatio
function w(r ) constitute a complete specification of th
model Hamiltonian~2.10!. This Hamiltonian will be used in
order to study diffusion localization and dissipation~DLD!
within the framework of a unified formalism.

The BM model, whereua(x)5x constitutesFormally a
special case of the DLD model. It will be possible to app
the ‘‘unified’’ formalism that will be developed for the DLD
model, also for the analysis of the BM model, merely
substitution of the appropriatew(r ). Namely, one may use
w(r ) of Eq. ~2.5!, or alternatively one may take the lim
l→` in Eq. ~2.6!. However, there are some minor, but si
nificant differences that will be noted in due time. This
because our derivations rely on thelocal nature ofw(r ).
Therefore we consider the notion ‘‘BM model’’ distinctivel
from the notion ‘‘DLD model.’’ Also the results will be both
qualitatively and quantitatively different, in spite of bein
derived, formally, from look-alike formulas.

Figure 1 illustrates the BM Hamiltonian and the DL
Hamiltonian. Looking at the figure it is apparent that t
natural application of the BM model is for the description
the dynamics of a composite particle, with many intern
degrees of freedom. This interpretation is due to Gross@3#,
who suggested to apply such models for the analysis
heavy-ion collisions. The bath according to this interpre
tion is ‘‘internal,’’ carried by the particle, rather than ‘‘ex
ternal.’’

FIG. 1. Illustration of the BM model~top drawing!, vs the DLD
model~lower drawing!. Note that in the first case a counter term h
been incorporated, as in Eq.~3.9!.
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1426 55DORON COHEN
The interaction Hamiltonian~2.8! may also describe the
interaction with some ‘‘external’’ bath that consists of e
tended field modes. For example, the electron-photon in
action and the electron-phonon interaction may be c
into the form of Eq. ~2.8!, with ua(x)5
cos„(va /c)x…,sin„(va /c)x… , wherec is either the speed o
light or the speed of sound. In the long wavelength limit th
interaction resembles the BM model rather than the D
model. With minor modifications, these models may also
treated within the framework of our ‘‘unified’’ treatmen
~Appendix A!.

Finally, we reemphasize that in general, the DLD mo
as well as the BM model may be used on a phenomenol
cal basis for the description of dissipation in mesosco
quantum devices. This point of view will be discussed fu
ther later on~Sec. VI B, in particular!.

III. DERIVATION OF LANGEVIN EQUATION

A. The reduced equation of motion

The quantal state of the particle may be represented by
Wigner functionr(R,P). The time evolution of the Wigne
function corresponds to that of classical distribution in ph
space. In this section we consider a ‘‘classical treatmen
the dynamics.’’ The latter term implies that the system
considered to be classical, (\system→0), while the bath gets
full quantum mechanical treatment. The limit\bath→0 is
not taken. The equations of motion of classical points t
form a distribution in phase space areẋ5p and

ṗ52V8~x!1Fbath , Fbath5(
a

caQa~ t !ua8 ~x! .

~3.1!

The variablesQa(t) satisfy the equation

maQ̈a~ t !1mava
2Qa~ t !5caua~x!,

which can be solved explicitly, namely,

Qa~ t !5Qa~0!cos~vat !1
Pa~0!

mava
sin~vat !

1E
0

t

dt8
ca

mava
sin„va~ t2t8!…ua„x~ t8!….

Substitution of the latter expression into Eq.~3.1! yields

Fbath5Fretarded1Fnoise ~3.2!

with

Fretarded5E
0

t

dt82a~ t2t8!w8„x~ t !2x~ t8!… . ~3.3!

The response kernela(t) is defined for positive times
(0,t) as follows:

a~t!5E
0

`dv

p
J~v!sin~vt!52

d

dtE0
`dv

p

J~v!

v
cos~vt! .

~3.4!
r-
st

e
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In order to make further progress, a specification of
initial state of the system plus the bath is needed. We s
assume that initially~at timet50) the system is prepared i
some arbitrary quantal state while the bath oscillators ar
thermal canonical equilibrium with some reciprocal tempe
tureb. The Wigner function representation of the probabil
density matrix is then~see Appendix A of Ref.@22#!:

r t50~R,P;Qa ,Pa!5r t50~R,P!•)
a

req~Qa ,Pa!,

~3.5!

where

req~Qa ,Pa!5
1

1
2 coth~

1
2 \bva!

3expF2bS tanh~ 1
2 \bva!

~ 1
2 \bva!

D
3S Pa

2

2ma
1
1

2
mava

2Qa
2 D G . ~3.6!

Using Eq.~3.6! one obtains the expectation values

K Pa~0!2

2ma
L 5 K 12mava

2Qa~0!2L 5
1

4
\vacothS 12 \bvaD .

Hence it is easily found that̂Fnoise(t)&50 while

^Fnoise~ t !Fnoise8~ t8!&52(
a

ca
2^Qa~0!2&

3cos„va~ t2t8!…ua8 ~x!ua8 ~x8! .

Thus one identifies that the noise term is characterized by
autocorrelation function~2.4! with

f~ t2t8!5E
0

`dv

p
J~v!\cothS 12 \bv D cos@v~ t2t8!#.

~3.7!

The Langevin equation~3.1! together with Eqs.~3.2!–~3.4!,
and~3.7! constitutes an exact and complete description of
reduced dynamical behavior of the system, as long as
system is considered to be classical in nature.

B. Langevin equation in the absence of disorder

For the BM model ua(x)5x. The derivation of the
Langevin equation~2.1! leads toFnoise that satisfies Eq.
~2.2!. The latter may be interpreted as a special case of
~2.3!, provided Eq.~2.5! for w(r ) is used. However, in the
expression for the retarded force~3.3!, w8„x(t)2x(t8)… is
replaced byx(t8), rather than by2„x(t)2x(t8)…. The physi-
cal significance of this minor difference is discussed belo
In the equation for the retarded force~3.3! one may extend
the integration overt8 to infinity, provideda(t) is replaced
by ã(t)5a(t)Q(t), whereQ(t) is the step function. In
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turn, this kernel may be written as a sum of three term
namely, ã(t)5a0(t)1a(t)1am(t) . The kernela(t) is
the asymmetric continuation ofã(t) to the domaint,0,
while a0(t)1am(t) is the symmetric continuation. The la
ter is split into a0(t) which is a d function, andam(t)
which satisfies*2`

` am(t)dt50. Consequently, the retarde
force, for the BM model, may be written as the sum

Fretarded5Fswitching1FDpotential1Ff r iction1FDmass,
~3.8!

whereFswitching'2k0d(t)x(t), andFDpotential'1Dkx(t),
and Ff r iction'2he f fẋ(t), and FDmass'2Dmẍ(t), with
k05he f f5 limv→0@J(v)/v#, and Dk52/p*0

`@J(v)/v#dv,
andDm52*0

`a(t)t2dt. It has been assumed thata(t) has
short range durationtc , much shorter than the physicall
relevant time scales of the dynamics.This assumption is no
true in general, and the consequences will be discussed la
in Sec. IV.

The switching impulse act on the particle if it starts
trajectory at a pointxÞ0. This term originates due to the fa
that the initial preparation is such that the bath is in therm
equilibrium providedx50. TheDpotential force may be
avoided if we care to include in the BM Hamiltonian th
proper ‘‘counter term.’’ Namely,

Hbath1Hint→(
a

F Pa
2

2ma
1
1

2
mva

2 SQa2
ca

mava
2 xD 2G .

~3.9!

This expression is manifestly invariant under space tran
tions. Sanchez-Canizares and Sols have further consid
this issue@23#.

C. Langevin equation for disordered environment

We turn back to the DLD model withFretarded as found
in Eq. ~3.3!. Here, performing similar treatment, neith
Fswitching nor FDpotential are encountered. Formally, this
due to the fact that the difference2„x(t)2x(t8)… appears in
Eq. ~3.3!, rather thanx(t8) by itself. Physically, this is due to
the inherent homogeneity of the interaction with the enviro
ment ~2.8!. As for Ff r iction andFDmass, here one obtains

Ff r iction~v !5E
2`

`

a~t!w8~vt!dt,

Dm5E
0

`

a~t!w9~vt!t2dt . ~3.10!

If a(t) has short range durationtc , and if, furthermore, the
velocity of the particle is not too high (vtc! l ), then, using
w8(0)50 andw9(0)521, the above expressions reduce
those that follow Eq.~3.8!. If a(t) is not short range, to be
discussed below, then the retarded force in the BM mode
characterized by long range memory for the dynamics. T
approximation that has been used in the preceding subse
is no longer valid, and infinities are encountered in the co
putations of the constants there. In general, these anno
features are not shared by the DLD model@Eq. ~3.10! with
,

r

l

a-
red

-

is
e
ion
-
ng

Eq. ~2.6!#, since a finite cutofft l5 l /v exists, where the mi-
croscopic length scalel characterizes the interaction rang
with the scatterers.

IV. OHMIC AND NON-OHMIC BATHS

In order to make further progress, a specification of
spectral functionJ(v) is required. This function, defined in
Eq. ~2.11!, characterizes the distribution of the bat
oscillators with respect to their frequencies. Following C
we assume it to be of the form

J~v!5hvsG~v/vc!. ~4.1!

where for ‘‘sub-Ohmic’’ bath 0,s,1, for ‘‘Ohmic’’ bath
s51, and for ‘‘super-Ohmic’’ bath 1,s. The exponents
characterize the singular behavior ofJ(v) in the vicinity of
v50, whileG denotes a smooth cutoff function. The latt
satisfiesG(0)51. Moreover, it is assumed thatG(uvu) is
analytic for real frequencies. For example,G may be chosen
to be either Lorentzian or Gaussian. The latter possibi
will be adopted from now on. The commonly used Expone
tial cutoff exp(2v/vc) will not be used since it does no
satisfies the mentioned requirements. Exponential cutoff
sults in singular behavior that corresponds to the expon
s,(s11),(s12), . . . , rather than ‘‘pure’’ singular behavio
that corresponds tos alone. The asymptotic behavior of bot
a(t) and f(t) is dictated by the singularity ofJ(v) at
v50. The physical significance ofs is further discussed in
Appendix A and in Sec. VI B.

A. Expressions for the kernels

In order to display explicit expressions for botha(t) and
f(t), it is useful to define the following function:

Gs~t![E
0

`dv

p
vs21e2~1/2!~v/vc!2cos~vt!. ~4.2!

For s51 this function is a normalized Gaussian. For odds
one obtains

G112n~t!5~21!n
d2n

dt2n F vc

A2p
e2~1/2!~vct!2G
~n is integer!. ~4.3!

For generals it starts att50 positive

Gs~0!5
1

2p
2s/2GS s2Dvc

s ~4.4!

and cross thezerovalue@(s11)/2# times~now we consider
sÞ odd number, possibly noninteger!. The short range oscil-
latory behavior dies out on a time scale of the ord
tc5vc

21 . For larger times a power-law decay is found

Gs~t!5F 1pcosS p

2
sDG~s!G 1ts ~ tail for sÞodd!.

~4.5!
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The total algebraic ‘‘area’’ underGs(t) is infinite for
0,s,1, finite for s51, and zero for 1,s. Representative
plots ofGs(t) are displayed in Fig. 2.

For the spectral functionJ(v) as in Eq.~4.1!, with Gauss-
ian cutoff, the kernela(t) is

a~t!52h
d

dt
Gs~t!. ~4.6!

Also f(t) can be expressed in terms ofGs(t) in both cases
of ‘‘high’’ and ‘‘low’’ temperatures. In the first case it is
assumed that\b ~that has dimensions of time! is much
shorter than any dynamical time scale. One may use then
approximation

f~t!52
h

b
Gs~t! ~ ‘‘high’’ temperatures!. ~4.7!

Or else, if\b is long, one obtains

f~t!5
2

p
G~s11!z~s11!

h

\s S 1b D s11

1\hGs11~t! ~ ‘‘low’’ temperatures!, ~4.8!

wherez(s) is Riemann zeta function~sum over 1/ns). The
notion ‘‘low temperatures’’ means heret,\b. The
temperature-dependent constant term results from the

gration *0
`dv/pJ(v)\@coth(12 \bv)21#. From now on we

shall use the notions of ‘‘high’’ and ‘‘low’’ temperatures i
the sense of the above approximations.

B. Expressions for friction and effective mass

We turn back to the computation of the terms in Eq.~3.8!.
For theDpotential term the result is always finite

FIG. 2. Plots ofGs(t) for s50.5, s51, s52, ands54. The
plots are easily distinguished by referring to their description in
text.
he

te-

Dk5
1

p
2s/2GS s2Dhvc

s. ~4.9!

For the f r iction one obtains a finite, nonzero resu
(he f f5h) only in the case of an Ohmic bath (s51). For
sub-Ohmic bath (0,s,1) the friction is infinite, while for
super-Ohmic bath (1,s) the friction iszero. In the case of
the DLD model finite results are obtained for all cases. Us
Eq. ~3.10! one finds out

Ff r iction~v !

5hvE
2`

`

dtE
0

`dv

p
vse2 ~1/2!~v/vc!2

3sin~vt!
d

dt
@t l

2e2~1/2!~t/t l !
2
#

52
2

p
GS 11

s

2D2s/2 t l
3

~tc
21t l

2!11~s/2! hv

→2
2

p
GS 11

s

2D2s/2l 12shvs. ~4.10!

Above, the notationt l5 l /v has been used. In the last ste
the limit vc→` has been taken since it leads to a fini
nonzero result. Note that the cutoff frequencyvc is not rel-
evant physically as long asv! lvc . The above computation
clarifies the significance of the various time scales. Forma
the BM model constitutes a special case witht l5`. For
s51, the so called ‘‘Ohmic’’ case, one obtain
Ff r iction52hv. This result holds in the case of the DLD
model as well as in the case of the BM model. In the lat
case, fors,1 or for 1,s, the friction force is either infinite
or zero, respectively. This is due to a long range mem
effect. The cutoff frequencyvc , by itself, does not preven
this feature. Finite results for the components of retard
force in the BM model~3.8! may be obtained only for
bounded systems, wherex(t) explores only a finite portion
of the space. The calculation above Eq.~4.10! manifests the
fact that a finite result, in case of unbounded system, may
obtained if a physical cutofft l is introduced. Such arise
naturally in case of the DLD model.

A similar picture emerges upon calculation of the effe
tive mass. For the BM model, a finite result is obtained
case of an Ohmic bath (s51).

Dm5E
0

`

h
d

dt F vc

A2p
e2~1/2!~vct!2Gt2dt52A2/p

h

vc

for s51. ~4.11!

Also for 2,s, the power-law tail ofa(t) decays sufficiently
fast to guarantee a finite result

Dm5
1

2p
2s/2GS s221Dhvc

s22 for 2,s . ~4.12!

e
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For 0,s,2 (sÞ1), the effective mass is infinite. In order t
obtain a finite result we should turn to the DLD mod
~3.10!. Here, as in the case of friction calculation, the sp
tral cutoff vc is not important, and will be taken to infinity
Thus the integration may be performed using the asympt
expression fora(t). Substitution of Eqs.~2.6!, ~4.6!, and
~4.5! yields

Dm5
h

p
cosS p

2
sDG~s!E

0

` 2s

t s11

d2

dt2
@t l

2e2~1/2!~t/t l !
2
#t2dt

52
s~s21!

p
cosS p

2
sDG~s!GS 12

s

2D22s/2ht l
22s

;2
h

vs22 ~ for 0,s,2!. ~4.13!

For the special cases51 one obtainsDm50 which is con-
sistent with Eq.~4.11! in the limit vc→`. For s→2 a nega-
tive infinite value is obtained, while from Eq.~4.12! a posi-
tive infinite value is obtained. In order to describe correc
the crossover ats52, one should introduce finite cutoffvc
as well as finitet l . The calculation will not be carried here

V. PROPAGATOR FOR NONDYNAMICAL
ENVIRONMENT

In this section we shall develop a path-integral express
for the propagator of a particle that interacts either with sta
~quenched! or noisy environment. First we develop a clas
cal expression, and then we generalize to the quantal reg

A. Classical derivation

We refer to the dynamics generated by the Hamilton
~2.7!. The classical Liouville propagator, over infinitesim
time dt, and for definite realization ofU is

K~R2 ,P2uR1 ,P1!52pdF ~P22P1!1S ]V

]R
1

]U
]RDdtG

3dS ~R22R1!2
P

m
dt D .

It is more convenient to write an expression for the propa
tor of the Fourier transformed probability functio
@r(R,P)→r(R,r )#, namely,

K~R2 ,r 2uR1 ,r 1!5S m

2p\dt DexpH 1\ F imSR22R1

dt D ~r 22r 1!

2 i S ]V

]R
1

]U
]RD S r 21r 1

2 Ddt G J .
Here a dummy parameter\ has been inserted. Its value do
not have any effect here. However, later comparison to
quantum mechanical version will be more transparent.
finite time, the convolved propagator may be written as
functional integral
-

ic

n
c
-
e.

n

-

e
r
a

K~R,r uR0 ,r 0!5E
R~0!

R E
r ~0!

r

DR DrexpF1\ S imE
0

t

dt Ṙṙ

2 i E
0

t

dt
]V

]R
r ~t!2 i E

0

t

dt
]U
]R

r ~t! D G .
Here the measure is

DRDr5S m

2p\dt D # segments•••dR3dR2dR1•••dr3dr2dr1
~5.1!

and the restrictions at the end points areR(0)5R0,
r (0)5r 0 andR(t)5R, r (t)5r . It is now possible to average
over realizations ofU, using the well known Gaussian iden
tity

^ei*dtk~t!z~t!&z5e2~1/2!*dt dt8^z~t!z~t8!&k~t!k~t8! . ~5.2!

One obtains

K~R,r uR0 ,r 0!

5E
R~0!5R0

R E
r ~0!5r0

r

DR Drei ~1/\!Sef f[R,r ]e2~1/\2!SN[R,r ] ,

~5.3!

where~classically!

Sef f@R,r #5Sfree@R,r #2E
0

t

dt
]V

]R
r ~t! ~5.4!

and ~classically!

SN@R,r #5
1

2E0
tE

0

t

dt1dt2

3@2f9$R~t2!2R~t1!,t22t1#%r ~t2!r ~t1! .

~5.5!

The free part of the effective action, for use in Eq.~5.3!, is
Sfree@R,r #5m*0

t dt Ṙṙ . It may be more convenient to write
down the path-integral expression forK(R,PuR0 ,P0). This
expression is obtained by double Fourier transform
K(R,r uR0 ,r 0). The result is

K~R,PuR0 ,P0!5E
R0 ,P0

R,P

DRE Drei ~1/\!Sef f[R,r ]

3e2~1/\2!SN[R,r ] . ~5.6!

Here @for use in Eq.~5.6!#,

Sfree@R,r #52mE
0

t

dt R̈r . ~5.7!

Note that the integrationDr is not restricted at the end
points, whereas the integrationDR is restricted at the end
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points both inR and in Ṙ. The restriction onṘ at the end
points is implicit, through the dispersion relationṘ5P/m.

B. Quantal derivation

A similar expression may be obtained for the quan
propagator. Again, we refer to the dynamics generated by
Hamiltonian~2.7!. The environment may be either ‘‘noisy’
or ‘‘quenched,’’ where the latter case formally constitutes
special case of the former. The expression that will be
tained is a generalization of a result that has been obtaine
Ref. @20# for white noise potential.

The Feynman path-integral expression for the propag
of the quantal wave function is

U~xux0!5E
x~0!5x0

x

Dxei ~1/\!*0
t dt[ ~1/2!mẋ22V~x!2U~x,t !] .

~5.8!

The path-integral expression for the propagator of the d
sity probability function constitutes summationDx8Dx9 over
the pairs of pathsx8(t) and x9(t). Alternatively, we may
use also the coordinatesR5(x81x9)/2 and r5(x92x8),
thus the summation will beDRDr , namely,

K~R,r uR0 ,r 0!

5E
R0

R

DRE
r0

r

Drei ~1/\!Sef f[R,r ]2 i ~1/\!*0
t dt[U~x9,t!2U~x8,t!] ,

where

Sef f@R,r #5Sfree@R,r #2E
0

t

dt@V~x9,t!2V~x8,t!# .

~5.9!

It is important to notice that the quantal definition of th
measure is identical with the classical one~5.1!. In order to
perform the average over realizations ofU using the Gauss
ian identity ~5.2!, one may write the last expression as

K~R,r uR0 ,r 0!

5E
R0

R E
r0

r

DR Dr

3ei ~1/\!Sef f[R,r ]2 i ~1/\!*0
t dt*2`

` dz[d~z2x9!2d~z2x8!]U~z,t! .

One easily find that the final result may be cast to the form
Eq. ~5.3! or ~5.6! with

SN@R,r #5
1

2E0
tE

0

t

dt1dt2@f~x292x19 ,t22t1!

1f~x282x18 ,t22t1!22f~x292x18 ,t22t1!# ,

~5.10!

wherexi is a short notation forx(t i).
We are now in position to compare the classical propa

tor @Eq. ~5.6! with Eq. ~5.4! and~5.5!#, with the quantal one
@Eq. ~5.6! with Eqs.~5.4! and~5.5!#. In the latter case\ is, in
general, no longer a ‘‘dummy variable.’’ The exception b
l
he

a
-
in

or

n-

f

-

-

ing the case where the actions are quadratic in the path v
ables, which is the case with the BM model, provid
V(x,t) is quadratic. The ‘‘classical feature’’ may be chara
terized as arising from an invariance under the scaling tra
formation of the auxiliary integration variabler (t). In the
quantal regime the replacement\→l\ cannot be compen
sated by the scalingr→lr . Note however that the limit
\→0 is equivalent to taking leading behavior of the actio
in the limit r→0.

VI. PROPAGATOR FOR DYNAMICAL ENVIRONMENT

A. Feynman-Vernon formulation

Here we follow closely the notations in Ref.@13#. The
path-integral expression for the reduced propagator of
probability density function is of the general form~5.6!, with

Sef f@R,r #5Sfree@R,r #2E
0

t

dt@V~x9,t!2V~x8,t!#

1SF@x9,x8# . ~6.1!

The expressions for the reduced-action function
SF@x8,x9# andSN@x8,x9# in the case of the BM model, ar
given in Eqs.~2.13! and~2.14! of the latter reference. In the
BM model the interaction is via the dynamical variablex,
while, in DLD model, the interaction is viaua(x). Thus, in
the expressions for the friction functionalSF@x8,x9# and for
the noise functionalSN@x8,x9# one should make the replace
mentsx8→ua(x8), x9→ua(x9), and sum overa. Thus one
obtains

SF@x8,x9#5E
0

tE
0

t

dt1dt2 2ã~t22t1!

3
1

2(a @ua~x29!2ua~x28!#@ua~x19!1ua~x18!#

and

SN@x8,x9#5
1

2E0
tE

0

t

dt1dt2f~t22t1!@ua~x29!2ua~x28!#

3@ua~x19!2ua~x18!#.

Above ã(t)[a(t)Q(t). These expressions may be simp
fied using Eq.~2.12!. The results are

SF@x8,x9#5E
0

tE
0

t

dt1dt2 2ã~t22t1!

3
1

2
@w~x292x19!2w~x282x18!

1w~x292x18!2w~x282x19!# ~6.2!

and
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SN@x8,x9#5
1

2E0
tE

0

t

dt1dt2f~t22t1!

3@w~x292x19!1w~x282x18!22w~x292x18!#.

~6.3!

In the next paragraph we further discuss the physical sig
cance of the functionalSF@x8,x9#.

For the BM model it has been noted before that in pr
tice one could substitute Eq.~2.5!. Thus

SF@x8,x9#5E
0

tE
0

t

dt1dt22ã~t22t1!r ~t2!@R~t1!2R~t2!#.

However, the formally ‘‘correct’’ expression is somewh
different„Ref. @13#, Eq.~2.13!…. Namely, the integrand in the
above equation is with r (t2)R(t1), rather than
r (t2)„R(t1)2R(t2)…. One may say that the BM reduced
action functional includes an additional term. It is not dif
cult to demonstrate that the latter can be split into two ter
that corresponds exactly toFDpotential and toFswitching, dis-
cussed in Sec. III B. TheDpotential term may be absorbe
in the definition ofV(x), while theswitching term, which
is 2Dk r(0)R(0), may befactored out of the path-integra
expression„see Ref.@13#, Eq. ~2.34!…. It has the effect of
operating on the initial probability function with an impuls
that acts on the particle if it starts its trajectory in a poinx
Þ0. This term originates due to the fact that the initial prep
ration is such that the bath is in thermal equilibrium provid
x50. Both the ‘‘switching’’ term and the additional effec
tive potential, are absent in the DLD model. This obvio
results stems from the assumed inherent homogeneity o
environment. We turn now to the general expression~6.2!.
Again, as in Sec. III B, it is convenient to expressã(t) as a
sum of its symmetric, and antisymmetric continuations. H
we focus on the resultant friction functional, which is

SFu f r iction5E
0

tE
0

t

dt1dt2a~t22t1!w„x9~t2!2x8~t1!….

~6.4!

For an Ohmic bath one obtains

SF5hE
0

t

dt w8„r ~t!…Ṙ~t!→2hE
0

t

dt r ~t!Ṙ~t!,

~6.5!

where in the last stage we indicated the classical limit. N
that the classical expression forSF can be easily derived. Fo
this one should include the friction force in the derivation
Sec. V A.

B. Derivation for generic bath

A totally different derivation of the path-integral expre
sion for the propagator is possible in the general case
weak coupling to thermal, possibly chaotic bath. This de
vation, in case oflinear coupling, has been introduce alread
by FV, Ref.@5#. The case of general, nonlinear coupling, h
been considered by Mo¨hring and Smilansky, Ref.@11#. Here
we shall take a step further, and demonstrate that un
-
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‘‘normal’’ circumstances, it will reduce to an Ohmic DLD
model. We consider a bath Hamiltonian of the general fo

Hbath1Hint5(
n

un&En^nu1(
nm

um&Umn~x!^nu, ~6.6!

where un& andEn are the eigenstates and eigenenergies
the bath Hamiltonian in the absence of the coupling. T
Hamiltonian depends onx, the system variable, as a param
eter. However, once the full Hamiltonian~2.10! is consid-
ered, x becomes a dynamical variable. The so-call
influence functional, in our notations is~by definition!

ei ~SF1 iSN!5(
nm

pnUmn@x9~t!#Umn* @x8~t!#. ~6.7!

Units with \51 are used here.U@x(t)# is the evolution
operator of the bath, in the presence of the ‘‘driving force
x(t). The bath is assumed to be in canonical thermal eq
librium. The probability of thenth eigenstate ispn}e

2bEn.
Using leading order perturbation theory one obtains

Umn@x~t!#'2 i E
0

t

dtUmn„x~t!…ei ~Em2En!t for mÞn.

~6.8!

Similar expression holds form5n ~see Ref.@11#!. Substitu-
tion into Eq.~6.7! yields

~ iSF2SN!

5(
nm

pnF E
0

tE
0

t

dt2dt1Umn~x29!Umn* ~x18!ei ~Em2En!~t22t1!

2E
0

tE
0

t2
dt2dt1„Umn~x29!Umn~x19!e2 i ~Em2En!~t22t1!

2Umn
! ~x28!Umn

! ~x18!ei ~Em2En!~t22t1!
…G . ~6.9!

Now we take a further assumption which will reduce t
resultant expression forSF andSN to the form of Eqs.~6.2!
and ~6.3!, respectively. The matrix elementsUmn are as-
sumed to be real, while their dependence onx is assumed to
be characterized by the function

p(
mn

~pn2pm!Umn~x2!Umn~x1!d„v2~Em2En!…

5w~x22x1!J~v!. ~6.10!

The reduction of Eq. ~6.9! to Eqs. ~6.2! and ~6.3!
is easily verified via algebraic manipulation
using Im@(nmpn$•••%#5(nm(pn2pm)$•••% and
Re@(nmpn$•••%#5(nmcoth(

1
2bv)(pn2pm)$•••%, where

coth(12bv)5(pn1pm)/(pn2pm). Thus, for general nonlin-
ear coupling, the DLD model constitutes an equivalent r
resentation for the bath, as far as the reduced dynamics o
system is concerned. For the particular case of the w
linear coupling, there is further reduction to the BM mode
with
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J~v!5p(
n,m

~pn2pm!uQmnu2d„v2~Em2En!….

~6.11!

In the above expressionQ denotes the collective bath degre
of freedom via which the interaction takes place, namely
Eq. ~6.6! one should substituteU(x)5Qx. The bath variable
Q may be some complicated nonlinear combination of ma
elementary bath degrees of freedom. For both, the D
model and the BM model, the expression forJ(v), may be
casted into the form

J~v!5
p

bZ~b!
~12e2bv!s~v!2K~v!, ~6.12!

whereZ(b) is the partition function,s(v) is the standard
deviation of the off-diagonal matrix elements (v being the
offset!, andK(v) is the density-density autocorrelation fun
tion of the spectrum$En%, appropriately averaged over th
relevant energy scale. The latter is related, for small ene
differences, to the level spacing distribution. However,
any practical use, one should ignore the effect of level sp
ing statistics onJ(v), since it corresponds to nonphysical
very long times. Thus, the generic behavior ofJ(v), for
physically relevant smallv, is expected to bel inear. This
leads to the conclusion that under ‘‘normal’’ circumstanc
the Ohmic DLD model is a good representation for the d
sipation process. This conclusion does not hold ifstrong
coupling to a chaotic bath is considered. In the latter c
Zener transitions may dominate the dissipation process@8,9#.
We do not know whether the influence functional~6.7! for
that case can be reduced to a form that resembles that o
DLD model.

C. Loss of quantal interference

The suppression of quantal interference is an impor
issue in both semiclassical and mesoscopic physics. It
arise that the quantum mechanical propagator may be
pressed as a sum of probabilities to go either via one cla
cal trajectoryxa(t) or via a different classical trajector
xb(t), plus an interference term. The expression for
influence functionalmay be used in order to compute th
suppression of the interference due to the interaction with
environment. The interference term is multiplied by
‘‘dephasing’’ factor^eiw&, where we follow a notation due to
Stern, Aharonov, and Imry@15#. In our notations, the dephas
ing factor is identified with exp$2SN@xa(t),xb(t)#%. We defer
further discussion of interference within the framework
FV formalism to the last paragraph of this subsection.

It is enlightening to consider the case of white noise, w
f(t22t1)5nd(t22t1). For the BM model one obtains

^eiw&5expF2
1

2

n

\2E
0

t

@xa~t!2xb~t!#2dtG . ~6.13!

Thus interference is suppressed more effectively if the
interfering paths are better separated. A totally different
sult is obtained in case of the DLD model. Here we assu
n
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that the two interfering paths are well separated with resp
to the microscopic scalel , namely,l!uxa(t)2xb(t)u most
of the time. It follows that

^eiw&5expF2
n l 2

\2 t G . ~6.14!

Here, the interference decays exponentially in time, and
actual spatial separation of the paths play no role. Due to
disorder, dephasing events are as effective for small sep
tions as for large separations.

The dephasing of interference in metals due to elec
magnetic fluctuations has been discussed by Al’tshu
Aronov, and Khmelnitskii in Ref.@16#. Their results have
been rederived by Stern, Aharonov, and Imry@15#. A some-
what simplified derivation is reconstructed in Appendix
The strong dimensionality dependence of the dephasing
cess has been emphasized. This dependence is due t
separation dependence as in Eq.~6.13!, and see also Eq
~A6!. In case of the DLD model, the local nature of th
dephasing process will eliminate this feature.

In order to understand how interference arises from
FV path-integral expression~5.6!, it is convenient to rewrite
it in the following form:

K~R,PuR0 ,P0!5E
R0 ,P0

R,P

DRK@R#, ~6.15!

whereK@R# is a real functional, which is defined by th
expression

K@R#5E
unrestricted

Drei ~1/\!Sef f[R,r ]e2~1/\2!SN[R,r ] .

~6.16!

If the path-integral expression for the evolution operator E
~5.8! is dominated by asingleclassical pathxa(t), then the
DR integration in Eq. ~6.15! will be dominated by
R(t)5xa(t). Obviously, in order to obtain a nonvanishin
result, the end point conditions should be compatible. Tu
ing to the computation ofK@R(t)5xa(t)# via Eq. ~6.16!,
one observes that theDr integration is dominated by the
trivial trajectory r R(t)50. We use the subscriptR in order
to suggest that, in general, this trajectory should beR depen-
dent. Indeed, this is the case if two classical trajector
xa(t) and xb(t) dominate. One should consider then t
‘‘interference path’’R(t)5„xa(t)1xb(t)…/2, for which the
Dr integration is dominated by the nontrivial path
r R(t)56„xa(t)2xb(t)…. The existence of nontrivial path
r R is the fingerprint of interference phenomena. A classi
trajectoryR(t) for which r R50 will not be damped, since
SN@R,r R#50 then. In contrast, an interference path, f
which r RÞ0, is damped, since 0,SN@R,r R# in general.
However, in Sec. IX, where the localization effect is di
cussed, we shall encounter a vast family of interference
jectories that are not damped by the noise functional. In
latter case, the interference paths are found to be domina
the computation of the propagator.

Another issue that deserves attention is the interplay
friction and interference. By inspection of Eq.~6.4! it is clear
that for disorderedenvironment, quantal interference is u
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affected by friction. This is true as long asxa andxb are well
separated in space. In Sec. VII B we shall encounter a rel
quantal manifestation of this observation.

VII. SPREADING AND DIFFUSION

The main results of the two last sections are the pa
integral expression~5.6! for the propagatorK(R,PuR0 ,P0),
with the appropriate action functionalsSfree ~5.7!,
SFu f r iction ~6.4!, andSN ~6.3!. The classical limit ofSN is
presented in Eq.~5.5!. For Ohmic friction, both the quanta
version and its classical limit~6.5! will be further considered
and compared. Friction in the case of a non-Ohmic bath
been discussed in Sec. IV, and its quantal analog will no
considered further.

In order to get preliminary insight into the path-integr
expression, consider first the case of free particle in ‘‘whit
noisy environment. Namely,f(t2t8)5nd(t2t8), with
n52hkBT as in Eq.~4.7!. In the classical case~5.5!, one
obtains

SN@r #5
1

2
nE

0

t

r ~t!2dt ~7.1!

independent of the spatial autocorrelation functionw(r ). The
observation that spatial correlations are of no importance
long as the noise is uncorrelated in time, is trivial from
classical point of view. In the quantum mechanical case,
corresponding expression is

SN@r #5nE
0

t

@w~0!2w„r ~t!…#dt. ~7.2!

Contrary to classical intuition, spatial correlations may be
importance. However, for the BM model, Eq.~2.5!, one re-
covers the classical result.

In the path-integral expression~5.6!, one may perform the
integrationDr5•••dr3dr2dr1. In the absence ofSN , each
integration overdrn results in d function of velocities,
namely,d„Ṙ(tn11)2Ṙ(tn)…. In the presence ofSN , the in-
tegrationdrn is weighted, and as a result, eachd function is
smeared. The propagator constitutes a convolution of th
smearedd functions. In particular, both in the classical ca
and in the BM model, each smearedd function is a Gaussian
It is obvious, that both in the classical and in the quan
case,SN leads to stochasticlike spreading. In what follow
we want to estimate this spreading.

A. Nondisordered environment

We turn now to estimate the spreadingin the absence o
disorder, which is the standard BM model. The noise fun
tional is quadratic in the path variabler , and is independen
of the path variableR, namely,

SN@R,r #5
1

2E0
tE

0

t

dt1dt2f~t22t1!r ~t!r ~t8!. ~7.3!

Here, an exact treatment is available@13#. One may expand
both Sfree andSN around the so-called classical paths, th
are determined by the variationdSfree50, with the con-
ed

-

as
e

’

as

e

f

se

l

t

straintsdR5dr50 at the end points. The Gaussian integ
tion is performed exactly. General expressions may be fo
in Ref. @13#. The phase-space propagatorK(R,PuR0 ,P0) is
obtained by a double Fourier transform ofK(R,r uR0 ,r 0),
and obviously results in a Gaussian function. In particu
one is interested in the spatial spreading. SettingP050 and
integrating over the final momentumP, one obtains

K~RuR0!5
1

2pAsspatial

expF12 S R2R0

sspatial
D 2G . ~7.4!

A general expression for the spatial spreading, that applie
anyf(t), may be obtained@13#

sspatial5
1

mAE
0

tE
0

t

f~t2t8!r cl~t!r cl~t8!dt dt8,

~7.5!

wherer cl solves the linearized classical equation of moti
(mr̈1h ṙ50) with initial conditionsr (0)50 and ṙ (0)51.
Note that Ohmic friction is considered, for which the BM
model is well defined. For the simplest case of white no
without friction one obtainssspatial5(1/3nt3/m2)1/2. Fric-
tion leads to damping and diffusion. In the latter case, c
sidering long timee2(h/m)t!1, one may disregard a sho
transient and substitute r cl5m/h. Consequently,
sspatial5@(n/h2)t#1/2. However, at low temperature
f(t)52(C/p)(1/t2) while *2`

` f(t)dt50. Thus

sspatial;S Ch2

2

p
lnt D 1/2, ~7.6!

diffusion is suppressed due to the negative autocorrelat
of the noise. This effect is classical in nature. Intentiona
we did not use the explicit expression for the consta
namely,C5\h. The presence of\bath in the formula, rather
than\system, without an explicit subscript, may mislead th
reader. The particle can be treated as a classical ob
within the framework of, e.g., the Langevin equation, a
still the suppression of diffusion will occur.

B. Disordered environment, white noise

Both the classical limit and the BM model generate ‘‘cla
sical’’ dissipation effects. We turn now to the DLD mode
@Eq. ~7.2! with Eq. ~2.6!#. Here the situation is quite differ
ent. In order to compute the propagator, a different, m
powerful strategy is required. We shall exploit the fact th
for white noiseSN@R,r # is still independent ofR(t), while
Sef f@R,r # is linear inR(t). It is most convenient to Fourie
transformK(R,r uR0 ,r 0) to K(p,r up0 ,r 0). The path-integral
expression may be written for this representation as follo
(from now on we suppress printing\, but shall restore it
later):
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K~p,r up0 ,r 0!

5eih[Rw8~r !2R0w8~r0!]E
r0 ,p0

r ,p

Dr E DR
3e2 i*0

t dt„mr̈1hw9~r ! ṙ …Re2n*0
t [w~0!2w„r ~t!…]dt.

The DR integration can be performed now, yielding ad
functiond„mr̈1hw9(r ) ṙ … at each point along the trajectory
The trajectory for which the integrand does not vanish w
be denoted byr (r 0 ,r ,t), where 0,t,t. This trajectory is
required to satisfy the end points conditionsr (0)5r 0 and
r (t)5r . Hence, the result of the path integration is

K~p,r up0 ,r 0!5eih„Rw8~r !2R0w8~r0!…d„p2mṙ~r 0 ,r ,t !…

3d„p02mṙ~r 0 ,r ,0!…

3e2n*0
t [w~0!2w„r ~r0 ,r ,t!…]dt.

The inverse Fourier transform yields

K~R,r uR0 ,r 0!5ei [ „mṙ~r0 ,r ,t !1hw8~r !…R2„mṙ~r0 ,r ,0!1hw8~r0!…R0]

3e2n*0
t [w~0!2w„r ~r0 ,r ,t!…]dt.

To simplify the latter expression we note thatmṙ1hw(r ) is
a constant of the motion.

The propagatorK(R,PuR0 ,P0) is the Fourier transform
in the variablesr and r 0. In order to get insight we restric
ourselves to the reduced kernelK(RuR0), namely,

K~RuR0!5E
2`

`

dr0e
i [ „mṙ~r0,0,0!1hw8~r0!…~R2R0!]

3e2n*0
t [w~0!2w„r ~r0,0,t!…]dt. ~7.7!

As before we distinguish the case of frictionless propagat
for which r (r 0,0,t)5@(t2t)/t#r 0, from the case of the
damped particle withe2(h/m)t!1. In the latter case the tra
jectory is modified forur 0u, l , wherer (r 0,0,t)'r 0. Conse-
quently, the ‘‘phase’’ in Eq. ~7.7! is Sef f(r 0)5
2(m/t)(R2R0)r 0 and Sef f(r 0)52h(R2R0)r 0, for the
two corresponding types of trajectories. As for the noise
gument in Eq.~7.7!, it is SN(r 0)5n l 2t for l!ur 0u, and
SN(r 0)'

1
6ntr 0

2 or SN(r 0)'
1
2ntr 0

2 for ur 0u, l , depending on
whether friction is absent or present, respectively. The se
ration of scales both inSef f(r 0) and inSN(r 0) enables split-
ting the integral in a convenient way, namely,

E
2`

`

•••dr05E
2`

`

•••WS r 0l Ddr0
1E

2`

`

. . . F12WS r 0l D Gdr0 .
whereW(x) is a smooth, symmetric cutoff function tha
equals'1 for uxu,1 and equals'0 for 1,uxu. The inte-
gration in Eq.~7.7! is performed, and the following expres
sion is obtained for the propagator:
l

n,

r-

a-

K~RuR0!'W̃S R

\/h l D!Kcl„R2Rcl~ t !…1e2 ~n l2/\2! t

3Fd„R2R0~ t !…2W̃SR2R0~t!

\t/ml D G . ~7.8!

The symbol! stands for convolution, and results in smeari
of the classical propagator on scale\/(h l ). For frictionless
propagation one should use the replacem
\/(h l )→\t/(ml). We have used the notatio
R0(t)5Rcl(t)5R0. The above result holds also ifP0Þ0, in
this caseR0(t) will propagate as if friction is absent, while
Rcl(t) will propagate as in the classical limit. Obviously,
friction is indeed absent, then againR0(t) andRcl(t) will
coincide. The kernelKcl(RuR0) denotes the classical resul
Eq. ~7.4!.

The expression for the quantal propagator demonstr
that a piece of the wave packet is frozen due to the disor
This is a nontrivial quantal effect that indeed can be entit
‘‘quantum dissipation.’’ We emphasize again that such
quantal effect is absent in the BM model. However, the
pression for the propagator also demonstrates that
‘‘quantal correction’’ goes to zero exponentially in time, a
in the case of interference discussed in Sec. VI C.

VIII. CLASSICAL NON-MARKOVIAN EFFECTS

The disadvantage of the treatments that have been
sented in the preceding section, is the difficulty to exte
them to thegeneralcase of disordered environment, name
if the disorder~the noise! is correlated in time. We therefor
turn to a somewhat more heuristic approach, that will ena
approximated treatment. For the computation
K(R,PuR0 ,P0) we shall use the classical limit~5.5! of
SN@R,r #. The ‘‘quantal correction’’ in Eq.~7.8!, is not con-
sidered again in the present section.

In the classical limit~6.15! constitutes a formal solution
of the Langevin equation. The real functionalK@R# has a
simple probabilistic interpretation. For Ohmic friction
takes the form

K@R#5E Dre2 i*0
t dtDR~t!r ~t!e2 ~1/2!*0

t *0
t dtdt8fR~t,t8!r ~t!r ~t8!,

~8.1!

where

fR~t,t8![2w9„R~t!2R~t8!…f~t2t8! ~8.2!

and

DR~t![mR̈~t!1hṘ~t!. ~8.3!

Formally, the unrestrictedDr integration may be performed
exactly, yielding the result

K@R#5Adet@FR#

3expS 2
1

2E0
tE

0

t

dt dt8FR~t,t8!DR~t!DR~t8! D ,
~8.4!
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where FR is the reciprocal offR . In order to compute
K(R,PuR0 ,P0) one should identify the most contributin
paths, for whichK@R# is maximal. In Sec. VIII A, where we
discuss short-time correlated colored noise, we assume
oneoptimal path dominates the computation. In Sec. VIII
where we discuss static or almost-static noisy potential,
shall identify a whole family of optimal paths. In Sec. IX
where quantum localization is discussed, we shall use a s
lar strategy, and a family of interference paths will be ide
tified.

A. Normal, dissipative diffusion

In this section we shall analyze the diffusive behav
which is encountered in the absence of disorder. Our
sumption will be that theDR integration is dominated byone
smooth ‘‘optimal path.’’ We shall substantiate this assum
tion by demonstrating consistency with the exact result t
has been presented in Sec. VII A. Furthermore, it will
argued that the ‘‘optimal path’’ for short-time correlate
noise is the same as for white noise.

In order to find the pathR0(t) that maximizesK@R#, we
first consider the case of white noise, whe
fR(t2t8)5nRd(t2t8). Hence, FR(t2t8)5nR

21d(t
2t8), with nR5n ~the subscriptR is reserved for later use!.
As in Sec. VII A we focus the attention on the computati
of the reduced propagatorK(RuR0). Formally, the path-
integral expression forK(RuR0) is identical with Eq.~6.15!,
except for the restriction at the end points. ForK(RuR0), the
relaxed constraints areR(0)5R0, Ṙ(0)50, andR(t)5R.
DenotingṘ5v, the variational equation forRo(t), including
the Lagrange multiplier, is

dE
0

t

@~mv̇1hv !21const3v#dt50,

one obtains

mv̈2h2v5const,

~mv̇1hv ! t50,

v~0!50,

E
0

t

v~t!dt5~R2R0!.

The last two equations are the constraints. The solution
damped propagation (e2(h/m)t!1) is easily found. For the
sake of comparison also the solution for frictionless pro
gation (h50) is displayed.

Ṙ0~t!'
R2R0

t F12
1

2
e2~h/m!~ t2t!

2S 12
1

2
e2 ~h/m! tDe2 ~h/m! tG

~for damped propagation!

Ṙo~t!5
3

2

R2R0

t3
t~2t2t!

~for frictionless propagation). ~8.5!
at
,
e

i-
-

r
s-

-
t

or

-

In the first formula a constant prefactor that equals'1 has
been dropped, since we assume heree2(h/m)t!1 . The opti-
mal paths of Eq.~8.5! are illustrated in Fig. 3. Computation
of DR(t) for the optimal path is straightforward. For dampe
propagation the computation is trivial sinceDR'h„(R
2R0 )/t… is constant. Substitution into Eq.~8.4! yields

K@Ro#5const3expS 2
1

2

~R2R0!
2

nRt/h
2 D , ~8.6!

which is consistent with the exact result of Sec. VII A. It is
also easily verified that for frictionless propagation, consi
tency with the exact result is maintained.

For short-time correlated colored noise (1<s) it is natural
to replacef(t2t8) by nd(t2t8), with the effective white
noise intensityn5f(v50). As long as 0,n ~finite tem-
peratures!, the long-time behavior is diffusive, and consis
tency with Eq.~7.5! is easily verified. Still, a more elaborate
argument is required in order to substantiate the ‘‘whit
noise approximation.’’ This argument will be discussed now

By inspection of Eq.~8.4! it is clear that the most contrib-
uting paths, for which K@R# is large, must satisfy
uDR(v)u2,f(v). For white noisef(v)5n5const, but still
the ‘‘optimal path’’ is smooth. By ‘‘smooth’’ one means that
DR(v) is concentrated within the intervalv,1/th , where
th5m/h is the relevant time scale for the system’s dynam
ics. Now consider a noise autocorrelation function of th
formf(t)5nd(t)1C•Gs(t). Its Fourier transform satisfies
f(v)'n'const for v,(n/C)1/(s21). Thus, the first re-
quirement for the white noise approximation to hold shou
beC/th

s21,n. Forvc,v the spectral functionf(v) drops
to zero, which implies that such high frequency componen
are not favored. So far there is consistency with our assum
tion that the most contributing paths are smooth. However,
the vicinity of vc the spectral functionf(v) is peaked. It
implies, that unlike the case of white noise, an oscillator
component with time periodtc is favored. Obviously, such
components arise from the strong accelerations that the p
ticle experiences within short periods, whose duration
tc . Over these short periods the maximum displacement

FIG. 3. Illustration of the optimal path~8.5! for either damped
propagation~solid line!, or frictionless propagation~dashed line!.
The horizontal axis represents spatial position, while the vertic
axis is for the time.
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DL5 1
2@Af(t50)/m#tc

2 . Using Eq.~4.4! it is found that this
amplitude is proportional totc

(42s)/2 . Fors,4 the amplitude
DL goes to zero astc→0. Therefore, in this restricted re
gime (1<s,4), and in particular fors52 ~low temperature
Ohmic noise! the ‘‘white noise approximation’’ should be
adequate.

B. Anomalous ‘‘diffusion’’

Encouraged by the consistency of the heuristic appro
with the exact results, we turn now to analyze the diffus
due to short-time correlated noisein the presence of disor
der. We shall use the white noise approximation whose
lidity has been discussed in the preceding subsect
Namely, for short range correlated noise, the most contrib
ing paths are concentrated around the sameRo(t) that has
been found for white noise. From Eq.~8.5! it follows that
Ro(t) is, up to end point transients, a freelike propagati
Consequently, the effective noise autocorrelation functio
fR(t)'2w9„@(R2R0)/t#•t…f(t) and we define

nR5E
2`

` F2w9SR2R0

t
t D •f~t!Gdt. ~8.7!

In general 0,nR , also in the limit of zero temperature.
In the presence of disorder, the effective white noise

tensity is~in general! a function of the end point conditions
rather than a constant. For typical noise autocorrelation fu
tion of the formf(t)5CGs(t) one obtains

nR5C̃
t l
3

~tc
21t l

2!11~s/2! ,

with

t l5
l •t

~R2R0!
and C̃5A2/p2s/2GS 11

s

2DC. ~8.8!

The computation has been carried out by taking in Eq.~8.7!
the Fourier transform of bothf( ) andw9( ), and perform-
ing dv integration rather thandt integration. Substitution
into Eq. ~8.6! suggests that

K~RuR0!u$uR2R0u, lvct%

5const3expS 2
h2

2C̃
l s21ts22uR2R0u32sD , ~8.9a!

K~RuR0!u$uR2R0u. lvct%
5const3expS 2

h2

2C̃

uR2R0u5

vc
s12l 3t4D .

~8.9b!

The ‘‘tail’’ of the dispersion profile is universal. It depend
on vc , but it is independent of the nature of the noise.
contrast, the short range profile is determined by the
frequency bath oscillators, and thus it is sensitive to the ex
value of s. For s51, ~Ohmic model, high temperatures!,
normal diffusive behavior prevails. Fors52 ~Ohmic model,
low temperatures! the diffusion freezes. The dispersion pr
file is exponential rather than Gaussian, namely,
ch
n

-
n.
t-

.
is

-

c-

w
ct

K~RuR0!5const3expS 2
uR2R0u

F4A2/p 1

h2l
CG D

~Ohmic, low temperatures!. ~8.10!

The dispersion here, in the DLD model, is of the ord
C/(h2l ) rather thanAC/h. @The BM model is Eq.~7.6!#.
One should observe that on forC;(h l )2 both models pre-
dict, consistently, dispersion on a spatial scalel . For larger
noise intensity, the BM model is not valid, and the DL
predicts always a larger dispersion, which is intuitively e
pected. For weak noise@C,(h l )2# the spatial spreading is
on scale less thanl . Our treatment of the DLD model is no
valid on this microscopic scale. However, in this regime t
BM model can be trusted. For 3,s,4 Eq. ~8.9a! implies
that the particle evacuates from the vicinity ofR0.

The ‘‘body’’ of the ‘‘diffusion’’ profile ~8.9a! is deter-
mined by low velocity paths for whichtc!t l . It is easily
verified that a sufficient condition for the validity of th
‘‘white noise approximation’’ ist l!th . This condition is
satisfied in the relevant spatial range (uR2R0u, lvct), ex-
cept for a relatively small interval aroundR0, which is de-
termined by the large ratioth /tc .

The ‘‘tail’’ of the ‘‘diffusion’’ profile ~8.9b! is determined
by high velocity paths for whicht l!tc . Here the validity
argument should be modified. The spectral functionf(v) is
peaked aroundv51/t l rather than aroundv5vc . Thus,
oscillatory component which is characterized by periodt l is
favored. The maximal spatial amplitude of this componen
DL5 1

2„Af(t50)/m…t l
2 . It is convenient to use a specia

notation for the standard deviation of the disordered pot
tial, namely,W5 lAf(t50). Using this notation the ampli
tude isDL5 1

2@W/(mv2)# l . This amplitude is required to be
much less thanl , or alternativelyW! 1

2mv
2 or alternatively

t l!tW , with tW5 l /A2W/m. In this section we have limited
the discussion to the case of short-time correlated noise
which tc is small, in some sense. Indeed, if it is assumed t
tc!tW , then the validity condition will be satisfied auto
matically.

C. Classical localization and nondissipative diffusion

In this section we shall discuss the case of static
almost-static disordered nondynamical environm
(h50). The ‘‘noise’’ is assumed to possess long-time c
relations. Specifically

fR~t,t8!52w9„R~t!2R~t8!…
W2

l 2
expS 2

1

2

~t2t8!2

tc
D ,

~8.11!

whereW is the standard deviation of the disordered pote
tial. Here tc is assumed to be large, much larger th
tW5 l /A2W/m.

In general the white noise approximation breaks dow
The path-integral expression is no longer dominated
‘‘smooth’’ trajectories. It is difficult to use the explicit for-
mula ~8.4! in order to identify the family of ‘‘optimal paths’’
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sinceF(t,t8) is no longer diagonal. We therefore prefer
use heuristic considerations. No new insight is gained if o
insists on using Eq.~8.4!.

We first take the limittc→`. The classical mean fre
path of the particle is

Lcollision5 l expS 2
1

2

1
2 mv

2

W
D . ~8.12!

The corresponding time isTcollision5Lcollision /v. After that
time the probability of being backscattered is of order 1.
one dimensionthis backscattering will lead to~classical! lo-
calization of the particle. The localization length is expone
tially large for high energies.

If tc is finite, rather than infinite, classical localizatio
will manifest itself only if Tcollision!tc . Within the time
scaletc , the particle spreads over spatial range of the or
Lcollision , while its velocity is randomized. It follows tha
K(RuR0) may be used as a stochastic kernel. Hence,
Markovian property is recovered over time scales that
much larger thantc , and a diffusive behavior follows with
coefficient Lcollision

2 /tc . This diffusion is nondissipative
‘‘random-walk’’ like.

IX. QUANTUM LOCALIZATION

As in the last section, we shall discuss the case
quenched disorder. However, here thequantalanalysis will
be carried out. The variance of the disordered potentia
W2, with autocorrelation lengthl . We approximate the
Gaussian correlation~2.6! by a d function. Defining
a5A2p l , the path-integral expression for the propagato
Eq. ~5.6! with Eq. ~5.9! and

SN@x8,x9#5
1

2
aW2E

0

tE
0

t

@d~x292x19!1d~x282x18!

22d~x292x18!#dt1dt2. ~9.1!

The essential feature of this functional, is its nonlocal natu
Our first step will be to get some insight intoSN .

Let us consider segmenti and segmentj that belong both
to the same path, eitherx8 or x9, within the same spatia
intervalDx. This includes the possibilityi5 j . The contribu-
tion to SN is

DSN51
1

2
aW2

Dx

uv iv j u
,

wherev is the velocityẋ within Dx. However, ifi belongs to
x8, while j belongs tox9, or vise versa, then the contributio
to SN is

DSN52aW2
Dx

uv iv j u
.

One easily convinces oneself that the contribution of e
spatial intervalDx is non-negative. A zero value may be
obtained if to each segmenti , that belongs tox8, corresponds
segmentj that belongs tox9, with uv j u5uv i u. For example, a
zero value forSN may be obtained ifx9(t) is shifted in time
e

-

r

e
e

f

is

s

.

h

with respect tox8(t). Referring to the end points, one shoul
identify t5t with t50. It follows thatSN50 implies that
the two pathsx8 and x9 are eitheridentical, or satisfy the
constraintR(t)5R(0). If R(t)ÞR(0), thevalueSN50 may
be obtained only ifx8 andx9 are identical. More generally, if
uv tu5uv0u, one may prove that the following inequality hold
for any pair of smooth pathsx8 andx9,

e2~1/\2!SN[R,r ]<e2[aW2/~\v0!2]min„uRt2R0u,1/2~ ur tu1ur0u!….
~9.2!

For particularR(t) one may ask what is ther (t) for which
SN@R,r # is minimal. The trivial minimum, which is also the
absolute minimum, isr (t)50, for whichSN@R,r #50. How-
ever, any small perturbation onr (t) will make SN@R,r #
much larger. Therefore, we are tempted to assume that th
may be some other, more stable~local! minimum r R(t). A
nontrivial local minimum r R(t) does not exist for any
R(t). However, one can prove that there is a large family
R’s for which such minimum exists, by actually constructin
them. This is done by following the considerations that we
presented at the beginning of this paragraph, An example
such construction is presented in Fig. 4. The situation he
should be contrasted with that encountered in Sec. VIII.
Sec. VIII A we could have definedoneoptimal pathRo(t).
Here, there is a whole family of ‘‘optimal paths,’’ as in the
case of Sec. VIII B. However, in the present case these pa
are ‘‘interference paths’’ rather than ‘‘classical paths.’’ Th
following observations concerning the relevant optimal pat
are important:~a! They consist of many straight segment
and have a zigzag character;~b! The final velocityṘ(t) is
favored to be equal in absolute value to the initial velocit
~c! Turning points impose significant restrictions;~d! The
nontrivial minimum r R(t) is isolated; ~e! The nontrivial
minimum is relatively stable. The last point is the most di
ficult to observe. First it should be noted that~e! must be true
a priori. Or else, if the trivial minimum dominates the path
integral expression, then the result would be that the parti
has roughly the same probability to go from any initial con
ditions to any final conditions, irrespective of proximity con

FIG. 4. Illustration of an optimal pathR ~solid curve! for local-
ization problem. The dotted lines arex8(t) and x9(t) that corre-
spond to r R(t). The horizontal axis represents spatial positio
while the vertical axis is for the time.
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1438 55DORON COHEN
siderations or even energy conservation. Still, a reason
argument is required to explain why the nontrivial minimu
is relatively stable. For this consider a straight segmenti for
which Ṙ(t)5v i and r R(t)5r i . One observes that ifr R is
perturbed by a fluctuation of time periodur i u/uvu, or by some
higher harmony, then the contribution toSN@R,r # is negli-
gible. This is to be contrasted with the case of the triv
minimum r (t)50, where any fluctuation has high cost.

We turn now to the formal extension of the procedure t
has been presented in the preceding section. We exp
SN@R,r # around the nontrivial minimum

SN@R,r #'SN@R,r R#1E
0

`E
0

`

dt dt8fR~t2t8!

3„r ~t!2r R~t!…„r ~t8!2r R~t8!…1•••.

~9.3!

Here we are not able to write an explicit expression for
highly complicated kernelfR(t2t8). However, we pro-
ceed, and write down the result of the Gaussian integrat

K@R#5const3cosS E
0

`

dtDR~t!r R~t! D e2SN[R,rR]

3expS 2
1

2E0
tE

0

t

dt dt8FR~t2t8!DR~t!DR~t8! D .
~9.4!

Now, we should perform theDR integration. This integra-
tion will be dominated by the family of optimal paths. No
that the cosine term in Eq.~9.4! equals unity since forr R the
trajectoriesx8 and x9 are in a sense ‘‘shifted’’ one with
respect to the other, henceSef f50. Within the family of
optimal paths, not all have the same contribution. One sho
expand around those that have the largest contribution.
these pathsSN@R,r #5(aW2/v0

2)uR2R0u. Here we consider
end point conditions (R0 ,mv0) at t50 and (R,6mv0) at
time t. The time t is assumed to be sufficiently large
guarantee steady state distribution. It follows that

K~R,6mv0uR0 ,mv0!;expS 22
uR2R0u
j~v0!

D , ~9.5!

where

j~v0!52
~\v0!

2

aW2 . ~9.6!

For convenience\ has been restored in the latter formula.
the application of the inequality~9.2! a subfamily of optimal
paths has been ignored, for whichur R(end points)u
,uR2R0u. It is justified provided that this subfamily const
tutes a zero fraction of the whole family. For this we shou
assume sufficiently long time (t), for which a steady state
distribution is attained.

Both the validity and theapplicability of the inequality
~9.2! demonstrates the vulnerability of our localization arg
ment. It is important to consider circumstances in which
ther of these conditions is not satisfied. The inequality~9.2!
will not be valid if the noise is not infinitely correlated in
le

l

t
nd

e

n

ld
or

-
i-

time, i.e., the disordered potential is not static when view
on large time scales. The inequality~9.2! will not be appli-
cable if additional white noise is added to the Hamiltonia
In the latter case, larger R(t) will be suppressed by the cor
responding additional term in the noise function
Consequently, the subfamily of paths for whic
ur R(end points)u,uR2R0u will not constitute a zero frac-
tion of the whole family.

Expression~9.6! for the localization length agrees wit
the well known result for 1D localization of ‘‘free’’ particle
~Thouless@18#!. Note that Thouless uses some scaled un
resulting in the expressionj58mE/\2. We shall now show
that the above expression is somewhat more general,
also applies to cases where the dispersion law is diffe
from v5p/m. For this one should replace in Eq.~5.8! the
kinetic term 1

2mẋ2 by some general functionT( ẋ), resulting
in

Sfree5E
0

t

dt@T~ ẋ9!2T~ ẋ8!#'E
0

t

dtp~Ṙ! ṙ1•••,

~9.7!

where p(v)5T8(v) is the dispersion law. The subseque
formalism is easily generalized. The expression~9.6! for j is
unaffected. Actually, the general expression forj could have
been guessed. We naively use the Born approximation,
culate the mean free pathl , and rely on the fact thatj is
twice the mean free path~Thouless@18#!. By the golden rule,
the probabilityP of being backscattered is

P52p z^2puUup& z2
L

2p

dp

dE
, ~9.8!

whereL is the length of the available space, andE is the
kinetic energy. The matrix element is

z^2puUup& z25
1

L2
uF@U#u25

1

L
aW2 , ~9.9!

where in the last equalityF denotes Fourier transform, an
U is assumed to be uncorrelated in space~white spatial
noise!. The result~9.6! is easily recovered. One should us
j52l , andv05dE/dp, while l is evaluated via the relation
P5v0 / l . In order to further demonstrate the generality
Eq. ~9.6!, let us consider the Anderson tight binding mod
The spacing will be denoted bya. The Hamiltonian is
H5(n„un&Vn^nu1T(un&^n21u1un&^n11u)…, whereVn is
uniformly distributed in@2W0 ,W0#. The transition ampli-
tude isT. The kinetic energy in the center of the band
E52Tap, wherep is the momentum. Hencev052Ta there.
The dispersion of the on-site energies isW51/A12 2W0.
The ‘‘area’’ under the triangular autocorrelation function
aW2. Formula~9.6! suggests thatj524a(T/W0)

2. This re-
sults agrees with that of Ref.@24# ~Eq. ~66!, there!, including
the prefactor.

X. SUMMARY AND CONCLUSIONS

A unified treatment of diffusion, localization, and dissip
tion ~DLD! has been presented in this work. All these ph
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nomena may be derived from the general path-integral
pression~5.6!,

K~R,PuR0 ,P0!5E
R0 ,P0

R,P

DRE Drei ~1/\!Sef f[R,r ]

3e2~1/\2!SN[R,r ] , ~10.1!

upon inclusion of the appropriate functionalsSef f andSN .
General expressions for these functionals are available
various limits may be considered:~a! Quantal versus classi
cal expressions;~b! Disordered versus nondisordered en
ronment;~c! Dissipative versus nondissipative environme
~d! Quenched versus noisy environment. In the classical li
the DLD model constitutes a formal solution of Langev
equation. The classical limit may be obtained by lineari
tion of the quantalSef f@R,r # with respect tor , while expand-
ing SN@R,r # to be quadratic in this path variable. The diso
der or its absence depends on the choice of the sp
autocorrelation functionw(r ). The dissipation is turned on i
the friction functionalSF is included inSef f . The nature of
the noise, whether it is ‘‘quenched,’’ ‘‘colored,’’ or ‘‘white’’
is determined by the noise kernelf(t). In the latter case any
combination may be considered as well~see further discus
sion at the end of this section!.

The classical BM model is well defined in terms of a
appropriate Langevin equation only in the case of an Oh
bath. This is not the case with the classical DLD model. T
classical dynamics in the latter case is well defined in te
of an appropriate Langevin equation also for a non-Ohm
bath. Explicit expressions for the friction force, and for t
effective mass have been derived. Another nice feature o
DLD model is the absence of a ‘‘switching impulse.’’

Once the noise autocorrelation functionf(t) is specified,
the BM model is indistinguishable from its classical limit. A
long as the external potentialV(x) is quadratic~at most!, the
quantal propagator is identical with the classical one, and
Langevin equation can be used in order to correctly desc
the time evolution of the Wigner function. All the quant
effects that are associated with the standard Zwan
Caldeira-Leggett BM model are~formally! reproduced by
solving the classical Langevin equation with an appropri
noise term.The DLD model is different. The nonstochastic
genuine quantal features of the DLD model have been
cussed. These features constitute a manifestation of eithe
disorder or the chaotic nature of the bath.

For either a noisy or an Ohmic environment both the B
model and the DLD model leads to either spreading or
fusion. For the BM model, the spreading and the diffus
profiles are described by a Gaussian distribution. For
DLD model one should include a quantal correction. T
disorder freezes a piece of the wave packet, letting it
propagate as if it were a free particle. Both, the ‘‘quan
correction’’ to the propagator, as well as any other interf
ence phenomena, die out exponentially in time. This ex
nential decay, due to dephasing, is independent of geom
It should be contrastedwith the results for loss of interfer
ence in the presence of BM-like environment@16,15#. An-
other important observation is that fordisorderedenviron-
ment, quantal interference is unaffected by friction.
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On the classical level it is fascinating to analyze the d
fusion profile in the presence of disorder. For the low te
perature Ohmic BM model, it is found that diffusion is su
pressed, though its Gaussian profile is maintained. The D
model, in the same circumstances, leads to an expone
profile that does not change with time. This new effect is d
to the interplay of the temporal~negative! autocorrelations of
the noise with the spatial disorder. Even more fascinat
‘‘diffusion’’ profiles are found for other types of noise auto
correlations.

Quenched disorder inone dimensionleads to classical lo-
calization, as well as to quantal localization. The former
characterized by a localization length which is exponentia
large at high energies. Quantal localization on the other h
is dominated by interference phenomenon. We have ide
fied the interference paths within the framework of FV fo
malism, and demonstrated how the well known exponen
profile emerges. The localization length in the quantal cas
proportional to the square of the velocity. The applicabil
of this result to other dispersion relations has been poin
out.

It is obvious from the derivation, that localization cann
be argued if the noise is not strictly static~e.g., slowly modu-
lated!. Diffusive behavior is recovered if the noise posse
long but finite autocorrelation time. Also the case of whi
noise ‘‘on top’’ of the static disorder will evidently lead t
diffusion @25#, @14#. In this latter case, which has not bee
considered in this paper, nonperturbative effects may m
fest themselves@26# as in the case of the ‘‘quantum kicke
particle’’ @14#. The DLD model should also account for di
fusion in the presence of both quenched disorder, noisy
tential, and friction~all together!. There should be a way to
derive systematically well known heuristic results that cor
sponds to hopping, or variable range hopping@2#.

Classical nondissipative ‘‘random-walk’’ diffusion ha
been discussed in the restricted case of long-time correl
noise. It is essential to generalize the DLD model tomore
than one dimensionin order to account for this phenomeno
in the case of strictly static disorder. Autocorrelations of t
disordered potential, both in time and in space, should
considered, in order to generate the dynamics which is
scribed by Boltzmann transport equation. In the limit
quenched disorder, localization effect should be encounte
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APPENDIX A: INTERACTION WITH EXTERNAL BATH
THAT CONSISTS OF EXTENDED FIELD MODES

This appendix illustrates how the unified formalism th
has been presented in this paper should be modified in o
to deal with external bath that consists of extended fi
modes. Unlike the case of the BM model, this modification
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1440 55DORON COHEN
not as immediate as the mere substitution of appropr
w(r ). In the present derivation the bath Hamiltonian is n
specified, and also the assumptionua5u(x2xa) is altered.

For the standard derivation of the DLD model it has be
assumed that the interaction Hamiltonian is Eq.~2.8! with
ua5u(x2xa), leading to the factorized noise autocorre
tion function ~2.4!. In the more general case, the classi
derivation, as well as the quantal derivations, lead to a
chastic force that satisfies Eq.~2.3! or to the noise functiona
~5.10!, respectively, with noise autocorrelation functio
which is

f~x2x8,t2t8!5(
a

fa~ t2t8!ua~x!ua~x8!. ~A1!

Here fa(t2t8)5^Qa(t)Qa(t8)&eq , and the interaction
Hamiltonian~2.8! is used withca51 without loss of gener-
ality. The fields modes are still assumed to be decoupled,
the bath Hamiltonian is not specified. Instead, one relies
the fluctuation-dissipation theorem as in Ref.@15#, writing
the general expression

fa~ t2t8!5E
0

`dv

p
Ja~v!\cothS 12 \bv D cos@v~ t2t8!#.

~A2!

Note that if the field modes are simple harmonic oscillato
then one should substitut
Ja(v)5@p/(2mava)#d(v2va). Alternatively, one may
speculateJa(v) using known response characteristics of t
bath.

To make further progress the interaction Hamiltoni
~2.8! should be further specified. Using ‘‘standing wave
decomposition it is assumed to be

Hint5(
a
„Q1acos~kWa•xW !1Q2asin~kWa•xW !…. ~A3!

Substitution of the appropriateua into ~A1!, and converting
the summation to an integral over directions and overk, the
result can be cast into the following form:

f~x2x8,t2t8!5E
0

`dk

p
f~k,t2t8!^cos„kV̂•~xW2xW8!…&V.

~A4!

The average over directions can be performed leading
cos(kux2x8u) in 1D, a Bessel functionJ0(kux2x8u) in 2D,
and sinc(kux2x8u) in 3D.

In Ref. @15# the interaction with electromagnetic fluctu
tions in metal has been considered. It has been assumed
each mode is characterized by an Ohmic response. In
notations it corresponds toJ(k,v)5h(k)v. Due to this as-
sumption, the noise autocorrelation function becomes fac
ized at high temperatures, as in the DLD model. In parti
lar, for the noise functional~5.10! one obtains

SN@r #5E
0

t

dt
1

bE0
`dk

p
h~k!^sin2„kV̂•rW~t!…&V. ~A5!

For the discussion of dephasing, we again write this re
using the notations of Ref.@15#. It is assumed tha
te
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h(k)5e2/(sk2), wheree is the charge of the electron an
s is the conductivity. Integration overk leads to the result

^eiw&5expF2
e2kBT

2\2s E
0

t

„xa~t!2xb~t!…22ddtG . ~A6!

This result, that has been obtained in Ref.@15#, @Eq. ~7.8!#, is
very similar to the corresponding result Eq.~6.13! for the
BM model, the difference being the power (22d) which is
not universal.

An apparently simpler example for an interaction with
external bath that consists of extended field modes, is
electron-phonon interaction. Here we want to question
applicability of the BM model as an approximated descr
tion. The electron is assumed to be confined to a o
dimensional ‘‘quantum wire,’’ while the phonons dwell i
the 3D bulk. Considering longitudinal modes, the coupli
of the a→(k1 ,k2 ,k3) ‘‘oscillator’’ with the electron is
k1x, with a coupling constantCa}Ak121k2

21k3
2. Summing

over a, as defined in Eq.~2.11!, one obtains effectively
J(v)}vd12, whered53 is the dimensionality of the spac
where the phonons dwell. Thus a phonons bath is simila
a super-Ohmic BM model. However, this derivation is som
what misleading, since a cutoffvc should be introduced
while for the original electron-phonon interaction a natu
cutoff ux2x8u/c exists.

APPENDIX B: AN INTERFERENCE GEDANKEN
EXPERIMENT

In this appendix we consider the interference pheno
enon from two different points of view, and demonstra
their consistency. First we consider the free propagation
two-wave-packet superposition. The decay of the interf
ence pattern will be dictated by the propagator~7.8!. Then
we consider the scattering of a simple wave packet from
double barrier. The suppression of interference paths wil
dictated by the noise functional~Sec. VI C!. Finally, we ar-
gue that both points of view are physically equivalent, a
must lead to thesameresult, which is indeed the case.

Consider a superposition of two Gaussian wave pack
which have the same momentumP0, the same initial spatia
spreading s0, while their initial locations satisfies
uR022R01u5d. The Wigner function for this preparation i
easily computed, and is of the form

r t50~R,P!5 1
2 G~R2R01,P2P0!1 1

2 G~R2R01,P2P0!

1cosS P

dPc
De2~1/8!„~R022R01 !/s…2

3G@R2 1
2 ~R011R02!,P2P0#, ~B1!

where G(x,p) denotes ‘‘minimum-uncertainty’’ Gaussia
distribution, anddPc5\/d. For free propagationr t(R,P)
will develop fringes on the spatial scaleDx5(dPc /m)t.
Note that this gedanken experiment is formally equivalen
the usual ‘‘two slit’’ diffraction experiment upon the defin
tion Du5Dx/(vt)5(\/P0 )/d. For propagation in noisy
nondisordered environment the interference pattern
smeared on scaledP;nt, due to the diffusive momentum
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spreading. The smearing factor is exp@21
2(dP(t)/dPc)

2# lead-
ing to nonexponential decay exp@2(n2d2/\2)t2#, that depends
also on the separationd. On the other hand, for propagatio
in noisy disordered environment, using Eq.~7.8!, the pre-
dominant decay is exponential exp@2(nl2/\2)t#, independent
of geometry.

Now consider the scattering problem in one dimensi
The potential is assumed to beV(x)5` for x,0, and
V(x)5d(x2d/2) for 0,x. A simple Gaussian wave packe
with momentum 2P0 and spatial spreadings0!d is
launched fromR0. The scattered particle is detected at t
rangeR which is assumed to be much larger thanR0. In the
absence of noise and dissipation, it is not difficult to wo
out the explicit solution of this scattering problem.
‘‘train’’ of Gaussian-like wave packets will emerge from th
scattering region. The spatial separation between each
-

.

.

o

wave packets isd, and the probability density function wil
contain interference pattern in between. From the FV pa
integral point of view~Sec. VI C!, the interference pattern i
due to the existence of ‘‘interference paths.’’ In the presen
of a noisy disordered environment the contribution of the
interference paths to the propagator is suppressed expo
tially in time.

Assuming that the dephasing during the time inter
tscattering5R0 /v is negligible, one may use the results of th
first gedanken experiment, leading to the same expone
decay. Thus, the result~7.8! for the propagator is consisten
with the analysis of interference in Sec. VI C. Our gedank
experiment can be used also in order to illustrate and cla
the observation that friction does not affect the interferen
phenomenon. This observation holds for the disordered
namical environment.
.
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