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Unified model for the study of diffusion localization and dissipation
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A model that generalizes the study of quantum Brownian matigM) is constructed. We consider disor-
dered environment that may be either stdtjaenchey noisy or dynamical. The Zwanzig-Caldeira-Leggett
BM model formally constitutes a special case where the disorder autocorrelation length is taken to be infinite.
Alternatively, a localization problem is obtained if the noise autocorrelation time is taken to be infinite. Also
the general case of weak nonlinear coupling to a thermal, possibly chaotic bath is handled by the same
formalism. A general, Feynman-Vernon type path-integral expression for the propagator is introduced. A
Wigner transformed version of this expression is utilized in order to facilitate comparison with the classical
limit. It is demonstrated that nonstochastic genuine quantal manifestations are associated with the model. It is
clarified that such effects are absent in the standard BM model, either the disorder or the chaotic nature of the
bath are essential. Quantal correction to the classical diffusive behavior is found even in the limit of high
temperatures. The suppression of interference due to dephasing is discussed, leading to the observation that due
to the disorder the decay of coherence is exponential in time, and no longer depends on geometrical consid-
erations. Fascinating non-Markovian effects due to time-correlaeldred noise are explored. For this, a
strategy is developed in order to handle the integration over paths. This strategy is extended in order to
demonstrate how localization comes out from the path-integral expre$Sibd63-651X%97)08102-9

PACS numbeis): 05.40+j, 03.65.Sq, 71.55.Jv, 05.45b

I. INTRODUCTION equation, serves as a guide for the construction of the proper
Hamiltonian. (Phenomenological rather than microscopic
The dynamics of a particle that interacts with its environ-considerations are used, hence the usage of the term “specu-
ment constitutes a basic problem in physics. Classicallylated bath.’) The power inherent in this approach is the ca-
upon elimination of the environmental degrees of freedompability to introduce an explicit path-integral expression for
the reduced dynamics is most simply described in terms of e propagator, using the Feynman-VerrgW) [5] formal-
Langevin equation. Solution of this equation, by utilizing the iSM- This FV-CL propagator constitutes a quantized descrip-
Fokker-Planck equation, is well know]. In the absence of tion of Brownian motion(BM). The term “BM model” will

an external potential, it yields spreading and diffusion. TheP€ associated from now on with this propagator.
latter effect is due to the interplay of noise and dissipation. The first question which should be asked concerning the
However, diffusion may arise also from the interaction with @Pplicability of the CL approach is obviously whether either
disordered environment. This kind of nondissipativethe coupling, the bath, or both are “too simple” in order to
“random-walk” diffusion is encountered, for example, in a_ccount _for the varlet_y of physical phenomena thgt are asso-
solid state physics, while analyzing electrical conductivity. It¢iated with a generalized BM. The term “generalized BM”
is well known [2] that this latter type of diffusion may be IS used |n.order to descrlpe any dynam|cql b(_ahawor that cor-
suppressed quantum mechanically due to localization effecteSponds in the classical limit to a Langevin-like equation. In
Still, diffusivelike behavior is recovered if noise and dissipa-the simplest case, the Langevin equationmig+ x=F,
tion are taken into account. wherem and » are the mass and the friction coefficient,
The unified modeling of the environment in terms of respectively. One should specify the stochastic fafc&his
noise, dissipation, and disorder is the first stage of thdorce may arise from interaction with some fluctuating ho-
present study. One may take the notion of particle literallymogeneous fielfl 7= F(t)], which is the usual formulation.
and identify the environment as either an external or internaHowever,more generallythis force may arise from the in-
bath that consists of infinitely many degrees of freedom. Theeraction with adisorderedpotential[ 7= — Vi4(x,t)]. In the
bath may be a large collection of other particles or fieldlatter case the spatial autocorrelations of the force are signifi-
modes(photons, phonons Or else, the internal degrees of cant. To avoid misunderstanding it should be emphasized
freedom of the patrticle itself are considered to be the baththat there are other aspects in which the BM can be general-
The latter point of view has been suggested by Gf8%sn  ized (for a review seg6]).
order to analyze inelastic scattering of heavy ions. In the present paper we construct a unified model for the
A totally different point of view, promoted by Caldeira study of diffusion, localization, and dissipatiéBLD). This
and Leggett(CL) [4], consider the notion of a particle as a model describes generalized BM in the sense specified
token for some macroscopic degree of freedom. A lineaabove. The disordered environment may be either static
interaction with a speculated bath that consists of infinitely(quenchegl noisy, or dynamical. The model is treated within
many uncoupled harmonic oscillators, is assurt®danzig the framework of the FV formalism. The resultant path-
[3]). The known classical limit, namely, a Langevin-type integral expression for the propagator contains a functional
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Sr with kernel a(7— 7') that corresponds to friction, and a pation is based on the master equation formalis@, which
functional Sy with kernel ¢(7— 7') that corresponds to the is the quantal analog of the classical Fokker-Planck treat-
noise. Both functionals also depend on a suitably definednent[1]. Systematic derivations are usually based, in some
autocorrelation functionv(r —r’) that characterizes the dis- stage, on the Markovian approximation. An alternative route
order. The BM model constitutegormally) a special case is to apply the FV formalisn{5]. This has been done by
where the disorder autocorrelation length is taken to be infiMohring and Smilansky11], following Gross[3], in order
nite. Optional derivations of the resultant path-integral ex-to study deep inelastic collisions of heavy ions. Later, the FV
pression are presented for the particular cases of either clafermalism has been applied by 4] and followers[6], in
sical or quantal systems with nondynamical disordere@articular, to the study of macroscopic quantum tunneling.
potential. Obviously, in the latter case the friction functionalHakim and Ambegaokarl2] has applied the FV model in
S; is not generated by the derivation. The localization prob-order to compute the spreading and the diffusion of the quan-
lem is obtained if the noise autocorrelation time is taken taum Brownian particle. Cohen and Fishmid8] have com-
be infinite[ ¢(7— 7") = consi. puted the full Wigner propagator in the case of the general
An explicit computation of both the classical and the quadratic Hamiltonian, possibly time dependent. The latter
quantal propagators(R,P|Ry,Py) will be carried out. This  study has demonstrated more clearly the significance of
propagator generates the time evolutiorp¢R,P), which is ~ noise time autocorrelationsNontrivial autocorrelations may
either the Wigner function or the corresponding classicalead to non-Markovian effects due to the nonlo@altime)
phase-space distribution. Spreading and diffusion profiles areature of the noise function&, . The simplest example is
found for either a noisy or an Ohmic environment. Quantaltthe suppression of diffusion at low temperatuf8] due to
corrections to the classical result are discussed. A new stragegative power-law correlations of the noigE3]. A less
egy is developed in order to handle the integration ovetrivial manifestation of the non-Markovian effect has been
paths. This strategy is utilized in order to study the anomafound by Cohen14] while analyzing diffusion due to the
lous “diffusion” profiles due to colored noise. Later it is destruction of localization by colored noise.
extended in order to demonstrate how localization comes out Non-Markovian features are usually speculated to be less
from the path-integral expression. relevant if disorder is taken into account. One may expect
Again, one may ask, whether the DLD model is the “ul- that for generalized BM, disorder will lead, at all tempera-
timate” model for the description of BM in the most gener- tures, to normal diffusion. We shall find later in this paper
alized way(as far as generic effects are concejndd the  that non-Markovian effects are quite effective also in case of
case of two-dimensional2D) generalized BM one should the DLD model, and lead to anomalous spreading profiles.
consider also the effect of “geometric magnetisn7], However, it will be clear that these effects, though counter
which is not covered by the 1D DLD model. Here we limit intuitive at first sight, are of classical nature. Non-Markovian
the discussion to 1D BM. In order to answer this questioreffects can also arise from the nonlocality of the friction
one should consider a general nonlinear coupling to a thefunctional S¢, this is the case for non-Ohmic bath. The re-
mal, possibly chaotic bath. In the limit of weak coupling onetarded response of the bath then has a long memory for the
may demonstratisee Sec. VI Bthat indeed the bath can be particle’s dynamics, see, for example, the review papers by
replaced by an equivalent “effective bath” that consists of Grabert, Schramm, and Ingold and byrigagi, Talkner, and
harmonic oscillators, yielding the DLD model. A further re- Borkovec[6]. In particular, for unbounded motion, in the
duction to the BM model is achieved if the coupling is linear. absence of disordéBM model, it will be demonstrated that
The derivation also demonstrates why the so calledbne encounters infinities in computations of the friction and
“Ohmic” bath is generic. However, we cannot prove that of the effective mass. These infinities are avoided if disorder
the path-integral expression that corresponds to the DLDs taken into accouniSec. IV B).
model is the most generalized description of B the The suppression of quantal interference due to the dephas-
sense of this paperGefen and Thouleds], Wilkinson[9]  ing process is an important issue for both semiclas$icH|
and Shimshoni and Gefdi8] have emphasized the signifi- and mesoscopifl5] physics. The dephasing of interference
cance of Landau-Zener transitions as a mechanism for dissin metals due to electromagnetic fluctuations has been dis-
pation. The weak coupling approximation misses this effectcussed by Al'tshuler, Aronov, and Khmelnitskil6]. Gen-
Still, there is a possibility that some future, more sophisti-eral considerations have been presented by Stern, Aharonov,
cated derivation, will demonstrate that an equivalent “oscil-and Imry[15]. The strong dimensionality dependence of the
lators bath” can be defined also in the case of strong coudephasing process has been emphasized. In this paper, the
pling. The existence of such derivation is most significantDLD model is used in order to study the suppression of
since it implies that no “new effects(such as “geometric quantal interference due to the local interaction with either
magnetism” in the case of 2D generalized Bban be found noisy or dynamicatlisorderedenvironments. The dephasing
in the context of 1D generalized BM. Referring again to theis determined by the noise functiong{[x"(7),x’(r)]. Due
Landau-Zener mechanism, Wilkinson has demonstrated th&® the local nature of the dephasing process, the decay of
anomalous friction, which is not proportional to velocity, coherence is exponential in time, and no longer depends on
may arise[9]. The BM model cannot generate such angeometrical considerations.
anomalous effect. However, we shall demonstrate that the In the case of quenched disordered environment the DLD
non-OhmicDLD model can be used in order to generate thismodel reduces to a localization problem whose solution is
effect. well known[17]. In particular, foré correlated potential the
We turn to review previous works that are related to theresult for the localization length has been pointed out by
present study. The traditional approach to the study of dissiThouless[18]. As far as we know, the real-time Feynman
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path-integral formalism has not been utilized so far in order mi+ px+ V' (x)=F. 2.1)

to rederive this result, though functional integration is fre-

guently employed in closely related computations. The case

of noisy disordered environment, where the potentiabis In the standard Langevin equation the stochastic force repre-
correlated both in time and in space has been considered I$gnts stationary “noise” which is zero upon ensemble aver-
Jayannavar and Kum§t9]. In the latter reference the spatial age, and whose autocorrelation function is

spreading has been computed, and a classical-like result has

been obtained. Quantal corrections to the dispersion profile, PN\ — At

has not been discussed in the latter reference. No solution (FIOF))= (t=1). 2.2
exists for a model that “interpolates” the crossover from

guenched noise, via colored noise, to white noise disorderedsually white noise, which i$ correlated in time, is consid-
potential. Marianer and Deutsdi20] have considered the ered. The standard Langevin equation camybeeralizedoy
problem of white noisy disordered potential with added dis-assuming that the stochastic force is due to some noisy po-
sipation. Using the BM model, they have demonstrated that &ential, namely,F(x,t) = — U/’ (x,t), where the prime denotes
classical-like results is obtained for the spatial spreadingspatial derivative. One may assume théaits zero upon en-
Again, neither the spreading profile nor quantal correctionsemble averaging, and satisfies

have been considered.

The outline of this paper is as follows: In Sec. Il the
unified model for the study of diffusion, localization, and
dissipation(DLD) is constructed. Derivation of the reduced
classical dynamics is presented in Secs. lll and IV. It iSThe autocorrelation function of the stochastic for&eat
shown that a well defined Langevin equation is obtained fosome specified point is ¢(t—t’)=—¢"(0t—t’). In prac-
both subohmic and superohmic bath, as well as for Ohmigice ¢(x—x’,t—t’) will be assumed to have the factorized
bath. This is contrasted with the BM model, where only theform
Ohmic case is well defined. In Secs. V and VI, four deriva-
tions of the FV path-integral expression for the propagator
are presented{a) A classical derivation that is based on
Langevin equationfb) A quantum mechanical derivation for
nondynamical noisy or quenched disordered potertilA  \yhere, without loss of generality(r) is normalized so that
quantum mechanical derivation for the full DLD mod&)  \y7(0)=—1, the normalization constant being absorbed into
A quantal derivation for the general case of weak nonlinear _
coupling to a thermal, possibly chaotic bath. Appendix A" "gq gistribution of particles, thetandardLangevin equa-
clarifies the relation of BM model and DLD model to the o predicts rigid motion with no diffusion. This feature is
case of interaction with external bath that consists of eXg|iminated if an average over realizations/6fs performed.

tended field modes. In Sec. VI C the explicit expression forrpq standardLangevin equation can be viewed as a special
the influence functional allows concrete predictions concerngace of thegeneralizedversion (2.3). For this one should
ing the loss of interference due to dephasing. Appendix BtakeL{(x t)=—x- F(t). Alternatively

introduce a gedanken experiment that clarifies the manifes-
tation of interference and dephasing in the presence of dy-
namical disordered environment. In Secs. VII and VIII three
strategies for the computation of the quantal propagator are
discussed. Spreading and diffusion profiles are found for ei-
ther noisy or Ohmic environment. The DLD model is com-
pared with the BM model. In the latter case the result isAnother choice for spatial autocorrelations that corresponds
classical-like, while in case of the DLD model, a singularto a disordered environment is
“*quantal correction” should be included. The significance of

this “correction” is further clarified in Appendix B. The 1/ x—x"\2
strategy of Sec. VIII, which enables computation of diffusion w(xX—x')= |2ex;{ — —( ) )
profiles in the presence ablorednoise, is extended in Sec. 21 |

IX. We use this strategy in order to demonstrate how, in the

case ofguenchedoise, localization comes out from the gen- The parametet constitutes a measure for the microscopic
eral FV path-integral expression. Summary and conclusiongcae of the disorder. For distribution of particles, the result-

(UXDUX 1)) = d(X—X",t—t"). 2.3

d(X—x"t—t")=p(t—t")w(x—x"), (2.9

1
w(x—x’)z—i(x—x’)z. (2.5

(2.6

are presented in Sec. X. ant motion will be diffusivelike rather than rigid, even with-
out averaging over realizations. It is crucial to do this impor-
Il. CONSTRUCTION OF THE DLD MODEL tant observation if one wishes to introduce gqaantized

) ) version of Langevin equation.
A. Langevin equation

As a starting point for later generalization we consider the
classical Langevin equation. This equation describes the time
evolution of Brownian particle under the the influence of so  Disregarding the friction term, the Langevin equation may
called “Ohmic” friction and stochastic force. be derived from the Hamiltonian

B. Hamiltonian formulation
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p2
H=ﬁ+V(x)+U(x,t), (2.7

where average over realizationsigfs implicit. If ¢/ is time
independent, we shall use the notignencheddisordered
environment. Ifi/ is uncorrelated also in time, we shall use
the notionnoisy environment.

If # is nonzero, energy may dissipate, and we should

consider “dynamical” environment rather than “noisy” or X
“quenched” one. In order to model the environment we gen- >
eralize the FV-CL approach. Namely, to facilitate later math- .
ematical treatment, the interaction potential is assumed to be =TT

linear in the bath coordinates

UX, ) = Hing=— 2 CaQala(X), (2.9

where Q, denotes the dynamical coordinate of thescat-
terer or bath modeu,,(x) is the normalized interaction po-
tential, andc, are coupling constants. In case of dynamical
environment, the) , are assumed to be oscillators’ coordi-
nates. The bath Hamiltonian is

P2 1,
Hpath= > om. T aMeaQq |- 2.9
(43 a
FIG. 1. lllustration of the BM mode(top drawing, vs the DLD
model(lower drawing. Note that in the first case a counter term has
2 been incorporated, as in E.9).

p
H:ﬁ+v(x)+Hint+Hbath' (21@

The total Hamiltonian of the system plus the heat bath is

H(t—1')=2,62(Q,(t)Q,(t")). Thus if the dynamical na-
In order to further specify the DLD model, we should char-ture of the bath is ignored, the problem reduces to solving
acterize the spectral distribution of the bath oscillators, agangevin equation with the appropriate(x—x’) and
well as their interaction with the partic[@1]. d(r—17').
In what follows we consider the case of localized scatter- The spectral functiod(w) and the spatial autocorrelation
ers. The scatterers are assumed to be uniformly distributed #function w(r) constitute a complete specification of the
space withu,,(x) =u(x—x,). The bath will be characterized model Hamiltonian2.10. This Hamiltonian will be used in

by the spectral function order to study diffusion localization and dissipatiddLD)
) within the framework of a unified formalism.
_T Co B The BM model, wherau,(x)=x constitutesFormally a
Yw)= 2; m,w, o= wy). (213 special case of the DLD model. It will be possible to apply

the “unified” formalism that will be developed for the DLD
The joint distribution of the bath oscillators with respect to model, also for the analysis of the BM model, merely by
w, andx,, is assumed to be factorized. Thus if we consider asubstitution of the appropriate(r). Namely, one may use
partition of the bath oscillators into subsets of oscillatorsw(r) of Eq. (2.5, or alternatively one may take the limit
whose positions,, are the same, then locally, within each | - in Eg. (2.6). However, there are some minor, but sig-
subset, thew, are distributed in accordance to E@.11). nificant differences that will be noted in due time. This is
The interaction is characterized by well defined spatial autobecause our derivations rely on tihecal nature ofw(r).

correlation functionw(x—x"), namely, Therefore we consider the notion “BM model” distinctively
from the notion “DLD model.” Also the results will be both
_ I o N ot qualitatively and quantitatively different, in spite of being
w(r) ; Ua(RFT)UL(R) Lmu(r XHu(x")dx". derived, formally, from look-alike formulas.
(2.12 Figure 1 illustrates the BM Hamiltonian and the DLD

Hamiltonian. Looking at the figure it is apparent that the
The scattering potentiali(x) will be normalized so that natural application of the BM model is for the description of
w”’(0)=—1, the normalization constant being absorbed inthe dynamics of a composite particle, with many internal
the coefficientx,,. Disregarding for a moment the dynami- degrees of freedom. This interpretation is due to GG$s
cal nature of the bath, thus considering again the case afho suggested to apply such models for the analysis of
either “noisy” or “quenched” environment, one obtains heavy-ion collisions. The bath according to this interpreta-
(UXDUX 1)) =2 ,c2(Q (1) Qu(t’) U (X)Un(x') which  tion is “internal,” carried by the particle, rather than “ex-
upon recalling previous definitions, leads to Ef.4) with  ternal.”
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The interaction Hamiltoniari2.8) may also describe the In order to make further progress, a specification of the
interaction with some “external” bath that consists of ex- initial state of the system plus the bath is needed. We shall
tended field modes. For example, the electron-photon interassume that initiallyat timet=0) the system is prepared in
action and the electron-phonon interaction may be castome arbitrary quantal state while the bath oscillators are in
into the form of Eg. (2.8, with u,(x)= thermal canonical equilibrium with some reciprocal tempera-
cod(w,/c)x),sin((w,/c)x) , wherec is either the speed of ture 8. The Wigner function representation of the probability
light or the speed of sound. In the long wavelength limit thisdensity matrix is therisee Appendix A of Refl22]):
interaction resembles the BM model rather than the DLD
model. With minor modifications, these models may also be
treated within the framework of our “unified” treatment Pt:O(R'P;Qa'Pa):PtZO(R’P)'l;[ Pec(Qa:Pa),
(Appendix A). (3.5

Finally, we reemphasize that in general, the DLD model
as well as the BM model may be used on a phenomenologiyhere
cal basis for the description of dissipation in mesoscopic
guantum devices. This point of view will be discussed fur-

ther later on(Sec. VI B, in particular. Pe Qu'P)=7——7—"—
" partiular . fcot(} 7B,
Ill. DERIVATION OF LANGEVIN EQUATION tanf{% ﬁﬂwa)
A. The reduced equation of motion Xexp - (% #Bw,)

The quantal state of the particle may be represented by the
Wigner functionp(R,P). The time evolution of the Wigner P2
function corresponds to that of classical distribution in phase 1 5m
space. In this section we consider a ‘“classical treatment of
the dynamics.” The latter term implies that the system is
considered to be classicali §sic—0), While the bath gets

. (3.6

1
+ EmawiQi>

[e3

Using Eq.(3.6) one obtains the expectation values

full quantum mechanical treatment. The linfit;,—0 is P (0)2 1 1 1
not taken. The equations of motion of classical points that <L)> =<—m w2Q (0)2> ="t Cot)—(-ﬁﬁw ) .
form a distribution in phase space ate p and 2m, 2 4 2

Hence it is easily found thatF,,is{t))=0 while

P=—V'(X)+ Foathr  Foath= CaQal(t)UL(X).

a

(3'1) (fnoise(t)}-noise’(t,»: _Zﬂ Ci(Qa(0)2>
The variablexQ,(t) satisfy the equation
X cogw (t—t" )ul(x)u,(x").

MaQu(1) + My ©3Qu(t) = Calia(X),
Thus one identifies that the noise term is characterized by the

which can be solved explicitly, namely, autocorrelation functiori2.4) with
Qa()=Qa(0)cog w,t) +————sin(w,t) qﬁ(t—t’):f 7J(w)hcotr<Eﬁ[sw)cos{w(t—t')].
[e3 [e3 0
¢, 3.7
+f dt’ Sin(w,(t—t")u,(x(1")).
0 Mg The Langevin equatiofB.1) together with Eqs(3.2—(3.4),
_ . , and(3.7) constitutes an exact and complete description of the
Substitution of the latter expression into B§.1) yields reduced dynamical behavior of the system, as long as the
system is considered to be classical in nature.
Foath= Fretarded™ Fnoise (3.2 4
with B. Langevin equation in the absence of disorder

. For the BM modelu,(x)=x. The derivation of the
fretarded:f dt’2a(t—t" )W’ (x(t)—x(t")). (3.3  Langevin equation2.1) leads toFyqise that satisfies Eq.
0 (2.2). The latter may be interpreted as a special case of Eq.
) _ N ) (2.3), provided Eq.(2.5 for w(r) is used. However, in the
The response kerned(r) is defined for positive times expression for the retarded for¢8.3), w’(x(t) —x(t’)) is

(0<1) as follows: replaced by(t'), rather than by- (x(t) —x(t')). The physi-
cal significance of this minor difference is discussed below.

a(7)= f“d_‘”J(w)Sin(wT): _ ifmd_"’ J(w)coa{wr) _ In the equa_tion for the r_etgr_ded for¢_3.3) one may extend

o T drJo 7 © the integration ovet’ to infinity, provideda(7) is replaced

(3.9 by a(7)=a(7)0O(7), where ®(7) is the step function. In
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turn, this kernel may be written as a sum of three termsEq. (2.6)], since a finite cutoffr;=1/v exists, where the mi-
namely, a(7) = ag(7)+ a(7) + an(7) . The kernela(7) is  croscopic length scalk characterizes the interaction range
the asymmetric continuation af(7) to the domainr<0,  with the scatterers.

while ag(7) + an(7) is the symmetric continuation. The lat-

ter is Spllt into leo(T) which is a é function, andam(r) IV. OHMIC AND NON-OHMIC BATHS
which satisfieg” ., (7)d7=0. Consequently, the retarded
force, for the BM model, may be written as the sum In order to make further progress, a specification of the
spectral function)(w) is required. This function, defined in
fretarded: fswitching"’_ }-Apotential"' ffriction_"]:AmaSSv Eq (21]), characterizes the distribution of the bath-

(3.8  oscillators with respect to their frequencies. Following CL
we assume it to be of the form
Where}-switchingm - kpa(t)x(t)- and protentiaﬁ +Akx(t),
and Friction™= — etX(1), and Famase= —AmX(t), with J(w)=nw’G(w/w). (4.9
Ko= 7err=lim,, o[ I(w)/w], and Ak=2/m[[I(w)/w]dw, , _
andAm= — [Za(7) 72d7. It has been assumed tha¢r) has where for “sub-Ohmic” bath 8s<<1, for “Ohmic” bath
short range duratiorr,, much shorter than the physically S=1, and for “super-Ohmic” bath &s. The exponens
relevant time scales of the dynamidis assumption is not characterize the singular behavior Itfw) in the vicinity of
true in general and the consequences will be discussed latef?=0, While G denotes a smooth cutoff function. The latter
in Sec. IV. satisfiesG(0)=1. Moreover, it is assumed th&(|w|) is
The switching impulse act on the particle if it starts its @nalytic for real frequencies. For examp@may be chosen

trajectory at a poink+ 0. This term originates due to the fact t0 be either Lorentzian or Gaussian. The latter possibility
that the initial preparation is such that the bath is in therma}Vill be adopted from now on. The commonly used Exponen-

equilibrium providedx=0. The Apotential force may be tial cutoff exp(-w/w) will not be used since it does not
avoided if we care to include in the BM Hamiltonian the Satisfies the mentioned requirements. Exponential cutoff re-

proper “counter term.” Namely, sults in singular behavior that corresponds to the exponents
S,(s+1),(s+2), ...,rather than “pure” singular behavior
P2 1 e 2 that corresponds te alone. The asymptotic behavior of both
Hbam+Hmt—>z [_“Jr_mwi(Qa_ = 2X> ) a(7) and ¢(7) is dictated by the singularity of(w) at
@ [2m, 2 Me@, »=0. The physical significance af is further discussed in

3.9 Appendix A and in Sec. VI B.

This expression is manifestly invariant under space transla-

tions. Sanchez-Canizares and Sols have further considered

this issug[23]. In order to display explicit expressions for ba#ir) and
¢(7), it is useful to define the following function:

A. Expressions for the kernels

C. Langevin equation for disordered environment »daw

- - w/ 2
We turn back to the DLD model WittF;qarqeq @S found Gy(m)= . 7605 le~(WAlwlvd cogwr). (4.2
in Eqg. (3.3. Here, performing similar treatment, neither
Fswitching NOT Fapotential 1€ encountered. Formally, this is - < 4 tnis function is a normalized Gaussian. For add
due to the fact that the difference(x(t) —x(t')) appears in one obtains
Eq. (3.3, rather tharx(t") by itself. Physically, this is due to
the inherent homogeneity of the interaction with the environ- on
[ De_ o= (12 (w2

V27

ment(2.8). As for Fiyiction @nd Famass, h€re one obtains GHZn(T):(_l)nm

ffriction(v)zf_wa(T)W (v7)dr, (n is integey. (4.3

o For generak it starts atr=0 positive
Am=f a(T)W'(v7)72dr. (3.10
0

S

1
G4(0)= —25’2r< 5

g (4.9
If a(7) has short range durationy, and if, furthermore, the

velocity of the particle is not too highv.<lI), then, using ) )
w'(0)=0 andw”(0)=— 1, the above expressions reduce tOand cross theerovalug[(s+ 1)/2] times(now we con3|dgr
those that follow Eq(3.8). If a(7) is not short range, to be S7 ©dd number, possibly nonintegeirhe short range oscil-
discussed below, then the retarded force in the BM model igatoryitl)ehawor dies out on a time scale of the order
characterized by long range memory for the dynamics. Théc=®@c - For larger times a power-law decay is found
approximation that has been used in the preceding subsection 1 1

is no longer valid, and infinities are encountered in the com G(7)= ;cos(ES)F(s) > (tail for s#odd).
features are not shared by the DLD mogeg. (3.10 with (4.5

putations of the constants there. In general, these annoying
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1 S
— —osl2p| s
Ak 77_2 F( 2) nwg. (4.9

For the friction one obtains a finite, nonzero result,
(7e1s=n) only in the case of an Ohmic batts€1). For
sub-Ohmic bath (8s<<1) the friction isinfinite, while for
super-Ohmic bath (&£s) the friction iszera In the case of
the DLD model finite results are obtained for all cases. Using
Eq. (3.10 one finds out

[normalized units]

Firiction(v)

—o0 o T

3
time [normalized units]

d
XSin( ) [ I e*(l/2)(7'/7|)2]
FIG. 2. Plots OfGS(T) for s=0.5,s=1, s=2, ands=4. The

plots are easily distinguished by referring to their description in the 2 S\ o2 T
=—=T|1+ |21y
text. i > (T§+ 7_I2)1+(s/2) nv
The total algebraic “area” undeiGg(7) is infinite for 2 S\ e2i-s s
0<s<1, finite fors=1, and zero for ¥s. Representative - ;F 1+3)2 =0 (4.10

plots of G¢(7) are displayed in Fig. 2.
For the spectral functiod(w) as in Eq.(4.1), with Gauss-

ian cutoff, the kernek(r) is Above, the notationr=I/v has been used. In the last step

the limit w.—% has been taken since it leads to a finite,
nonzero result. Note that the cutoff frequensy is not rel-
evant physically as long as<lw.. The above computation
clarifies the significance of the various time scales. Formally,
the BM model constitutes a special case wijrFo. For
s=1, the so called “Ohmic” case, one obtains
Firiction= — mv. This result holds in the case of the DLD
model as well as in the case of the BM model. In the latter
rase, fors<1 or for 1<s, the friction force is either infinite
or zero, respectively. This is due to a long range memory
effect. The cutoff frequencw,., by itself, does not prevent
this feature. Finite results for the components of retarded
force in the BM model(3.8) may be obtained only for
bounded systems, whergt) explores only a finite portion
of the space. The calculation above E4.10 manifests the
fact that a finite result, in case of unbounded system, may be
obtained if a physical cutoffr; is introduced. Such arise
naturally in case of the DLD model.
7 ( 1)S+1 A similar picture emerges upon calculation of the effec-
B

d
a(1)= = 13- Gs(7). (4.6

Also ¢(7) can be expressed in terms @f(7) in both cases
of “high” and “low” temperatures. In the first case it is
assumed that: 8 (that has dimensions of timds much
shorter than any dynamical time scale. One may use then t
approximation

K

¢(T)=2B

Gq(7) (“high” temperatureg. (4.7
Or else, ifi B is long, one obtains

2
¢(T):;F(S+ 1){(s+ 1)h_5 ) tive mass. For the BM model, a finite result is obtained in

case of an Ohmic batlsE1).
+%7Gsr1(7) (“low” temperatures, (4.8)

% d w 2 n
where (s) is Riemann zeta functiofsum over 1%). The Am:f U \/Tie_(llz)(‘%” szdT: —2lm—
notion “low temperatures” means here<faB. The 0 ™ ¢

temperature-dependent constant term results from the inte-
gration [5dw/7J(w)A[ cothG A Bw)—1]. From now on we for s=1. (4.10)
shall use the notions of “high” and “low” temperatures in

the sense of the above approximations. Also for 2<s, the power-law tail ofx(7) decays sufficiently

fast to guarantee a finite result
B. Expressions for friction and effective mass

We turn back to the computation of the terms in E218). _ i sop| S _ s-2 <
For theApotential term the result is always finite Am 2772 r 2 L)moc® for 2<s . (412
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For 0<s<2 (s#1), the effective mass is infinite. In order to R [r 1/ t .

obtain a finite result we should turn to the DLD model K(R.r|Rq,ro)= DR Drexp 'mf dr Rr
! - . R©)Jr(0) h 0

(3.10. Here, as in the case of friction calculation, the spec-

tral cutoff w. is not important, and will be taken to infinity. [t oV [t U

Thus the integration may be performed using the asymptotic —IJ dTﬁf(T)—IJ dfﬁr(ﬂ)

expression fora(7). Substitution of Eqs(2.6), (4.6), and 0 0

(4.5) yields

Here the measure is

m -~-dR3dR2dR1~--dr3dr2dr1
(5.9

n ™ » —s d? B 2 m # segments
Am= ;CO<ES)F(S)fO mﬁ[ﬂe (2)(rim) ]Tsz 'DR'Dr:( )

B s(s—1) T S\ _qp 2-s
= COS(ES)F(S)F(].—E)Z 2y,

and the restrictions at the end points aR{0)=R,,
r(0)=rqyandR(t)=R, r(t)=r. It is now possible to average
zz (for 0<s<2). (4.13  over realizations of/, using the well known Gaussian iden-
tity

For the special case=1 one obtainsm=0 which is con- (e/dk(N2Dy = g~ (WAJdr dr' N NKDK(T) (5 9)
sistent with Eq(4.11) in the limit o .—. Fors—2 a nega-

tive infinite value is obtained, while from E¢4.12 a posi- One obtains

tive infinite value is obtained. In order to describe correctly

the crossover at=2, one should introduce finite cuto#f,  K(R,r|Ry,rg)

as well as finiter; . The calculation will not be carried here.

R
= f fr DR Drei(l/ﬁ)Seff[R,r]e—(l/ﬁz)SN[R,r]’
V. PROPAGATOR FOR NONDYNAMICAL RO)=Ry /r(0)=ro
ENVIRONMENT (5.3

In this section we shall develop a path-integral eXpreSSiOthere(classically
for the propagator of a particle that interacts either with static

(quenchedor noisy environment. First we develop a classi- t gV
cal expression, and then we generalize to the quantal regime. Setl R,r = Stred R,F | — f drﬁr(r) (5.9
0
A. Classical derivation and (classically

We refer to the dynamics generated by the Hamiltonian

(2.7). The classical Liouville propagator, over infinitesimal STR1= 1t td d
time d, and for definite realization df is NRIT= 2 oJo T10T2
- N U X[ = ¢"{R(12) —R(71), 75— 7]} (7)1 (71) .
K(Rz,P2|R11P1)_2775 (PZ_P1)+ é'_R+5'_R)dT (55)

. The free part of the effective action, for use in E§.3), is
Stred R,r1=mftd Rr. It may be more convenient to write
down the path-integral expression fii(R,P|Ry,Pg). This

It is more convenient to write an expression for the propagaaypression is obtained by double Fourier transform of
tor of the Fourier transformed probability function K(R,r|Ry,ro). The result is

[p(R,P)—p(R,r)], namely,

X 0

P
(Rp=Ry)~ —dr

R,P )
K(R,P|Rg,Pg) = f DRJ Drei (U)SerRr]
Ro.Po

’C R R m 1 . RZ_R].
(Rp,r2Ry,ry) = Sohdr €x % Im ar (ra—ry) ,
X @ (WAISNIRIT (5.9
i oV U r,+r,
“NaRTRIN T2 )97 Here[for use in Eq.(5.6)],
. t .
Here a dummy parametérhas been inserted. Its value does Sied RIT= _mf dr Rr. (5.7)
not have any effect here. However, later comparison to the 0

guantum mechanical version will be more transparent. For
finite time, the convolved propagator may be written as aNote that the integratiorDr is not restricted at the end
functional integral points, whereas the integratiddR is restricted at the end
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points both inR and inR. The restriction orR at the end ing the case where the actions are quadratic in the path vari-

oints is implicit, through the dispersion relati& P/m. ables, .WhiCh is .the case Wit.h the BM model, provided
P P g P V(x,t) is quadratic. The “classical feature” may be charac-

terized as arising from an invariance under the scaling trans-
formation of the auxiliary integration variablg 7). In the

A similar expression may be obtained for the quantalquantal regime the replacemefit—»\% cannot be compen-
propagator. Again, we refer to the dynamics generated by theated by the scaling—\r. Note however that the limit
Hamiltonian(2.7). The environment may be either “noisy” #—0 is equivalent to taking leading behavior of the actions
or “quenched,” where the latter case formally constitutes ain the limitr—0.
special case of the former. The expression that will be ob-
tained is a generalization of a result that has been obtained in
Ref.[20] for white noise potential. VI. PROPAGATOR FOR DYNAMICAL ENVIRONMENT

The Feynman path-integral expression for the propagator A. Feynman-Vernon formulation
of the quantal wave function is

B. Quantal derivation

Here we follow closely the notations in Refl3]. The
path-integral expression for the reduced propagator of the
probability density function is of the general for(®.6), with

U(X|xo) = fx Dyl () [ (U2mE = V) ~Uxt]
X(0)=xq
(5.9 t
The path-integral expression for the propagator of the den- e RiT]1=Stred R.r] . [V(X",7)=V(X',7)]

sity probability function constitutes summatiéx’ Dx" over

the pairs of pathx’(7) and x”(7). Alternatively, we may +Se[X X' 6.0
use also the coordinatd®=(x'+x")/2 and r=(x"—x"),
thus the summation will b®RDr, namely, The expressions for the reduced-action functionals
Se[x',x"] and Sy[x’,x"] in the case of the BM model, are
K(R,r|Rg,r o) given in Egs.(2.13 and(2.14 of the latter reference. In the
R ; . BM model the interaction is via the dynamical variabde
:f DRJ Dre! (Vi) Serd Rl —i(Lh) fodr{Ux",7) —UX" )] while, in DLD model, the interaction is via,(x). Thus, in
Ro o the expressions for the friction functiong¢[x’,x"] and for

the noise functionaBy[x’,x"] one should make the replace-
mentsx’ —u,(x"), x"—u,(x"), and sum over. Thus one
obtains

where

t
Ser R.7 ]=Stred RiF1— fodT[V(X”.T)—V(X’,T)] -

t [t
(5.9 S,:[X’,X”]=j fdrldrz 2a(71,— 19)
oJo
It is important to notice that the quantal definition of the
measure is identical with the classical ofel). In order to 12 ) , , ,
perform the average over realizationslofising the Gauss- X< [Ua(X2) ~ Ua(X2) JLUA(XD) F Ua(Xy) ]
ian identity (5.2), one may write the last expression as

K(R,rRg.ro) and
R (r
=f DR Dr 1 [t [t . ,
o Sux' 1= || dridrg(ram mlua ) -, 0p)1

% ei(l/h)seff[R,r]—i(1/ﬁ)fgdff°ﬁmdz[5(z—x")—5(z—x’)]u(z,r) _
X[Ua(X1) —Ua(X1)].
One easily find that the final result may be cast to the form of
Eq. (5.3 or (5.6) with Above @(7)=a(7)0O (7). These expressions may be simpli-
fied using Eq.(2.12). The results are

1t [t
SURr1=5 | [ drdrds04-xt,m- )

t [t
’ ’ ” ’ S X,,X” :J’ fd d 2~ —
O X, 7= 71) = 2005~ X4 7= )], PEXZ [ Jpfmdre 2a(mmm)

(5.10 1

X =[W(X5—X7) —W(X5— X}

wherex; is a short notation fox(r;). 2[ (emx)=whexy)
We are now in position to compare the classical propaga-

tor [Eq. (5.6) with Eqg. (5.4) and(5.5)], with the quantal one

[Eq. (5.6) with Egs.(5.4) and(5.5)]. In the latter casé is, in

general, no longer a “dummy variable.” The exception be-and

WX -w—x)] (62
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1(t [t “normal” circumstances, it will reduce to an Ohmic DLD
SnX X"]= Efo fodTld72¢(72_ 1) model. We consider a bath Hamiltonian of the general form
X[W(xz—X1) +W(Xz—Xg) —2W(Xz—X1)]. Hparnt Hine= 2 [MEn(n|+ 2> [M)Una(x)(n], (6.6)
n nm
(6.3

In the next paragraph we further discuss the physical signifi\-Nhere|n> and_En are t_he eigenstates and eigenenergies _Of

X .y the bath Hamiltonian in the absence of the coupling. This

cance of the functionae[x",x"]. Hamiltonian depends or, the system variable, as a param-

For the BM model it has been noted before that in PraC—iar However ponce thé full Hyamiltonia(rz 10), is cor?sid-
tice one could substitute E¢R.5. Thus : ’ . Lo

ered, x becomes a dynamical variable. The so-called

influence functionalin our notations igby definition

[t
SF[X'aX"]:fofodTldeza(Tz_Tl)r(Tz)[R(Tl)_R(Tz)]-

SN = pUnd X" (NIURIX (D] (6.7
However, the formally “correct” expression is somewhat nm
different(Ref.[13], Eq.(2.13). Namely, the integrand in the ) ) ] )
above equation is with r(m,)R(ry), rather than Units with #=1 are used hereU[x(7)] is the evolution

r(7,) (R(r,) —R(7,)). One may say that the BM reduced- operator of the path, in the presence of th_e “driving force”.
action functional includes an additional term. It is not diffi- X(7)- The bath is assumed to be in canonical thermal equi-

A . . . e . . — E
cult to demonstrate that the latter can be split into two termdlbrium. The probability of thenth eigenstate ip,<e PEn,
that corresponds exactly 6, potential aNd t0Feuitching: dis- Using leading order perturbation theory one obtains
cussed in Sec. lll B. ThApotentialterm may be absorbed

in the definition ofV(x), while theswitchingterm, which U X(7)]~ — i jthumn(X(T))ei(Emen)f for m=n.
is —Ak r(0)R(0), may befactored out of the path-integral 0
expression(see Ref[13], Eq. (2.34). It has the effect of (6.9

operating on the initial probability function with an impulse ) )
that acts on the particle if it starts its trajectory in a point Similar expression holds fan=n (see Ref[11]). Substitu-
+0. This term originates due to the fact that the initial prepaion into Eq.(6.7) yields

ration is such that the bath is in thermal equilibrium provided

x=0. Both the “switching” term and the additional effec- (ISe—Sy)

tive potential, are absent in the DLD model. This obvious t [t

results stems from the assumed inherent homogeneity of the =, pn{f f d 7o d 7y Ui X5)UE, (X)) € Em~En) (727 71)
environment. We turn now to the general expres<i®.). nm 0J0

Again, as in Sec. Il B, it is convenient to expresér) as a t (7o ,

sum of its symmetric, and antisymmetric continuations. Here —j f d 790 71 U n(X5) Upnr( X)€" Em=En)(72772)
we focus on the resultant friction functional, which is 070

“ " : — Uy X5 U (X;) €/ Em~ En (727 7)) | 6.9
Stlncion= |, | dridrsatr,— row'(z) —x (). (XD ) ©9
6.4 Now we take a further assumption which will reduce the
For an Ohmic bath one obtains resultant expressipn f@: and Sy to the form of Eqs(6.2)
and (6.3, respectively. The matrix elements,, are as-
t . t . sumed to be real, while their dependencexds assumed to
Se= ﬂfodT W' (r(7)R(7)—— ﬂdeT r(m)R(7), be characterized by the function
(6.9

- Unn(X2)Umn(X1) (0 — (E,,— E
where in the last stage we indicated the classical limit. Note W% (P P)lrnr(X2)Umr( 1) (0= (En— Er))

that the classical expression 8¢ can be easily derived. For
this one should include the friction force in the derivation of
Sec. VA.

=W(X,—X;)J(w). (6.10

The reduction of Eq.(6.9 to Egs. (6.2 and (6.3
o ) is easily verified via algebraic manipulation,
B. Derivation for generic bath using IS nPrd - - 3= S nmPn— P) - - -} and
A totally different derivation of the path-integral expres- RE S ,mPnl- - - 1= nmCOthGBw) (Pr—Pm){- -},  where
sion for the propagator is possible in the general case afothGBw)=(pn+ Pm)/(Pn—Pm). Thus, for general nonlin-
weak coupling to thermal, possibly chaotic bath. This deri-ear coupling, the DLD model constitutes an equivalent rep-
vation, in case ofinear coupling, has been introduce already resentation for the bath, as far as the reduced dynamics of the
by FV, Ref.[5]. The case of general, nonlinear coupling, hassystem is concerned. For the particular case of the weak
been considered by Mwing and Smilansky, Refl11]. Here linear coupling, there is further reduction to the BM model,
we shall take a step further, and demonstrate that undewith
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that the two interfering paths are well separated with respect
J(@)=72 (Pn=Pm)|Qumil28(@— (En—Ep)). to the microscopic scalg namely,| <|x,(7) —X,(7)| most
mm 6.1y  ©f the time. It follows that
_ 2
In the above expressid denotes the collective bath degree (e'%)= exp{ - Ft
of freedom via which the interaction takes place, namely, in

Eq. (6.6) one should substituti(x) =Qx. The bath variable pere the interference decays exponentially in time, and the
Q may be some complicated nonlinear combination of many, .3 spatial separation of the paths play no role. Due to the

elementary bath degrees of freedom. For both, the DLDyisorder, dephasing events are as effective for small separa-
model and the BM model, the expression #fw), may be  tions as for large separations.

. (6.19

casted into the form The dephasing of interference in metals due to electro-
magnetic fluctuations has been discussed by Al'tshuler,
T Aronov, and Khmelnitskii in Ref[16]. Their results have

Jw)= 520) (1-e"P*)o(w)’K(w),  (6.12  peen rederived by Stern, Aharonov, and Irfit$5]. A some-
what simplified derivation is reconstructed in Appendix A.

) . _ _ The strong dimensionality dependence of the dephasing pro-
whereZ() is the partition functiong(w) is the standard cess has been emphasized. This dependence is due to the
deviation of the off-diagonal matrix elements (being the separation dependence as in E§.13, and see also Eq.
offset), andK(w) is the density-density autocorrelation func- (A6). In case of the DLD model, the local nature of the
tion of the spectrun{E,}, appropriately averaged over the dephasing process will eliminate this feature.
relevant energy scale. The latter is related, for small energy |n order to understand how interference arises from the

diffel‘ence_s, to the level SpaCi-ng distribution. HOWeVer, fOI‘|:V path-integra' expressidﬁ_6)’ it is convenient to rewrite
any practical use, one should ignore the effect of level spaqt in the following form:

ing statistics onJ(w), since it corresponds to nonphysically

very long times. Thus, the generic behavior Xfw), for R,P

physically relevant smal, is expected to béinear. This K(R,P|Ry,Po) = fR b DRK[R], (6.15
leads to the conclusion that under “normal” circumstances 0o

the Ohmic DLD model is a good representation for the disyhere K[R] is a real functional, which is defined by the
sipation process. This conclusion does not holdstifong expression

coupling to a chaotic bath is considered. In the latter case

Zener transitions may dominate the dissipation prof@$s.

i _ 2
We do not know whether the influence functioriél?7) for K[R]= ~ Dre!MMSerdRrlg=(MAISIR.,
that case can be reduced to a form that resembles that of the unrestricted 6.16
DLD model. '
If the path-integral expression for the evolution operator Eq.
C. Loss of quantal interference (5.8 is dominated by aingle classical pathx,(7), then the

The suppression of quantal interference is an importan R integration in Eq.(6.15 will be dominated by
upp : qu ' ' Imp (7)=x4(7). Obviously, in order to obtain a nonvanishing

issue in both semiclassical and mesoscopic physics. It MPbsult, the end point conditions should be compatible. Turn-

Bressedtas & sum of probanilles 10 go ither via one olaselfd © e computation oKIR(r) =x(r)] via EG. (615,
P . pro . 9 . . one observes that th®r integration is dominated by the
cal trajectoryx,(7) or via a different classical trajectory

Xp(7), plus an interference term. The expression for th frivial trajectoryr(7) =0. We use the subscrifR in order

influence functionaimay be used in order to compute the 0 suggest that, in general, this trajectory shouldepen-

suppression of the interference due to the interaction with thgem' Indeed, this is the case if two classical trajectories
PP Xa(7) and xy(7) dominate. One should consider then the

environment. The interference term is multiplied by a: " _ :
“dephasing” factor(e'?), where we follow a notation due to mte_rferencg path R(T)_.(Xa(T)+Xb(T))/2’ for V\_’h_'Ch the
Dr integration is dominated by the nontrivial paths

Stern, Aharonov, and Imi5]. In our notations, the dephas- _ _ . .
ing factor is identified with exp-Syx.(9)x(D]}. We defer "R(7)= = (Xa(7) =Xp(7)). The existence of nontrivial path
further discussion of interference within the framework of 'R 'S the fingerprint O.f mterferenge phenomena. A cle_lssmal
FV formalism to the last paragraph of this subsection. gaﬂeRCtro?/f(()T)tgg:] WlhnlC?:orth;aostWIan(i):]tgffedrzrr?cpeedp’astlr?cior
H i H H H H 5 N I RIT . 3 [}
It is enlightening to consider the case of white noise, W|thWhich re0, is damped, since ©S\[R.rx] in general.

¢(r2=11) = vd(72= 7). For the BM model one obtains However, in Sec. IX, where the localization effect is dis-
_ 1 v [t cussed, we shall encounter a vast family of interference tra-
<e'¢>=ex;{ 3 ﬁf [Xa(7T)—Xp(7)]%d7|. (6.13 jectories that are not damped by the noise functional. In the
0 latter case, the interference paths are found to be dominant in

the computation of the propagator.
Thus interference is suppressed more effectively if the two Another issue that deserves attention is the interplay of
interfering paths are better separated. A totally different refriction and interference. By inspection of E&.4) it is clear
sult is obtained in case of the DLD model. Here we assum¢hat for disorderedenvironment, quantal interference is un-
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affected by friction. This is true as long &g andx, are well  straintséR= 6r=0 at the end points. The Gaussian integra-
separated in space. In Sec. VIl B we shall encounter a relatetibn is performed exactly. General expressions may be found

guantal manifestation of this observation. in Ref.[13]. The phase-space propagatofR,P|Rg,Py) is
obtained by a double Fourier transform B{R,r|Rg,rq),
VIl. SPREADING AND DIFFUSION and obviously results in a Gaussian function. In particular,

) ) one is interested in the spatial spreading. SetlRgg- 0 and
The main reSUItS Of the two IaSt sections are the pathmtegrating over the ﬁna| momentuﬁl, one Obtains

integral expressiofi5.6) for the propagatok’(R,P|Ry,Py),
with the appropriate action functionalsS;e. (5.7),

Skl triction (6.4, and Sy (6.3). The classical limit ofSy is 1{ R-Ry\2
presented in Eq(5.5. For Ohmic friction, both the quantal K(R|Rg) = ex;{z(a ‘ ) } (7.9
version and its classical lim{6.5) will be further considered 2T\ Tspatial spatial

and compared. Friction in the case of a non-Ohmic bath has

been discussed in Sec. IV, and its quantal analog will not b%\ . . . .

considered further. general expression fqr the spatial spreading, that applies to
In order to get preliminary insight into the path-integral any ¢(7), may be obtained13]

expression, consider first the case of free particle in “white”

noisy environment. Namelyg(7—7')=vé(7—7'), with

. . 1 t [t
v=27kgT as in Eq.(4.7). In the classical casé.5), one Uspatialz—\/f f S(r— ) (D)rg(r)dr d7,
obtains m 0Jo
(7.9

1 [t
SN[r]:EVf r(r)%dr (7.2
0 wherer, solves the linearized classical equation of motion

independent of the spatial autocorrelation functigm). The ~ (Mr+ »r=0) with initial conditionsr(0)=0 andr(0)=1.

observation that spatial correlations are of no importance, a¥ote that Ohmic friction is considered, for which the BM

long as the noise is uncorrelated in time, is trivial from amodel is well defined. For the simplest case g)fll\éVhlte noise

classical point of view. In the quantum mechanical case, th&/ithout friction one obtainsrspatia= (1/3vt°/m") ™% Fric-

corresponding expression is t|9n Ifaads to dgmpmg and diffusion. In thg latter case, con-
sidering long timee™(”™'<1, one may disregard a short

t transient and  substitute r,=m/%». Consequently,
Snlrl= VJO[W(O)—W(f(T))]dT- 72 ogpaia=[(¥/7)t]"% However, at low temperatures

&(7)=— (Clm)(1/72) while [, ¢(r)dr=0. Thus

Contrary to classical intuition, spatial correlations may be of
importance. However, for the BM model, E@.5), one re- c o\
covers the classical result. =2
. . Ospatial 7 —Int| (7.9
In the path-integral expressi@h.6), one may perform the ™
integrationDr = - - - dradr,dr,. In the absence oy, each

integration overdr,, results in § function of velocities, S _ )
diffusion is suppressed due to the negative autocorrelations

namely, S(R(7n+1) —R(7,)). In the presence oy, the in- : ; . = .
tegrationdr,, is weighted, and as a result, eaghiunction is of thg noise. This effect is (_:Iassmal in nature. Intentionally
we did not use the explicit expression for the constant,

smeared. The propagator constitutes a convolution of thesneamel C=%1. The presence df. .. in the formula. rather
smeared functions. In particular, both in the classical case Y 7 P ~ bath 77 -

and in the BM model, each smearédunction is a Gaussian. thanisysiem W'thQUt an explicit subscript, may m|§lead th'e

It is obvious, that both in the classical and in the quantalreader' The particle can be treated as a classical object,

. . within the framework of, e.g., the Langevin equation, and
case,Sy leads to stochasticlike spreading. In what follows . . e 2. i
. . ) still the suppression of diffusion will occur.
we want to estimate this spreading.

A. Nondisordered environment B. Disordered environment, white noise

We turn now to estimate the spreadimgthe absence of Both the classical limit and the BM model generate “clas-
disorder, which is the standard BM model. The noise func- sical” dissipation effects. We turn now to the DLD model,
tional is quadratic in the path variabte and is independent [Eq. (7.2) with Eq. (2.6)]. Here the situation is quite differ-
of the path variabldR, namely, ent. In order to compute the propagator, a different, more

10t powerful strgtegy is require_d. 'We shall exploit the fagt that
S(Rr]= _f j drdrd(Tp— r)r(Dr(7'). (7.3 for white _nm_seSN[_R,r] is stll_l independent QR(T), Whl|e_
2)oJo Seif R,r] is linear inR(7). It is most convenient to Fourier
transform/C(R,r|Ry,rg) to X(p,r|pg.ro). The path-integral
Here, an exact treatment is availapls]. One may expand expression may be written for this representation as follows
both S,ce and Sy around the so-called classical paths, that(from now on we suppress printinfy, but shall restore it
are determined by the variatiodS;,..=0, with the con- later):
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R
hlql

K(p.r|po.ro)

K(R|Ro)~w( )*’Cu(R— Ry (1)) +e (2t

— gl 7[RW (1) =Row’(rp)] P DFJDR

o X Atmi

S(R—Ry(1)) \TV(R_RO(T)” (7.9
- O - T 271 . .
@~ 1 pdr(mi+ pw(NDRg = vf[w(0) ~w(r (1) dr

) ) o The symbob stands for convolution, and results in smearing
The DR integration can be performed now, yielding&  of the classical propagator on scal&( 7). For frictionless
function (mr+ »w”(r)r) at each point along the trajectory. propagation one should use the replacement
The trajectory for which the integrand does not vanish willz/(yl)—#At/(ml). We have wused the notation
be denoted by (rq.r,7), where 6<r<t. This trajectory is Ry(t)=R.(t)=R,. The above result holds alsoff,# 0, in
required to satisfy the end points condition®)=r, and this caseRy(t) will propagate as if friction is absent, while

r(t)=r. Hence, the result of the path integration is R.(t) will propagate as in the classical limit. Obviously, if
_ friction is indeed absent, then agaRy(t) and R, (t) will
K(p,r|po.ro)=e 7RV M =RaW (o) s(o—mr(rg,r,t)) coincide. The kernek(R|R,) denotes the classical result,
_ Eq. (7.4).
X 8(po—mr(rg,r,0)) The expression for the quantal propagator demonstrates

that a piece of the wave packet is frozen due to the disorder.
This is a nontrivial quantal effect that indeed can be entitled
“quantum dissipation.” We emphasize again that such a

x @~ v/ olw(0) ~w(r (ro,r,)]dr

The inverse Fourier transform yields quantal effect is absent in the BM model. However, the ex-
o ) _ , pression for the propagator also demonstrates that the
K(R,r|Rg,ro) =g [M 0.0+ awi(m)R=(mr(ro.r,0)+ 7w’ (ro)Rol “quantal correction” goes to zero exponentially in time, as

X in the case of interference discussed in Sec. VI C.
xe~ Vfo[W(O)*W(r(ro,f,T))]dT-
VIIl. CLASSICAL NON-MARKOVIAN EFFECTS

To simplify the latter expression we note that + nw(r) is i
a constant of the motion. The disadvantage of the treatments that have been pre-

The propagatoi’(R,P|Ry,Py) is the Fourier transform sented in the preceding section, is the difficulty to extend
in the variables andr,. In order to get insight we restrict them to thegeneralcase of disordered environment, namely,
ourselves to the reduced kerié{R|R,), namely if the disorder(the noisg is correlated in time. We therefore

turn to a somewhat more heuristic approach, that will enable
o , approximated treatment. For the computation of
IC(R|R0)=f droellMrro.0.0+ 7' (ro)(R=Ro)] K(R,P|Ry,Py) we shall use the classical limit5.5) of
_°° Su[R,r]. The “quantal correction” in Eq(7.8), is not con-
sidered again in the present section.
In the classical limit(6.15 constitutes a formal solution
of the Langevin equation. The real functiond|R] has a
Simple probabilistic interpretation. For Ohmic friction it
takes the form

w @ olw(0) ~w(r (ro,0,m)]dr (7.7)

As before we distinguish the case of frictionless propagation
for which r(rq,0,7)=[(t—7)/t]ro, from the case of the
damped particle witle (”™'<1. In the latter case the tra-
jectory is modified foriro|<I, wherer (ry,0,7)~r,. Conse- L o
quently, the “phase” in Eq. (7.7) is Sep(ro)= K[R]zf Dre~odmr(Nr(Ng= (1/2)fofodrdr’ dr(r7)r(nr(r)
—(m/t)(R—Rp)ro and Sg4¢(rg)=— n(R—Rg)ro, for the 8.1)
two corresponding types of trajectories. As for the noise ar-

gument in Eq.(7.7), it is Sy(rg)=vl%t for I<|ro[, and  where

Sn(ro)=Ewtr3 or Sy(ro)=~3wtr for |ro|<I, depending on

whether friction is absent or present, respectively. The sepa- ¢or(7,7)=—W'(R(7)—R(7'))p(7—17") (8.2
ration of scales both i8.¢(ry) and inSy(ry) enables split-
ting the integral in a convenient way, namely, and

Ar(7T)=mR(7)+ 7R(7). (8.3
drg

ffm...dr():f:...w(rl_o
7l

where W(x) is a smooth, symmetric cutoff function that 1 (t [t , , ,

equals~1 for |x|<1 and equals=0 for 1<|x|. The inte- xex _EJ f dr d7' ®p(7,7")AR(T)AR(T") |,
. . . . 0JO

gration in Eq.(7.7) is performed, and the following expres-

sion is obtained for the propagator: (8.4

Formally, the unrestricte@®r integration may be performed
exactly, yielding the result

KIR]= Jdef{ ®g]

drg.
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where @ is the reciprocal of¢pg. In order to compute
K(R,P|Ry,Py) one should identify the most contributing
paths, for whichtC[ R] is maximal. In Sec. VIII A, where we
discuss short-time correlated colored noise, we assume that
oneoptimal path dominates the computation. In Sec. VIl B,
where we discuss static or almost-static noisy potential, we
shall identify a whole family of optimal paths. In Sec. IX,
where quantum localization is discussed, we shall use a simi-
lar strategy, and a family of interference paths will be iden-
tified.

A. Normal, dissipative diffusion

In this section we shall analyze the diffusive behavior
which is encountered in the absence of disorder. Our as-
sumption will be that th®R integration is dominated bgne
smooth “optimal path.” We shall substantiate this assump-
tion by demonstrating consistency with the exact result that
has been presented in Sec. VII A. Furthermore, it will be £ 3. jllustration of the optimal patt8.5) for either damped
argued that the “optimal path” for short-time correlated propagation(solid line), or frictionless propagatiofidashed ling
noise is the same as for white noise. The horizontal axis represents spatial position, while the vertical

In order to find the pattiRy(7) that maximizesC[R], we  axis is for the time.

first consider the case of white noise, where i
ba(r—7)=vrd(7—7'). Hence, ®g(r—7')= V';la(T In the first formula a constant prefactor that equ&l$ has

been dropped, since we assume her&”™i<1 . The opti-
mal paths of Eq(8.5 are illustrated in Fig. 3. Computation
of Ag(7) for the optimal path is straightforward. For damped
propagation the computation is trivial sincég~ n((R
—Ryp)/t) is constant. Substitution into E€B.4) yields

—7'), with vg=» (the subscripR is reserved for later uge
As in Sec. VII A we focus the attention on the computation
of the reduced propagato€(R|R,). Formally, the path-
integral expression fokC(R|R,) is identical with Eq.(6.15),
except for the restriction at the end points. K{R|R,), the

i =R.. R(0)= = 1 (R—Ry)?
relaxe§ constraints ar.R(.O) Ros R(p) 0, andR(t) .R. IC[RO]:constxexp( 1 0) ) 8.6
DenotingR=uv, the variational equation fd®,(7), including 2 wrtly

the Lagrange multiplier, is which is consistent with the exact result of Sec. VII A. It is

also easily verified that for frictionless propagation, consis-
tency with the exact result is maintained.
For short-time correlated colored noise< ) it is natural

t .
5J' [(mv+ nv)?+consXv]dr=0,
0

one obtains to replaceg(7— 7') by v&(7— 7'), with the effective white
mo — v = const, noise intensityr=¢(w=0). As long as & v (finite tem-

. peraturey the long-time behavior is diffusive, and consis-

(mv+7v)=0, tency with Eq.(7.5) is easily verified. Still, a more elaborate

argument is required in order to substantiate the “white
noise approximation.” This argument will be discussed now.
t By inspection of Eq(8.4) it is clear that the most contrib-
J v(7)d7=(R—Ry). uting paths, for which K[R] is large, must satisfy
0 |AR(®)|?< ¢(w). For white noisep(w)=v=const, but still
The last two equations are the constraints. The solution fof® “Optimal path” is smooth. By “smooth” one means that
damped propagatione( (”™t<1) is easily found. For the Agr(w) is concentrated within the intervad<1/r,, where

sake of comparison also the solution for frictionless propaZ»= T 7 is the relevant time scale for the system’s dynam-
gation (7=0) is displayed. ics. Now consider a noise autocorrelation function of the

form ¢(7)=v (1) + C- G4( 7). Its Fourier transform satisfies
1_}ef(n/m)(tﬁ) d(w)~v~const for o<(v/C)Y~Y. Thus, the first re-
2 quirement for the white noise approximation to hold should
be C/Tf,‘1< v. For w.<w the spectral functiorb(w) drops
— ( 1— }e, (n/m)t)e (m/m) f} to zero, which implies that such high frequency components
2 are not favored. So far there is consistency with our assump-
tion that the most contributing paths are smooth. However, in
the vicinity of w. the spectral functionp(w) is peaked. It
implies, that unlike the case of white noise, an oscillatory
R, ( 7-)=§ _3 07(2’(— 7) component with time period, is favored. Obviously, such
2t components arise from the strong accelerations that the par-
ticle experiences within short periods, whose duration is
(for frictionless propagation). (8.5 7.. Over these short periods the maximum displacement is

v(0)=0,

t

Ro(7)~ 2

(for damped propagation
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AL=[J¢(7=0)/m]72. Using Eq.(4.4) it is found that this
amplitude is proportional ta{*~ 9’2, Fors<4 the amplitude
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_ |R—Ry|
K(R|Rg)=const exp| —

A : 1
AL goes to zero as,—0. Therefore, in this restricted re- [4#2/77—2(:}
gime (1=s<4), and in particular fos=2 (low temperature 7l
Ohmic nois¢ the “white noise approximation” should be

adequate. (Ohmic, low temperaturgs (8.10

B. Anomalous “diffusion” The dispersion here, in the DLD model, is of the order

Encouraged by the consistency of the heuristic approack/(7°!) rather thanyC/». [The BM model is Eq.(7.6)].
with the exact results, we turn now to analyze the diffusionOne should observe that on f@~ (#l)? both models pre-
due to short-time correlated noige the presence of disor- dict, consistently, dispersion on a spatial sdal€or larger
der. We shall use the white noise approximation whose vanoise intensity, the BM model is not valid, and the DLD
lidity has been discussed in the preceding subsectiorPredicts always a larger dispersion, which is intuitively ex-
Namely, for short range correlated noise, the most contributPected. For weak noiseC<(71)?] the spatial spreading is

ing paths are concentrated around the s#&per) that has
been found for white noise. From E.5) it follows that

on scale less thah Our treatment of the DLD model is not
valid on this microscopic scale. However, in this regime the

Ro(7) is, up to end point transients, a freelike propagationBM model can be trusted. For<3s<4 Eq. (8.99 implies
Consequently, the effective noise autocorrelation function ighat the particle evacuates from the vicinity R§.

dr(T)~—W'([(R—Rp)/t]- 7)¢(7) and we define
R—R,

VR=f —W"< e

In general G<vg, also in the limit of zero temperature.

~p(7)|dT. (8.7

The “body” of the “diffusion” profile (8.93 is deter-
mined by low velocity paths for which <. It is easily
verified that a sufficient condition for the validity of the
“white noise approximation” is7j<7,. This condition is
satisfied in the relevant spatial rangR ¢ Ry| <lwct), ex-
cept for a relatively small interval arouri®,, which is de-

In the presence of disorder, the effective white noise int€rmined by the large ratio, /7.

tensity is(in general a function of the end point conditions,

The “tail” of the “diffusion” profile (8.9b is determined

rather than a constant. For typical noise autocorrelation fund?y high velocity paths for whichy<r.. Here the validity

tion of the form¢(7) = CG4(7) one obtains

G
VR=C T T+ (5D
R=M (25 )17

with

R
~(R=Ro)

~ S
and C=/2/m2%21 1+§ C. (8.8

7

The computation has been carried out by taking in [Bd7)
the Fourier transform of botk( ) andw”( ), and perform-
ing dw integration rather tham r integration. Substitution
into Eq. (8.6) suggests that

K(RIRo)|{jr-Rrg|<lwgt}

2
= consiX exp( - 57% ISltSZ|R—RO|3S), (8.99
7 |R—Rg|°
K(R[Ro)|{|r-Rrg|>1w ) = CONSEK EXP — 2C o0
(8.9b

argument should be modified. The spectral funcigm) is
peaked aroundv=1/7, rather than aroundv=w.. Thus,
oscillatory component which is characterized by peripis
favored. The maximal spatial amplitude of this component is
AL=%(\/¢(T:O)/m)T|2. It is convenient to use a special
notation for the standard deviation of the disordered poten-
tial, namely,W=1¢(7=0). Using this notation the ampli-
tude isAL=3[W/(mv?)]l. This amplitude is required to be
much less tham, or alternativelyW< imv? or alternatively
n<tw, With 7y=1/y2W/m. In this section we have limited
the discussion to the case of short-time correlated noise for
which 7 is small, in some sense. Indeed, if it is assumed that
T.<T7y, then the validity condition will be satisfied auto-
matically.

C. Classical localization and nondissipative diffusion

In this section we shall discuss the case of static or
almost-static ~ disordered nondynamical  environment
(»=0). The “noise” is assumed to possess long-time cor-
relations. Specifically

W2 1(r—7")°
Pr(7,7)=—W'(R(7)—R( T’))I—zex;< 3 T—) ,
(8.11)

The “tail” of the dispersion profile is universal. It depends

on w., but it is independent of the nature of the noise. InwhereW is the standard deviation of the disordered poten-
contrast, the short range profile is determined by the lowiial. Here 7. is assumed to be large, much larger than
frequency bath oscillators, and thus it is sensitive to the exact,,=I/y2W/m.

value of s. For s=1, (Ohmic model, high temperatunes
normal diffusive behavior prevails. Fe=2 (Ohmic model,

In general the white noise approximation breaks down.
The path-integral expression is no longer dominated by

low temperaturesthe diffusion freezes. The dispersion pro- “smooth” trajectories. It is difficult to use the explicit for-

file is exponential rather than Gaussian, namely,

mula(8.4) in order to identify the family of “optimal paths”
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since®(7,7") is no longer diagonal. We therefore prefer to
use heuristic considerations. No new insight is gained if one
insists on using Eq8.4).

We first take the limitr,—c0. The classical mean free
path of the particle is

1%mv2

Lcottision=! eXF{ T2TW ) (8.12

The corresponding time iS.qjision= Lcoliision/V - After that
time the probability of being backscattered is of order 1. In
one dimensiorthis backscattering will lead téclassical lo-
calization of the particle. The localization length is exponen-
tially large for high energies.

If 7. is finite, rather than infinite, classical localization
will manifest itself only if Toision< 7c- Within the time
scaler., the particle spreads over spatial range of the order FIG. 4. lllustration of an optimal patR (solid curve for local-

L conision,» While its velocity is randomized. It follows that ization problem. The dotted lines aré(7) andx"(7) that corre-
K(R|Ry) may be used as a stochastic kernel. Hence, thepond torg(7). The horizontal axis represents spatial position,
Markovian property is recovered over time scales that aravhile the vertical axis is for the time.

much larger tharr;, and a diffusive behavior follows with

coefficient L2,cion/7c. This diffusion is nondissipative With respect to<’ (7). Referring to the end points, one should
“random-walk” like. identify 7=t with 7=0. It follows thatSy=0 implies that

the two pathsx’ and x” are eitheridentical or satisfy the

constraintR(t) =R(0). If R(t) # R(0), thevalueSy=0 may

be obtained only ik’ andx” are identical. More generally, if
As in the last section, we shall discuss the case ofv,=|vo|, one may prove that the following inequality holds

quenched disorder. However, here tiigantal analysis will ~ for any pair of smooth paths’ andx”,

be carried out. The variance of the disordered potential is

IX. QUANTUM LOCALIZATION

W2, with autocorrelation length. We approximate the e~ (UHS\RI] < g~ [aWe/(hvg)?min(Ry—Ro| L2 [r(| +[ro)).
Gaussian correlation(2.6) by a & function. Defining (9.2
a=+2ml, the path-integral expression for the propagator is _ ) )
Eq. (5.6) with Eq. (5.9) and For particularR(7) one may ask what is the(7) for which

Sy[R,r] is minimal. The trivial minimum, which is also the

1 t [t Y . absolute minimum, is(7) =0, for whichSy[R,r]=0. How-

SN[x',x”]=§aW2JO j0[5(X2_X1)+5(X2_X1) ever, any small perturbation on(7) will make S\[R,r]
much larger. Therefore, we are tempted to assume that there

—28(xy—x1)]d7,d 7. 9.1 may be some other, more stalflecal) minimumrg(7). A

nontrivial local minimumrg(7) does not exist for any
The essential feature of this functional, is its nonlocal natureR(7). However, one can prove that there is a large family of
Our first step will be to get some insight in8y, . R’s for which such minimum exists, by actually constructing
Let us consider segmentand segmeni that belong both  them. This is done by following the considerations that were
to the same path, eithet’ or x”, within the same spatial presented at the beginning of this paragraph, An example for
interval Ax. This includes the possibility=j. The contribu- such construction is presented in Fig. 4. The situation here

tion to Sy is should be contrasted with that encountered in Sec. VIII. In
Sec. VIII A we could have definedne optimal pathR (7).
AS.— 4+ EaWZ AX Here, there is a whole family of “optimal paths,” as in the
Sv= 2 lviv|’ case of Sec. VIl B. However, in the present case these paths

are “interference paths” rather than “classical paths.” The

wherev is the velocityx within Ax. However, ifi belongs to ~ following observations concerning the relevant optimal paths
x’, while j belongs tax”, or vise versa, then the contribution are important:(a) They consist of many straight segments,

to Sy is and have a zigzag charactéh) The final velocityR(t) is
favored to be equal in absolute value to the initial velocity;

ASy= —aW? Ax (c) Turning points impose significant restriction&) The

|vivj|' nontrivial minimum rg(7) is isolated;(e) The nontrivial

minimum is relatively stable. The last point is the most dif-
One easily convinces oneself that the contribution of eaclicult to observe. First it should be noted tliat must be true
spatial intervalAx is non-negative A zero value may be a priori. Or else, if the trivial minimum dominates the path-
obtained if to each segmentthat belongs ta’, corresponds integral expression, then the result would be that the particle
segmenj that belongs t”, with [v;|=|v;|. For example, a has roughly the same probability to go from any initial con-
zero value forSy may be obtained ik"(7) is shifted in time  ditions to any final conditions, irrespective of proximity con-
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siderations or even energy conservation. Still, a reasonabléme, i.e., the disordered potential is not static when viewed
argument is required to explain why the nontrivial minimum on large time scales. The inequalit9.2) will not be appli-
is relatively stable. For this consider a straight segmdot  cableif additional white noise is added to the Hamiltonian.

which R(7)=v; andrg(7)=r;. One observes that ifz is  In the latter case, largez(7) will be suppressed by the cor-
perturbed by a fluctuation of time peridd|/|v|, or by some responding additional term in the noise functional.

higher harmony, then the contribution 8&[R,r] is negli- ~ Consequently, the subfamily of paths for which
gible. This is to be contrasted with the case of the triviallfr(€nd point3[<|R—Ro| will not constitute a zero frac-
minimumr (7) =0, where any fluctuation has high cost.  tion of the whole family.

We turn now to the formal extension of the procedure that EXpression(9.6) for the localization length agrees with

has been presented in the preceding section. We expaﬁae We” knOWn I‘esult fOI‘ 1D |Oca|i2ati0n Of “fl’ee" pal’tiC|e
S\[R,r] around the nontrivial minimum (Thoulesd[18]). Note that Thouless uses some scaled units,

resulting in the expressiof=8mE/%2. We shall now show

o , , that the above expression is somewhat more general, and
SMRr1=SMR,rrl+ o Jo d7 dr’ dr(7—7') also applies to cases where the dispersion law is different
from v=p/m. For this one should replace in E.8) the
X(r(r)—rp(7)(7")—ra(7")+---. kinetic termm>x2 by some general functiof(x), resulting
(9.3 In
Here we are not able to write an explicit expression for the t > » t .
highly complicated kernekpr(7—7'). However, we pro- Stree= OdT[T(X )= T(xX")]~ Odrp(R)r+~--,
ceed, and write down the result of the Gaussian integration 9.7
K[R]=constx cos( fwdTAR(T)rR(T))eSN[erR] where p(v)=T'(v) is the dispersion law. The subsequent
0 formalism is easily generalized. The expressi@gm) for ¢ is

1 (t [t unaffected. Actually, the general expression§arould have
Xex;{ — _f f dr dr’ ®g(7—7")AR( T)AR(T’)). been guessed. We naively use the Born approximation, cal-
2JoJo culate the mean free path and rely on the fact thaf is
(9.4) twice the mean free paifThoulesd18]). By the golden rule,
the probabilityP of being backscattered is
Now, we should perform th@®R integration. This integra-
tion will be dominated by the family of optimal paths. Note ——— L dp
that the cosine term in E¢9.4) equals unity since forg the P=2x|(-plUp)I5— 5E (9.8
trajectoriesx’ and x” are in a sense ‘“shifted” one with
respect to the other, hencg=0. Within the family of  \yhereL is the length of the available space, aBds the
optimal paths, not all have the same contribution. One shoulginetic energy. The matrix element is
expand around those that have the largest contribution. For
these paths$S\[R,r]=(aW?/v3)|R—Ry|. Here we consider 1 1
end point conditions Ry,mv,) att=0 and R,*mu,) at |<—p|Z/{|p>|2=F|F[U]|2=EaVV2 : 9.9
time t. The timet is assumed to be sufficiently large to
guarantee steady state distribution. It follows that

where in the last equalitf denotes Fourier transform, and
IR—Ry| U is assumed to be uncorrelated in spdeeite spatial
), (9.5  noise. The result(9.6) is easily recovered. One should use
£(vo) =21, andv,=dE/dp, while | is evaluated via the relation
where P=uvg/l. In order to further demonstrate the generality of
Eq. (9.6), let us consider the Anderson tight binding model.
(hvg)? The spacing will be denoted bg. The Hamiltonian is
o) =2z 9.6 H=3,(In)Vu(n|+T(In}{n—1|+|n)n+1])), whereV, is
uniformly distributed in[ —Wy,W;]. The transition ampli-
For conveniencé has been restored in the latter formula. Intude isT. The kinetic energy in the center of the band is
the application of the inequalit§9.2) a subfamily of optimal E=2Tap, wherep is the momentum. Henag,= 2T a there.
paths has been ignored, for whiclig(end point3] The dispersion of the on-site energiesVis=1/\12 2W,.
<|R—Ry|. It is justified provided that this subfamily consti- The “area” under the triangular autocorrelation function is
tutes a zero fraction of the whole family. For this we shouldaW?. Formula(9.6) suggests thaf=24a(T/W,)2. This re-
assume sufficiently long timet), for which a steady state sults agrees with that of R€i24] (Eg. (66), there, including

IC(R,iva|R0,mvo)~exr< -2

distribution is attained. the prefactor.
Both the validity and theapplicability of the inequality
(9.2 demonstrates the vulnerability of our localization argu- %X. SUMMARY AND CONCLUSIONS
ment. It is important to consider circumstances in which ei-
ther of these conditions is not satisfied. The inequaBty) A unified treatment of diffusion, localization, and dissipa-

will not be valid if the noise is not infinitely correlated in tion (DLD) has been presented in this work. All these phe-
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nomena may be derived from the general path-integral ex- On the classical level it is fascinating to analyze the dif-
pression(5.6), fusion profile in the presence of disorder. For the low tem-
perature Ohmic BM model, it is found that diffusion is sup-
RP pressed, though its Gaussian profile is maintained. The DLD
K(R,leO,po):J DRJ Drei(Va)SetlRir] model, in the same circumstances, leads to an exponential
0:Po profile that does not change with time. This new effect is due
to the interplay of the temporahegative autocorrelations of
the noise with the spatial disorder. Even more fascinating
“diffusion” profiles are found for other types of noise auto-

upon inclusion of the appropriate function@s; andS,.  correlations. _ _ _ _

General expressions for these functionals are available and Quénched disorder iane dimensiorieads to classical lo-
various limits may be considereth) Quantal versus classi- calization, as well as to quantal localization. The former is
cal expressionstb) Disordered versus nondisordered envi- character!zed by a.Iocallzauon Iengt_h wh|ch is exponentially
ronment;(c) Dissipative versus nondissipative environment;/arge at high energies. Quantal localization on the other hand
(d) Quenched versus noisy environment. In the classical limitS dominated by interference phenomenon. We have identi-
the DLD model constitutes a formal solution of Langevin fied the interference paths within the framework of FV for-
equation. The classical limit may be obtained by lineariza-Malism, and demonstrated how the well known exponential
tion of the quantaS,{ R,r ] with respect ta , while expand- profile emerges. The localization Iength_m the quantgl case is
ing S\[R,r] to be quadratic in this path variable. The disor- propprnonal to the square of _the veloplty. The appllcab_|llty
der or its absence depends on the choice of the spatié’lf this result to other dispersion relations has been pointed
autocorrelation functiom/(r). The dissipation is turned on if out. . o o

the friction functionalSy is included inS,;. The nature of It is obvious from the derivation, that localization cannot

the noise, whether it is “quenched,” “colored,” or “white” Ibe argue_gc if Fhe Eoir?e i.s n(_3t strictly st?j(i;‘;cg.ﬁ slow_ly modu-
is determined by the noise kerng(7). In the latter case any 'at€d. Diffusive behavior is recovered if the noise possess

combination may be considered as weée further discus- long butfinite autocorrelation time. Also the case of white
sion at the end of this sectipn noise “on top” of the static disorder will evidently lead to

The classical BM model is well defined in terms of an diffusion [25], [14]. In this latter case, which has not been
appropriate Langevin equation only in the case of an Ohmi onsidered in this paper, nonperturbative effects may mani-
bath. This is not the case with the classical DLD model. Th est.tTe,msereSrZ]G] as in the (I:aie Olf thf quantum fk|ck¢fd
classical dynamics in the latter case is well defined in term@article” [14]. The DLD model should also account for dif-
of an appropriate Langevin equation also for a non-Ohmi usion in the presence of both quenched disorder, noisy po-
bath. Explicit expressions for the friction force, and for thetent'al’ and friction(all togethey. There should be a way to

effective mass have been derived. Another nice feature of thgerive systematjcally well known heuristic results that corre-
DLD model is the absence of a “switching impulse.” sponds to hopping, or variable range hoppiay

Once the noise autocorrelation functigiir) is specified, Clas§|cal non.d|SSIpat|ve_ “random-walk” dnffusmn has
the BM model is indistinguishable from its classical limit. As Peen discussed in the restricted case of long-time correlated
long as the external potentisl(x) is quadratidat mos}, the noise. It is essential to generalize the DLD modelnore

quantal propagator is identical with the classical one, and thH1an one d|men3|_om orde_r to account for this phe_nomenon
Langevin equation can be used in order to correctly describ the case of strictly static disorder. Autocorrelations of the

the time evolution of the Wigner function. All the quantal |sorQered potentlal, both in time and in Space, shou_ld be
effects that are associated with the standard Zwanzi considered, in order to generate the dynamics which is de-

Caldeira-Leggett BM model aréormally) reproduced by scribed by Boltzmann transport equation. In the limit of

solving the classical Langevin equation with an appropriatéquemhed disorder, localization effect should be encountered.
noise term.The DLD model is differentThe nonstochastic,

x e~ (ISR, (10.1

genuine quantal features of the DLD model have been dis- ACKNOWLEDGMENTS
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propagate as if it were a free particle. Both, the “quantal
correction” to the propagator, as well as any other interfer- ApoeNDIX A: INTERACTION WITH EXTERNAL BATH

ence phenomena, die out exponentially in time. This expo- THAT CONSISTS OF EXTENDED EIELD MODES
nential decay, due to dephasing, is independent of geometry.

It should be contrastedvith the results for loss of interfer- This appendix illustrates how the unified formalism that
ence in the presence of BM-like environmgd6,15. An-  has been presented in this paper should be modified in order
other important observation is that fdisorderedenviron- to deal with external bath that consists of extended field
ment, quantal interference is unaffected by friction. modes. Unlike the case of the BM model, this modification is
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not as immediate as the mere substitution of appropriatey(k)=e?/(ok?), wheree is the charge of the electron and
w(r). In the present derivation the bath Hamiltonian is noto is the conductivity. Integration oves leads to the result
specified, and also the assumptiofp=u(x—x,) is altered.
For the standard derivation of the DLD model it has been o\ _ e’kgT [t 2-d
assumed that the interaction Hamiltonian is E2.8) with (e'¥)=expg — h2g fO(Xa( 7)—Xp(7))* % 7|. (AB)
u,=u(x—x,), leading to the factorized noise autocorrela-
tion function (2.4). In the more general case, the classicalThis result, that has been obtained in Ré6l, [Eq.(7.9)], is
derivation, as well as the quantal derivations, lead to a stogery similar to the corresponding result E@.13 for the
chastic force that satisfies E@.3) or to the noise functional BM model, the difference being the power<2l) which is
(5.10, respectively, with noise autocorrelation function not universal.
which is An apparently simpler example for an interaction with an
external bath that consists of extended field modes, is the
d(X—X' t—t)=> ¢ (t—t")u (X)u,(x'). (A1) electron-phonon interaction. Here we want to question the
@ applicability of the BM model as an approximated descrip-
, ) ) i tion. The electron is assumed to be confined to a one-
Here ¢,(t—1")=(Qu(t)Qq(t'))eq, and the interaction gimensional “quantum wire,” while the phonons dwell in
Hamiltonian(2.8) is used withc,=1 without loss of gener- e 3p pulk. Considering longitudinal modes, the coupling
ality. The fields modes are still assumed to be decoupled, b the a—(Kq,Ko,ks) “oscillator” with the electron is

the bath Ha.1m|lto'n|a'm is not specified. Irjstead, one_rglles orﬁlX, with a coupling constan€, \/—§+_k§+_k§ Summing
the fluctuation-dissipation theorem as in REf5], writing over a, as defined in Eq(2.17, one obtains effectively

the general expression J(w)* w92, whered=3 is the dimensionality of the space
2dew 1 where the phonons dwell. Thus a phonons bath is similar to
P (t—t")= J —Ja(w)ﬁcotI'(Eth) codw(t—t")]. a super-Ohmic BM model. However, this derivation is some-
o7 what misleading, since a cutoth. should be introduced,
(A2) while for the original electron-phonon interaction a natural

Note that if the field modes are simple harmonic oscillators cutoff [x—x'|/c exists.
then one should substitute
J(w)=[7l(2m,»,)](w—w,). Alternatively, one may APPENDIX B: AN INTERFERENCE GEDANKEN
speculatel ,(w) using known response characteristics of the EXPERIMENT
bath.

To make further progress the interaction Hamiltonian
(2.8) should be further specified. Using “standing waves”
decomposition it is assumed to be

In this appendix we consider the interference phenom-
enon from two different points of view, and demonstrate
their consistency. First we consider the free propagation of
two-wave-packet superposition. The decay of the interfer-
. . ence pattern will be dictated by the propagafi8). Then
Hint=2 (Q1,008K,-X)+Qy,sin(K,-X)).  (A3)  we consider the scattering of a simple wave packet from a

“ double barrier. The suppression of interference paths will be
dictated by the noise functionébec. VI Q. Finally, we ar-
gue that both points of view are physically equivalent, and
must lead to thesameresult, which is indeed the case.

Consider a superposition of two Gaussian wave packets
odk . L which have the same momentupg, the same initial spatial
(K, t—=t"){codkQ- (X—x")))q. spreading o, while their initial locations satisfies

(A4) |R02_— Ry =d. The Wigner function for this preparation is
easily computed, and is of the form
The average over directions can be performed leading to
coskx—x']) in 1D, a Bessel function/y(k|x—x’'|) in 2D, pi—o(R,P)= 3 G(R—Ry;,P—Pp)+ 3 G(R—Ry;,P—Py)
and sinck|x—x’[) in 3D.

In Ref. [15] the interaction with electromagnetic fluctua- +c05< i) ef(l/8)((R027ROl)/a)2
tions in metal has been considered. It has been assumed that
each mode is characterized by an Ohmic response. In our
notations it corresponds ti(k,w)= 7(k) . Due to this as- X G[R— 3 (Ro1+ Rop), P—Pq], (B1)
sumption, the noise autocorrelation function becomes factor-
ized at high temperatures, as in the DLD model. In particuwhere G(x,p) denotes “minimum-uncertainty” Gaussian
lar, for the noise functional5.10 one obtains distribution, andéP.=#/d. For free propagatiom(R,P)

ik will develop fringes on the spatial scalex=(6P./m)t.
to1 (e . A Note that this gedanken experiment is formally equivalent to

Snlrl= deTﬁfo - n(k)(SIP(KQ-F(D))a- (A5) e ysyal “two slit” diffraction experiment upon the defini-

tion A6=Ax/(vt)=(h/Py)/d. For propagation in noisy
For the discussion of dephasing, we again write this resulbondisordered environment the interference pattern is
using the notations of Ref[15]. It is assumed that smeared on scaléP~ vt, due to the diffusive momentum

Substitution of the appropriaig, into (A1), and converting
the summation to an integral over directions and dyethe
result can be cast into the following form:

d)(x—x’,t—t’):f

o T

c
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spreading. The smearing factor is gxg(oP(t)/sP)?] lead-  Wave packets isl, and the probability density function will
ing to nonexponential decay €xp(12d?/#2)t2], that depends contain interference pattern in between. From the FV path-
also on the separatiah On the other hand, for propagation integral point of view(Sec. VI Q, the interference pattern is
in noisy disordered environment, using Eq.8), the pre- due to the existence of “interference paths.” In the presence
dominant decay is exponential dxp(112/42)t], independent of a noisy disordered environment the contribution of these

of geometry. interference paths to the propagator is suppressed exponen-
Now consider the scattering problem in one dimensiontially in time.
The potential is assumed to Bé&(x)=%= for x<0, and Assuming that the dephasing during the time interval

V(x) = 8(x—d/2) for 0<x. A simple Gaussian wave packet tscattering= Ro/v is negligible, one may use the results of the
with momentum —P, and spatial spreadingro<d is first gedanken experiment, leading to the same exponential
launched fromR,. The scattered particle is detected at thedecay. Thus, the resul7.8) for the propagator is consistent
rangeR which is assumed to be much larger tHag In the  with the analysis of interference in Sec. VI C. Our gedanken
absence of noise and dissipation, it is not difficult to workexperiment can be used also in order to illustrate and clarify
out the explicit solution of this scattering problem. A the observation that friction does not affect the interference
“train” of Gaussian-like wave packets will emerge from the phenomenon. This observation holds for the disordered dy-
scattering region. The spatial separation between each twwamical environment.
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