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Using the stereographic projection of the unit sphere of the spin field onto a complex plane for the equations
of motion in a uniaxial anisotropic Heisenberg spin chain with Gilbert damping in an external magnetic field,
the effect of the magnetic field for the integrability of the system is discussed. The effect of the Gilbert
damping is also analyzed. Then, introducing an auxiliary parameter, the Lax equations for the Darboux
matrices are generated recursively. The Jost solutions satisfy the corresponding Lax equations if constants are
suitably chosen. The exact soliton solutions are then investigated. These results show that the solitary waves
depend essentially on two velocities that describe a spin configuration deviated from a homogeneous magne-
tization, while the depths and widths of surface of solitary waves vary periodically with time. The center of an
inhomogeneity moves with a constant velocity, while the shape of a soliton also changes with another constant
velocity and it is not symmetrical with respect to the center. Thez component of the total magnetic momentum
and the total magnetic momentum vary with time. The asymptotic behavior of multisoliton solutions is also
given. @S1063-651X~97!03002-X#
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I. INTRODUCTION

The classical Heisenberg spin chain is a fascinating n
linear dynamical system that exhibits both coherent and c
otic structures depending on the nature of the magnetic
teractions @1–4#. Its study is of considerable interes
especially from the points of view of soliton theory an
condensed-matter physics. In particular, its continuum li
is governed by the Landau-Lifshitz equation and it displa
fascinating geometrical aspects: isotropic@5–7# and pure an-
isotropic @8–13# systems are geometrically equivalent a
gauge equivalent to a nonlinear Schro¨dinger equation@14#.
These systems, as well as the biaxial anisotropic@15–17#
systems, are completely integrable. On the experime
side, an easy plane ferromagnet in a symmetry-breaking
ternal transverse field has received continuing inter
though most theoretical treatments have been based o
approximate mapping@18# to a sine-Gordon equation.

There are many works in the study of solitons in the cl
sical Heisenberg spin chain. By separating variables in
moving coordinates, Tjon and Wright@19# and Quispel and
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Capel@20# obtained separately the Landau-Lifshitz equati
for an isotropic chain and for a spin chain with an easy ax
Reducing the equation of motion to a sine-Gordon equa
for a spin chain with an easy plane, Mikeska@21# got a
solution. However, there exist some questions about this
proach. First, this reduction has not been rigorously es
lished, except forT→0. Second, it does not include th
quantum effects@3#, which are particularly crucial for the
case of CsNiF3 with spin S51. Third, it is inadequate
@22,23#, as shown by the neutron scattering experiments
CsNiF3. Finally, when the external field tends to zero, th
solution becomes a traveling-wave solution, which does
obviously relate to the nonlinearity of the spin interactio
Long and Bishop@24# proposed another solution. Howeve
when the anisotropic approach vanishes this solution d
not tend to the well-known solution of an isotropic chain. B
the variation method, Nakumura and Sasada@10# obtained a
solution. If this solution is directly substituted into the equ
tion of motion, it does not satisfy the equation. Reducing
equation to an appropriate form, Kosevich, Ivanov, a
Kovalev@25# found a solution. But it could not be considere
as an approximate solution of an equation for a spin ch
with an easy plane since it does not satisfy this equation e
in the approximation of first-order anisotropy. Borisov@26#
and Sklyanin@27# found separately Lax pairs of the equatio
1375 © 1997 The American Physical Society
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1376 55LIU, WANG, PU, AND HUANG
of motion for a spin chain with a complete anisotropy. B
means of an inverse scattering transformation, Mikhai
@28# and Rodin@13# were able to reduce the problem to th
Riemann boundary-value problem on a torus. Howev
since these results are expressed by the elliptic function,
are more complicated and are therefore difficult to transfo
to those in the case of an easy plane. Even though so
solutions were found, they are difficult to transform to tho
in the limit of an easy plane. Deriving the Marchenko equ
tion by an inverse scattering transformation, Borovik@29#
and Borovik and Kulinich@30# could not find even the
single-soliton solution in a ferromagnet with uniaxial anis
ropy. Using the Hirota method, Bogdan and Kovalev@31#
attempted to construct exact multisoliton solutions in an
isotropic ferromagnet. However, they could not prove a
ries of nontrivial identities on the parameters of the soluti
When the anisotropy of an easy plane was weak, they did
obtain the explicit expressions of the solutions. Taking in
account only the first-order approximation, Ivanov, K
sevich, and Babich@32# obtained useful results.

There exist some difficulties in the study of a uniax
anisotropic Heisenberg chain with Gilbert damping in an
ternal magnetic field. Its equations of motion, which diff
from those of an isotropic chain, could not be solved by
method of separating variables in moving coordina
@19,20#. Also, this equation could not be solved by the p
vious form of an inverse scattering transformation since
double-valued function of the usual spectral parameter
pearing here required the introduction of a Riemann surfa
The reflection coefficient at the edges of cuts in the comp
plane could not be neglected even in the case of nonre
tion. Introducing an auxiliary parameter, Chen, Huang, a
Liu @33# developed an inverse scattering transformation
solve the Landau-Lifshitz equation only for a spin chain w
an easy axis. The Marchenko equation, soliton solutions,
asymptotic behavior were derived. The results can red
naturally to those of an isotropic chain when the anisotro
vanishes. By means of the method of Darboux transform
tion @34–38#, Huang, Chen, and Liu@39# found the exact
soliton solutions of the Landau-Lifshitz equation for a sp
chain only with an easy plane without an external magn
field. The external magnetic field would affect the integrab
ity of the system. It would be instructive if the effect of th
magnetic field is discussed. Pu, Zhou, and Li@40# reported
the multisoliton solutions of the Landau-Lifshitz equation
an isotropic ferromagnetic chain with a magnetic field.
means of the Holstein-Primakoff transformation and Gla
er’s coherent state representation, Huanget al. @41,42# and
Shi et al. @43# used an inhomogeneous Heisenberg s
Hamiltonian with single ion anisotropy in a magnetic field
investigate the nonlinear excitations in a ferromagne
chain. They reduced the equation of motion into a nonlin
Schrödinger equation. Then, in terms of an inverse scatter
transformation, they obtained the corresponding sing
soliton and two-magnon bound-state solutions in a homo
neous system. Introducing the coherent-state ansatz,
time-dependent variational principle, and the method of m
tiple scales, Liu and Zhou reduced the equation of mot
into a nonlinear Schro¨dinger equation and obtained soliton
in the pure@44# and the biaxial@45# anisotropic antiferro-
magnetic spin chains with an external field. We wish to sh
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the astonishing fact that the effect of Gilbert damping@46–
48# is just a rescaling of the time variablet by a complex
constant, so that for every given solution of the undamp
equations of motion in any dimension the exact solution
the fully damped version can be given straightforwardly.

It is the purpose of this paper to investigate the ex
soliton solutions in a uniaxial anisotropic Heisenberg s
chain with Gilbert damping in an external magnetic fie
This article is organized as follows. In Sec. II using the s
reographic projection of the unit sphere of the spin field o
a complex plane for the equations of motion, the effect of
magnetic field for integrability of the system is discussed a
the effect of the Gilbert damping is analyzed. Then, int
ducing an auxiliary parameter, the Lax equations for the D
boux matrices are generated recursively. Section III sho
that the Jost solutions satisfy the corresponding Lax eq
tions if constants are suitably chosen. The exact soliton
lutions, thez component of the total magnetic momentum
and the total magnetic momentum are obtained. In Sec
the asymptotic behavior of multisoliton solutions is al
given. Section V is discussion. This approach is a go
method in the study of solitons in the classical Heisenb
spin chains.

II. EQUATIONS OF MOTION

The Hamiltonian describing a uniaxial anisotrop
Heisenberg spin chain with Gilbert damping in an exter
magnetic fieldB(t) can be written as

H52J(
i
Si•Si111A(

i
~Si

z!22gmB(
i
B•Si

1eSi•F2J(
i
Si•Si111A(

i
~Si

z!22gmB(
i
B•Si G ,

~1!

where Si5(Si
x ,Si

y ,Si
z), with i51,2, . . . ,N are three-

component unit vectors (uSu51) with only nearest-neighbo
interactions,J.0 is the pair interaction parameter,A is a
uniaxial anisotropic parameter (A.0, easy plane;A,0,
easy axis!, g is the Lande factor,mB is the Bohr magneton
B(t)5„Bx(t),By(t),Bz(t)…, ande is a dimensionless Gilber
damping parameter. Using the suitable rescaling and an
propriate spin Poisson bracket, the corresponding equatio
motion in the continuum limit can be written as

] tS5S3@J]xxS22A~S–n…n1gmBB#

1eS3S3@J]xxS22A~S•n!n1gmBB#, ~2!

where S(x,t)5(Sx,Sy,Sz), S2(x,t)51, and n5(0,0,1). In
the undamped case (e50), when an external magnetic fiel
is zero, an anisotropic spin chain (AÞ0) with an easy plane
(A.0) @39# and that with an easy axis (A,0) @33# are
completely integrable. When the oscillations of the spin v
tor S are localized near an easy plane, Eq.~2! can be trans-
formed into a sine-Gordon equation. Similarly, it is also r
duced to a nonlinear Schro¨dinger equation when the
oscillations of the spin vectorS are localized in the vicinity
of the vacuum stateS(x,t)5(0,0,1). In the special cas
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55 1377SOLITONS IN A UNIAXIAL ANISOTROPIC . . .
A50, an isotropic spin chain in an external magnetic field
also completely integrable@40#. When a magnetic field is
zero, Eq.~2! is equivalent to a nonlinear Schro¨dinger equa-
tion @5–7#.

We first consider the effect of the Gilbert damping ter
proportional toe in Eqs. ~1! or ~2!, on undamped spin mo
tion. Traditional treatments for Eqs.~1! or ~2! in polar coor-
dinates tend to mix up the evolutions of the two angles i
complicated way, so the Gilbert damping is treated only
proximately @48#. However, now the parametrization of th
spin field in terms of a stereographic variable simplifies
structure of Eqs.~1! or ~2! drastically. Using stereographi
projection of the unit sphere of the spin field onto a comp
plane

P~x,t !5
Sx1 iSy

11Sz
~3!

or

Sx1 iSy5
2P

11uPu2
, Sz5

12uPu2

11uPu2
, ~4!

the derivatives can be written as

] tS
x5

1

~11uPu2!2 @~12P* 2!] tP1~12P2!] tP* #, ~5!

] tS
y52

i

~11uPu2!2 @~11P* 2!] tP2~11P2!] tP* #, ~6!

] tS
z52

2

~11uPu2!2 @P* ] tP1P] tP* #, ~7!

and

]xxS
x5

1

~11uPu2!2 @~12P* 2!]xxP1~12P2!]xxP* #

2
2

~11uPu2!3 @2~P1P* !]xP]xP*1P* ~12P* 2!

3~]xP!21P~12P2!~]xP* !2#, ~8!

]xxS
y52

i

~11uPu2!2 @~11P* 2!]xxP2~11P2!]xxP* #

1
2i

~11uPu2!3 @2~P2P* !]xP]xP*1P* ~11P* 2!

3~]xP!22P~11P2!~]xP* !2#, ~9!

]xxS
z5

1

~11uPu2!3 @P* ~11uPu2!]xxP1P~11uPu2!]xxP*

12~12uPu2!]xP]xP*22P* 2~]xP!2

22P2~]xP* !2#. ~10!

Substituting Eqs.~4!–~10! into the equations of three com
ponents of Eq.~2!,
s

,

a
-

e

x

] tS
x5~Sy]xxS

z2Sz]xxS
y!22ASySz1gmBS

yBz

1e@]xxS
x2„Sx]xxS

x22A~Sz!21gmBB
x
…Sx#,

~11!

] tS
y5~Sz]xxS

x2Sx]xxS
z!22ASzSx1gmBS

zBx

1e@]xxS
y2„Sy]xxS

y22A~Sz!21gmBB
y
…Sy#,

~12!

] tS
z5~Sx]xxS

y2Sy]xxS
x!22ASxSy1gmBS

xBy

1e@]xxS
z2„Sz]xxS

z22A~Sz!21gmBB
z
…Sz#,

~13!

we can obtain

~12P* 2!F~P,P* !2~12P2!F* ~P,P* !50,

2 i ~11P* 2!F~P,P* !2 i ~11P2!F* ~P,P* !50,
~14!

P*F~P,P* !2PF* ~P,P* !50,

where

F~P,P* !5 i ~11uPu2!] tP1~12 i e!H ~11uPu2!]xxP

22P* ~]xP!212AP~12uPu2!1gmB~11uPu2!

3FBx

2
~12P2!1 i

By

2
~11P2!2BzPG J . ~15!

The consistency of Eq.~14! implies F(P,P* )50 and
F* (P,P* )50; therefore, the evolution equation for the st
reographic variableP(x,t) in the presence of the Gilber
damping becomes

i ~11uPu2!] tP1~12 i e!H ~11uPu2!]xxP22P* ~]xP!2

12AP~12uPu2!1gmB~11uPu2!

3FBx

2
~12P2!1 i

By

2
~11P2!2BzPG J 50. ~16!

If the time variable is redefined

t→t5~12 i e!t, ~17!

we can obtain

i ~11uPu2!]tP1~11uPu2!]xxP22P* ~]xP!2

12AP~12uPu2!1gmB~11uPu2!

3FBx

2
~12P2!1 i

By

2
~11P2!2BzPG50, ~18!

which is the same as the undamped evolution equation
P endowed here with the scaled timet. Therefore, as long as
every solution in the undamped case (e50) is obtained, the
corresponding spin fieldS(x,t) in the Gilbert damping case
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1378 55LIU, WANG, PU, AND HUANG
(eÞ0) can be constructed simply by Eq.~4! just with the
rescaling in Eq.~18! of the time parameter.

According to Eq.~18!, we can also analyze the effect o
an external magnetic field for the integrability of the syste
When an external field is directed at an anisotropic axis, e
B5„0,0,Bz(t)…, the magnetic-field term in Eq.~18! can be
removed by the following gauge transformation:

P→ P̃5P expF igmBE dtBz~t!G ; ~19!

the system becomes integrable. The influence of the m
netic field for the classical Heisenberg spin chain with
easy axis amounts to a change of the precession frequen
the spin fieldS by vB5gmBB. Therefore, if we can intro-
duce a new angular variablew̃5w2vBt in the polar coordi-
nates (u,w), then in terms of the angular variablesu and w̃
the equation of motion~2! will not depend onB.

However, the dynamics of the classical Heisenberg s
chain with an easy plane is very sensitive to a magnetic fi
Even a weak magnetic field can alter the character of
ground state and therefore the form of localized solutio
When an external magnetic field is perpendicular to an e
plane, it does not alter the axial symmetry associated w
the z axis; the form of the ground state depends on
strength of the external field. The critical value
Bc52AS/gmB . When the external magnetic fieldBz,Bc ,
the spin fieldS in the ground state deviates from an ea
plane and it is characterized by an inclinationu5u0 to the
z axis, where cosu05Bz/Bc . The anglew remains arbitrary.
For brevity, such a ground state is referred to as an e
cone. As an external magnetic field increases, the ang
opening of the easy cone becomes smaller, especially in
case ofBz@Bc ; the spin fieldS in a nonexcited Heisenber
spin chain with an easy plane lies along thez axis.

In the context of experiments@22,23#, the situation where
the external magnetic field lies in an easy plane, e
B5„Bx(t),0,0…, or B5„0,By(t),0…, seems quite typical. In
experiments on samples of easy plane ferromag
CsNiF3 and (C6H11N H3)Cu Br3 an external field is applied
as a rule in an easy plane@18,21#. The presence of an exte
nal field that lies in an easy plane makes finding soli
solutions of the equation of motion~2! more difficult. The
magnetic-field term in Eq.~18! is not removable by gaug
transformation~19! and none of the spin components rema
conserved quantities. Consequently, the combined Gali
plus gauge invariance of the equation of motion is brok
and no Lax pairs seem to exist; the system appears to
nonintegrable.

Equation~2! may be represented as a compatibility co
dition ] tL2]xM1@L,M #50 of two equations for 232 ma-
tricesC(x,t;m,l):

]xC~x,t;m,l!5L~m,l!C~x,t;m,l!,

] tC~x,t;m,l!5M ~m,l!C~x,t;m,l!, ~20!

while
.
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-

L~m,l!52 im~Sxsx1Sysy!2 ilSzsz ~21!

and

M ~m,l!5 i2ml~Sxsx1Sysy!1 i2m2Szsz2 im~Sy]xS
z

2Sz]xS
y!sx2 im~Sz]xS

x2Sx]xS
z!sy

2 il~Sx]xS
y2Sy]xS

x!sz , ~22!

wheresa (a5x,y,z) are the Pauli metrics and the param
etersl andm satisfy the relation

l25H m214r2 for A.0 ~easy plane!

m224r2 for A,0 ~easy axis!,
~23!

wherer is defined as

r5H S 2AS2gmBB

4JS D 1/2 for A.0 ~easy plane!

S U 2AS1gmBB

4JS U D 1/2 for A,0 ~easy axis!.

~24!

If one of the parameters in Eq.~23! is taken as an indepen
dent parameter, then the others are the double-value f
tions of the first, and it is then necessary to introduce a R
mann surface. In order to avoid the complexity broug
about by a Riemann surface, we shall introduce an auxili
parameterj,

l5H j1r2j21 for an easy plane

j2r2j21 for an easy axis
~25!

and

m5H j2r2j21 for an easy plane

j1r2j21 for an easy axis,
~26!

where j56r corresponds to zerom ~or l) and to l
5 62r ~orm 5 62r). In the complexl ~orm) plane, these
two points are the edges of cuts. This indicates that in
inverse scattering transformation the edges of cuts must
a contribution even in the case of nonreflection.

For transformations~25! and ~26! we have the relations

l~2 j̄ !52l~j!,

m~2 j̄ !52m~j!. ~27!

The corresponding Lax equations are written as

]xC~j!5L~j!C~j!,

] tC~j!5M ~j!C~j!, ~28!

where
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L~j!5H 2 i ~j2r2j21!~Sxsx1Sysy!2 i ~j1r2j21!Szsz for an easy plane

2 i ~j1r2j21!~Sxsx1Sysy!2 i ~j2r2j21!Szsz for an easy axis
~29!
di
e
ll
p
th
n

T

erg
ho-

ns
we
-

and

M ~j!5 i2~j22r4j22!~Sxsx1Sysy!1 i2~j2r2j21!2Szsz

2 i ~j2r2j21!~Sy]xS
z2Sz]xS

y!sx

2 i ~j2r2j21!~Sz]xS
x2Sx]xS

z!sy

2 i ~j2r2j21!~Sx]xS
y2Sy]xS

x!sz ~30!

for an easy plane and

M ~j!5 i2~j22r4j22!~Sxsx1Sysy!1 i2~j1r2j21!2Szsz

2 i ~j1r2j21!~Sy]xS
z2Sz]xS

y!sx

2 i ~j1r2j21!~Sz]xS
x2Sx]xS

z!sy

2 i ~j1r2j21!~Sx]xS
y2Sy]xS

x!sz ~31!

for an easy axis. We can find the relations

L~2 j̄ !5H sxL~j!sx for an easy plane

szL~j!sz for an easy axis,
~32!

L†~ j̄ !5H 2L~j! for an easy plane

2L~j! for an easy axis,
~33!

M ~2 j̄ !5H sxM ~j!sx for an easy plane

szM ~j!sz for an easy axis,
~34!

and

M†~ j̄ !5H 2M ~j! for an easy plane

2M ~j! for an easy axis.
~35!

There are two different types of physical boundary con
tions in Eq. ~2!. The boundary condition of the first typ
corresponds to a breatherlike solution, which is usua
called a magnetic soliton. In the classical Heisenberg s
chain with an easy plane in an external magnetic field,
spin fieldS in the ground state deviates from an easy pla
and it is characterized by an inclinationu0 to thez axis and
the asymptotic spin lies on the surface of an easy cone.
simplest solution of Eq.~2! can be written as

S5S05~S0sinu0 , 0, S0cosu0!. ~36!

The corresponding Jost solution of Eq.~28! may be chosen
as
-

y
in
e
e

he

C0~j!5
1

2
@ I2 i ~sx1sy1sz!#expH 2 iS0sinu0~j2r2j21!

3@x22~j1r2j21!t#sx2 iS0cosu0~j1r2j21!

3Fx22
~j22r2!2

j~j21r2!
t GszJ . ~37!

Since thez axis is an easy axis in the classical Heisenb
spin chain with an easy axis, the boundary condition is c
sen as

S→S05~0,0,S0! at x→6`. ~38!

The corresponding Jost solution of Eq.~28! may be chosen
as

C0~j!5
1

2
@ I2 i ~sx1sy1sz!#

3expH 2 iS0~j2r2j21!Fx22
~j21r2!2

j~j22r2!
t GszJ ,

~39!

with the relations

C0~2 j̄ !5H 2 isxC0~j! for an easy plane

2 iszC0~j! for an easy axis
~40!

and

C0
†~ j̄ !5H C0

21~j! for an easy plane

C0
21~j! for an easy axis.

~41!

The method of Darboux transformation@34–39# is one of
the most powerful methods for constructing exact solutio
of nonlinear integrable systems. In the rest of this paper,
will use the Darboux matricesDn(j) to define the Jost solu
tion Cn(j) of Eq. ~28! such that

Cn~j!5Dn~j!Cn21~j!, ~42!

wheren51,2,3, . . . andDn(j) has two polesjn and2 j̄n .
Substituting Eq.~42! into Eq. ~28! with a suitable sub-

script, the Lax equations forDn(j) can be written as

]xDn~j!5Ln~j!Dn~j!2Dn~j!Ln21~j!,

] tDn~j!5Mn~j!Dn~j!2Dn~j!Mn21~j!. ~43!

Then, using the previous relations, we can find

Cn~2 j̄ !5H 2 isxCn~j! for an easy plane

2 iszCn~j! for an easy axis,
~44!
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Cn
†~ j̄ !5H Cn

21~j! for an easy plane

Cn
21~j! for an easy axis,

~45!

Dn~2 j̄ !5H sxDn~j!sx for an easy plane

szDn~j!sz for an easy axis,
~46!

and

Dn
†~ j̄ !5HDn

21~j! for an easy plane

Dn
21~j! for an easy axis.

~47!

WhenDn(j) has only two simple polesjn and2 j̄n , one
can define

Dn~j!5CnBn~j!,

Dn
†~ j̄ !5Bn

†~ j̄ !Cn
† , ~48!

Dn
21~j!5Bn

21~j!Cn
21 ,

where

Bn~j!5I2
jn2 j̄n
jn2j

Fn2
j̄n2jn

j̄n1j
F̃n , ~49!

Cn , Fn , andF̃n are 232 matrices independent ofj, and

~jn2 j̄n!CnFn , ~jn2 j̄n!CnF̃n ~50!

are residues at polesjn and2 j̄n , respectively.

III. SOLITONS

In this section, we will determine separatelyCn and
Bn(j). By means of Eqs.~46!–~48! for Cn , we can obtain
the relations

Cn5H sxC̄nsx for an easy plane

szC̄nsz for an easy axis
~51!

and

Cn
†5Cn

21 ,

CnCn
†5I . ~52!

This shows thatCn is a diagonal, i.e.,

~Cn!125~Cn!2150,

~Cn!115~Cn!22, ~53!

u~Cn!11u51.

Since only the module of (Cn)11 is equal to 1, one can write

Cn5H expS i2fnszD for an easy plane

expS i2fnszD for an easy axis,

~54!
wherefn is real and characterizes the rotation angle of s
in an easy plane; while exp@(i/2)fnsz# is a rotation around
an easy axis, it does not affect the value ofSz .

In order to determineCn , substituting Eq.~48! into Eq.
~43! and then taking the limitsj→` and 0, we can obtain

]xCn52 i2r~Sn!zszCn1Cni2r~Sn!zsz ,

]x@CnBn~0!#5 i2r~Sn!zsz@CnBn~0!#

2@CnBn~0!# i2r~Sn!zsz ~55!

for an easy plane and

]xCn52 i2r~Sn!xsxCn1Cni2r~Sn!xsx ,

]x@CnBn~0!#5 i2r~Sn!xsx@CnBn~0!#

2@CnBn~0!# i2r~Sn!xsx ~56!

for an easy axis. Comparing these two equations, one
find

Cn
225Bn~0!. ~57!

Therefore, we can obtainCn as long asBn(0) is determined.
In terms of Eqs.~46!–~48! for Bn(j), we can also obtain

the relations

B̃n~j!5H sxBn~j!sx for an easy plane

szBn~j!sz for an easy axis
~58!

and

Bn
†~ j̄ !5Bn

21~j!, ~59!

where

Bn
†~ j̄ !5I2

j̄n2jn

j̄n2j
Fn
†2

jn2 j̄n
jn1j

sxFn
Tsx ~60!

for an easy plane and

Bn
†~ j̄ !5I2

j̄n2jn

j̄n2j
Fn
†2

jn2 j̄n
jn1j

szFn
Tsz ~61!

for an easy axis, where the superscriptT means transpose
By means of Eq.~48!, Dn(j)Dn

21(j)5Dn
21(j)Dn(j)5I ; it

has not poles, i.e.,FnBn
†( j̄n)50,

FnS I2Fn
†2

jn2 j̄n
2jn

sxFn
TsxD 50 ~62!

for an easy plane and

FnS I2Fn
†2

jn2 j̄n
2jn

szFn
TszD 50 ~63!

for an easy axis. This shows thatFn is degenerate. Setting

Fn5~anbn!
T~gndn! ~64!
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and then substituting it into Eqs.~62! and~63!, we can obtain
the linear equations

gn2~ ugnu21udnu2!ān2
jn2 j̄n

jn
gndnbn50,

dn2~ ugnu21udnu2!b̄n2
jn2 j̄n

jn
gndnan50. ~65!

Using gn and dn to expressan andbn , Fn and F̃n can be
expressed by

Fn5
j

Dn
S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D S ḡn

d̄n
D ~gndn!

~66!

and

F̃n5
j̄

Dn
S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D S gn

dn
D ~ ḡnd̄n!,

~67!

where

Dn5~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!. ~68!

Substituting Eqs.~66! and ~67! into Eq. ~49!, Bn(j) can
be written as
Bn~j!5
1

~j2jn!~j1j̄n!Dn

3S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D

3F j2S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D

1j~jn
22 j̄n

2!S 0 ḡndn

d̄ngn 0 D 2ujnu2

3S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D G .

~69!

Using Eqs.~57! and ~69!, Cn can be determined by

Cn5
1

dn
1/2S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D , ~70!

while fn in Eq. ~54! can be written as

fn52 tan21 F jn9~ ugnu22udnu2!
jn8~ ugnu21udnu2!

G , ~71!

wherejn8 and jn9 denote the real and imaginary part ofjn ,
respectively.

Up to now, we have obtainedCn and Bn(j), i.e., the
Darboux matricesDn(j) have been recursively determine
Substituting Eqs.~69! and ~70! into Eq. ~48!, Dn(j) can be
written as
i.e.,
Dn~j!5
1

~j2jn!~j1j̄n!Dn
3/2S ~ j̄nudnu21jnugnu2!~ j̄nugnu21jnudnu2! 0

0 ~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!
D

3F j2S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D 1j~jn

22 j̄n
2!S 0 ḡndn

d̄ngn 0 D
2ujnu2S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D G . ~72!

In order to determinegn anddn , substituting Eq.~48! into Eq.~43! and then taking the limitj→jn , Eq. ~43! can be rewritten
as

]x@CnFnCn21~jn!#5Ln~jn!CnFnCn21~jn!, ] t@CnFnCn21~jn!#5Mn~jn!CnFnCn21~jn!, ~73!

where the factor is independent ofx and t. BecauseFn is degenerate, the second factor on the right-hand side,
(gndn)Cn21(jn), should appear on the left-hand side with its original form, therefore, we can simply obtain

~gndn!5~bn1!Cn21
21 ~jn!, ~74!

wherebn is a constant that will be determined by the boundary condition and the initial condition. Whenj→1, according to
Eqs.~43!–~47!, we can obtain

~Sn•s!5Dn~1!~Sn21•s!Dn
†~1!, ~75!
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whereDn(1) can be written as

Dn~1!5
1

~12jn!~11 j̄n!Dn
1/2S ~ j̄nudnu21jnugnu2!~ j̄nugnu21jnudnu2! 0

0 ~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!
D

3S ~12jn
2!j̄nudnu21~12 j̄n

2!jnugnu2 ~jn
22 j̄n

2!ḡndn

~jn
22 j̄n

2!d̄ngn ~12jn
2!j̄nugnu21~12 j̄n

2!jnudnu2
D . ~76!

Similarly, by means of Eqs.~43!–~47!, we can also obtain the relations forj→21,

sz~Sn•s!sz5Dn~21!sz~Sn21•s!szDn
†~21! ~77!

for an easy plane and

sx~Sn•s!sx5Dn~21!sx~Sn21•s!sxDn
†~21! ~78!

for an easy axis. Using Eqs.~43!–~47! andCnCn
†5I in Eq. ~52!, Eqs.~77! and ~78! can be rewritten as

sz~Sn•s!sz52sx~Sn•s!sx ~79!

for an easy plane and

sx~Sn•s!sx52sz~Sn•s!sz ~80!

for an easy axis. Whenn51, in terms of Eqs.~55!, ~56!, ~79!, and~80!, we can obtain

S1
x2 iS1

y5@D1~1!#12@D1~1!#211@D1~1!#11@D1~1!#22 ~81!

and

S1
z5@D1~1!#12@D1~1!#111@D1~1!#11@D1~1!#12, ~82!

whereD1(1) can be rewritten as

D1~1!5
1

~12j1!~11 j̄1!D1
1/2S ~ j̄1ud1u21j1ug1u2!~ j̄1ug1u21j1ud1u2! 0

0 ~ j̄1ug1u21j1ud1u2!~ j̄1ud1u21j1ug1u2!
D

3S ~12j1
2!j̄1ud1u21~12 j̄1

2!j1ug1u2 ~j1
22 j̄1

2!ḡ1d1

~j1
22 j̄1

2!d̄1g1 ~12j1
2!j̄1ug1u21~12 j̄1

2!j1ud1u2
D . ~83!

According to Eq.~74!, only the relative values of (b11) have meaning, so one can find

~g1d1!;~ f 1f 1
21!S 1 1

i 2 i D , ~84!

where

f 155 b1
1/2expF i ~j11r2j1

21!S x22
~j1

22r2!2

j1~j1
21r2!

t D G for an easy plane

b1
1/2expF i ~j12r2j1

21!S x22
~j1

21r2!2

j1~j1
22r2!

t D G for an easy axis.

~85!

Therefore,

g15 f 11 i f 1
21 , d15 f 12 i f 1

21 , ~86!

while

f 15exp~2F11 iF2!, ~87!

where
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F15
2j19~ uj1u21r2!

uj1u2
~x2V1t2x10!, F25

2j18~ uj1u22r2!

uj1u2
~x2V2t2x20!,

V15
2j18~ uj1u41r4!

uj1u2~ uj1u21r2!
, V25

~j18
22j19

2!~ uj1u21r2!

j18uj1u
2 , ~88!

for an easy plane and

F15
2j19~ uj1u21r2!

uj1u2
~x2V1t2x10!, F25

2j18~ uj1u22r2!

uj1u2
~x2V2t2x20!,

V15
4j18~ uj1u22r2!

uj1u2
, V25

2@2r2uj1u41~j18
22j19

2!~ uj1u41r4!#

j18uj1u
2~ uj1u22r2!

. ~89!

for an easy axis. By means of Eqs.~81!–~89!, the single- soliton solutions can be written as

S1
x5S0sinu02

2j19@j18~ uj1u22r2!2coshF1cosF21j19~ uj1u42r4!sinhF1sinF2#

uj1u2@~ uj1u22r2!2cosh2F114r2j19
2sin2F2#

, ~90!

S1
y5

2j19@j19~ uj1u22r2!2sinhF1cosF22j18~ uj1u42r4!coshF1sinF2#

uj1u2@~ uj1u22r2!2cosh2F114r2j19
2sin2F2#

, ~91!

S1
z5S0cosu02

2j19
2@~ uj1u22r2!214r2uj1u2sin2F2#

uj1u2@~ uj1u22r2!2cosh2F114r2j19
2sin2F2#

~92!

for an easy plane and

S1
x5

2j19uj1u~ uj1u21r2!coshF1cosF2

@ uj1u41r422r2~j18
22j19

2!#1/2$j19
2~ uj1u21r2!2@ uj1u41r422r2~j18

22j19
2!#1uj1u2coshF1%

, ~93!

S1
y5

2j19uj1u~ uj1u21r2!coshF1sinF2

@ uj1u41r422r2~j18
22j19

2!#1/2$j19
2~ uj1u21r2!2@ uj1u41r422r2~j18

22j19
2!#1uj1u2coshF1%

, ~94!

S1
z5S02

2j19~ uj1u21r2!2

j19
2~ uj1u21r2!21uj1u2@ uj1u41r422r2~j18

22j19
2!#cosh2F1

, ~95!

for an easy axis. Similarly, we can also obtain the two-, three-, and multisoliton solutions.
These results show that the soliton solutions depend essentially on two velocities—V1 in Eq. ~88! andV2 in Eq. ~89!—

which describe a spin configuration deviated from a homogeneous magnetization. The center of an inhomogeneity mo
a constant velocityV1, while the shape of the soliton~the direction of a magnetization in its center! also changes with anothe
velocity V2.

In the polar coordinates, taking thez axis as the polar axis,

cosu5cosu02
2j19

2@~ uj1u22r2!214r2uj1u2sin2F2#

uj1u2@~ uj1u22r2!2cosh2F114r2j19
2sin2F2#

, ~96!

for an easy plane and

cosu512
2j19~ uj1u21r2!2

j19
2~ uj1u21r2!21uj1u2@ uj1u41r422r2~j18

22j19
2!#cosh2F1

~97!

for an easy axis. We can find the property

cos~2x,2t !5cos~x,t !. ~98!

In order to analyze the feature of the previous soliton solutions, setting the preliminary values as zero in the
coordinates of the soliton,
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cosu5cosu02

2j19
2H ~ uj1u22r2!214r2uj1u2sin2F2j18~ uj1u22r2!

uj1u2
~x2V2t !G J

uj1u2H ~ uj1u22r2!2cosh2F2j19~ uj1u21r2!

uj1u2
xG14r2j19

2sin2F2j18~ uj1u22r2!

uj1u2
~x2V2t !G J ~99!

for an easy plane and

cosu512
2j19~ uj1u21r2!2

j19
2~ uj1u21r2!21uj1u2@ uj1u41r422r2~j18

22j19
2!#cosh2F2j19~ uj1u21r2!

uj1u2
xG ~100!

for an easy axis. Therefore, the depths and widths of the surface of solitary waves are not constants, but vary periodic
time. The shape of solitary waves in a spin chain with an easy plane also changes with a velocityV2 and it is not symmetrical
with respect to the center, while the shape of solitary waves in a spin chain with an easy axis is symmetrical with re
the center. In a spin chain with an easy plane, the integral of the motion coincident with thez component of the total magneti
momentum

Pz5S0E dx~12cosu! ~101!

is not a constant and is dependent on time periodically, whilePz in a spin chain with an easy axis is a constant, wherePz has
the sense of the mean number of spin deviated from the ground state in a localized magnetic excitation. This featur
appear in the soliton solution of all other nonlinear equations solved.

While

tanw5
j19~ uj1u22r2!2sinhF1cosF22j18~ uj1u42r4!coshF1sinF2

j18~ uj1u22r2!2coshF1cosF21j19~ uj1u42r4!sinhF1sinF2
~102!

for an easy plane and

tanw5
@j19~ uj1u22r2!214r2j18uj1u

2#sinhF1cosF22j18~ uj1u42r4!coshF1sinF2

j18~ uj1u42r4!coshF1cosF21@j19~ uj1u22r2!214r2j18uj1u
2#sinhF1sinF2

~103!

for an easy axis, setting the preliminary values as zero in the moving coordinates of the soliton,

tanw5

sinhF2j19~ uj1u21r2!

uj1u2
xG2

j18~ uj1u21r2!

j19~ uj1u22r2!
coshF2j19~ uj1u21r2!

uj1u2
xG tanF2j18~ uj1u22r2!

uj1u2
~x2V2t !G

j18~ uj1u22r2!

j19~ uj1u21r2!
coshF2j19~ uj1u21r2!

uj1u2
xG1sinhF2j19~ uj1u21r2!

uj1u2
xG tanF2j18~ uj1u22r2!

uj1u2
~x2V2t !G ~104!

for an easy plane and

tanw5

sinhF2j19~ uj1u21r2!

uj1u2
xG2

j18~ uj1u42r4!

j19~ uj1u22r2!214r2j18uj1u
2coshF2j19~ uj1u21r2!

uj1u2
xG tanF2j18~ uj1u22r2!

uj1u2
~x2V2t !G

j18~ uj1u42r4!

j19~ uj1u22r2!214r2j18uj1u
2coshF2j19~ uj1u21r2!

uj1u2
xG1sinhF2j19~ uj1u21r2!

uj1u2
xG tanF2j18~ uj1u22r2!

uj1u2
~x2V2t !G ~105!
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for an easy axis. The total magnetic momentum

P5S0E dx~12cosu!¹w ~106!

also is not constant. These properties are important for
classical Heisenberg spin chain with a uniaxial anisotropy
an external magnetic field, but they have never been obta
by all other methods.

Obviously, when an anisotropic parameterr→0, these
soliton solutions in the classical Heisenberg spin chain wit
uniaxial anisotropy reduce to those in an isotropic spin ch
for example, the single-soliton solutions~90!–~95! are trans-
formed to

S1
x5

2j19

uj1u2
sech2@j19~x24j18t2x10!#

3S j19sinh@j19~x24j18t2x10!#sin

3H j18Fx22S j182
j19

2

j18
D t2x20G J

1j18cosh@j19~x24j18t2x10!#cos

3H j18Fx22S j182
j19

2

j18
D t2x20G J D , ~107!

S1
y5

2j19

uj1u2
sech2@j19~x24j18t2x10!#

3S j19sinh@j19~x24j18t2x10!#

3cosH j18Fx22S j182
j19

2

j18
D t2x20G J

2j18cosh@j19~x24j18t2x10!#

3sinH j18Fx22S j182
j19

2

j18
D t2x20G J D , ~108!

S1
z5S02

2j19
2

uj1u2
sech2@j19~x24j18t2x10!#. ~109!

These results are equal to Eq.~27a! obtained by the method
of an inverse scattering transformation in Ref.@40#. While
taking thez axis as the polar axis in the polar coordinate

cosu512
2j19

2

uj1u2
sech2@j19~x24j18t2x10!#, ~110!

w5w01j18Fx22S j182
j19

2

j18
D t2x20G

1tan21H j19

j18
tanh@j19~x24j18t2x10!#J , ~111!
e
n
ed

a
n,

when t→0, these results are equivalent to Eq.~22! obtained
by means of the method of separating variables in the m
ing coordinates in Ref.@19#.

In terms of soliton solutions~110! and~111! in an isotro-
pic spin chain, we can find that thez components of the tota
magnetic momentPz and the total magnetic momentumP
are constants of motion, Pz54S0j19/(uj1u

2) and
P54S0sin

21(j19/uj1u). Tjon and Wright@19# took advantage
of this feature in solving the equation of motion. These pro
erties are important for the classical Heisenberg spin ch
with a uniaxial anisotropy in an external magnetic field, b
they have never been obtained by all other methods.

Figures 1–4 give some graphical illustrations of the m
tion of the center and the change of shape of a previ
soliton solutionS1

z expressed by Eqs.~92! and ~95! in an
anisotropic spin chain and that by Eq.~109! in an isotropic

FIG. 1. ~a! Graphical illustrations of the motion of the cente
and the change of shape of a soliton solutionS1

z expressed by Eq.
~92! in the classical Heisenberg spin chain with an easy pla
wherer50.1, j1850.1, j1950.2, x1050, x2050, andp/4V1 as a
unit of time. ~b! Graphical illustrations of the motion of the cente
and the change of shape of a soliton solutionS1

z expressed by Eq.
~95! in the classical Heisenberg spin chain with an easy axis, wh
r50.1, j1850.1, j1950.2, x1050, x2050, andp/4V1 as a unit of
time.
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1386 55LIU, WANG, PU, AND HUANG
spin chain. In the figures, we took the paramete
j1850.1, j1950.2, x1050, x2050, andp/4V1 as a unit of
time and then setr50.10 in Figs. 1 and 4,r50.3 in Fig. 2,
andr50 in Fig. 3, respectively. If thex-S1

z plane is taken a
reference plane whent50, we can directly find the follow-
ing feature of solitary waveS1

z .
~i! Since the lowest point of the surface is located in t

plane of the center of the surface, we can observe the mo
of the center by looking at the motion of the lowest poin
The lowest point of the surface in the figures moves with fi
constant velocitiesV1 corresponding to anisotropic param
etersr, respectively.

~ii ! The shape of the surface ofS1
z changes with velocity

V2 and the surface is not symmetrical with respect to
center, as illustrated by Figs. 1 and 2, respectively. Wh
r→0, the soliton solutionS1

z , expressed by Eqs.~92! and

FIG. 2. ~a! Graphical illustrations of the motion of the cente
and the change of shape of a soliton solutionS1

z expressed by Eq.
~92! in the classical Heisenberg spin chain with an easy pla
wherer50.3, j1850.1, j1950.2, x1050, x2050, andp/4V1 as a
unit of time. ~b! Graphical illustrations of the motion of the cente
and the change of shape of a soliton solutionS1

z expressed by Eq.
~95! in the classical Heisenberg spin chain with an easy axis, wh
r50.3, j1850.1, j1950.2, x1050, x2050, andp/4V1 as a unit of
time.
s

e
on
.
e

e
n

~95! in an anisotropic spin chain, reduces to that in Eq.~109!
in an isotropic spin chain. The shape of the surface ofS1

z

does not change with velocityV2 and the surface is sym
metrical with respect to the center, as shown in Fig. 3.

~iii ! The depth and width of the surface ofS1
z are not

constants but vary periodically with time, as shown in Fig.
Whenr→0, the depth and width of the surface ofS1

z , ex-
pressed by Eq.~109! in an isotropic spin chain, do no
change periodically with time and the surface is also sy
metrical with respect to the center, as illustrated by Fig.

IV. ASYMPTOTIC BEHAVIOR OF MULTISOLITON
SOLUTIONS

In this section we will construct a direct procedure f
studying the asymptotic behavior of multisoliton solutionse,

re

FIG. 3. Graphical illustrations of a soliton solutionS1
z expressed

by Eq. ~109! in an isotropic Heisenberg spin chain, whe
r50, j1850.1, j1950.2, x1050, x2050, andp/4V1 as a unit of
time.

FIG. 4. Graphical illustrations of the depth and width of th
surface of a soliton solutionS1

z expressed by Eq.~92! in the classi-
cal Heisenberg spin chain with an easy plane changing periodic
with time, wherer50.1, j1850.1, j1950.2, x1050, x2050, and
p/4V1 as a unit of time.
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the classical Heisenberg spin chain with uniaxial anisotro
in an external magnetic field. According to Eq.~42!, we can
define

CN~j!5JN~j!C0~j!, ~112!

while

JN~j!5DN~j!DN21~j!•••D1~j!, ~113!

where JN(j) has N pairs of poles jn and 2 j̄n ,
n51,2, . . . ,N. Similar to Eq.~28!, we can obtain the Lax
equations forCN(j),

]xCN~j!5LN~j!CN~j!,

] tCN~j!5MN~j!CN~j!. ~114!

On the basis of Eq.~48!, JN(j) can be written as

JN~j!5KNPN~j!, ~115!

while

KN~j!5CNCN21•••C1 ~116!

and

PN~j!5I2 (
n51

N
1

jn2j
Gn1 (

n51

N
1

j̄n1j
G̃n , ~117!
ywhereKN is a 232 matrix independent ofj, i.e.,

KN~j!5H expS i2QN~j!szD for an easy plane

expS i2QN~j!szD for an easy axis,

~118!

with

QN~j!5 (
n51

N

fn~j!. ~119!

By means of Eqs.~51! and~52!, we can obtain the relation

JN~j!5H sxJ~2 j̄ !sx for an easy plane

szJ~2 j̄ !sz for an easy axis
~120!

and

JN
† ~ j̄ !5JN

21~j!, JN~j!JN
21~j!5JN

21~j!JN~j!5I ,
~121!

while
PN
† ~ j̄ !55 I2 (

n51

N
1

j̄n2j
Gn
†2 (

n51

N
1

jn1j
sxGn

Tsx for an easy plane

I2 (
n51

N
1

j̄n2j
Gn
†2 (

n51

N
1

jn1j
szGn

Tsz for an easy axis

~122!
and

PN
21~j!5PN

† ~ j̄ !, ~123!

where

G̃n5H 2sxḠnsx for an easy plane

2szḠnsz for an easy axis.
~124!

BecauseJN(j)JN
21(j)5JN

21(j)JN(j)5I in Eq. ~121!, its
residue atj5jn should vanish, i.e.,GmPN

† ( j̄m)50,

GmS I2 (
n51

N
1

j̄n2jm
Gn
†2 (

n51

N
1

jn1jm
sxGn

TsxD 50

~125!

for an easy plane and
GmS I2 (
n51

N
1

j̄n2jm
Gn
†2 (

n51

N
1

jn1jm
szGn

TszD 50

~126!

for an easy axis. This result shows thatGm is degenerate; it
can be defined

Gn5~an8bn8!T~gn8dn8!. ~127!

In order to solve Eqs.~125! and ~126!, we can introduce a
transformation

JN8 ~j!5U21JN~j!U, ~128!

and

Gn85U21GnU, G̃n85U21G̃nU52Ḡn8 , ~129!

whereU21sxŪ5 i . Corresponding to Eqs.~125! and ~126!,
we can write
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Gm8 S I2 (
n51

N
1

j̄n2jm
Gn8

†2 (
n51

N
1

jn1jm
~Gn8!TD 50. ~130!

Taking the limitj→jn in Eq. ~114!, we obtain

]x@KNGnC0~jn!#5LN~jn!@KNGnC0~jn!#,

] t@KNGnC0~jn!#5MN~jn!@KNGnC0~jn!#. ~131!

BecauseGn is degenerate, the factor

~gn8dn8!C0~jn! ~132!
must be independent ofx and t. Therefore, we can simply
obtain

~gn8dn8!5~bn1!C0
21~jn!, ~133!

wherebn is a constant that has been shown in Eq.~84!, while
an8 , bn8 , gn8 , anddn8 are different froman , bn , gn , and
dn, except thatg185g1 andd18 5 d1. Noting Eq.~132!, Gn8
can be expressed as

Gn85~rnnn!
T~ f nf n

21!, ~134!

where
f 155 b1
1/2expF i ~jn1r2j1

21!S x22
~jn

22r2!2

jn~jn
21r2!

t D G for an easy plane

b1
1/2expF i ~jn2r2jn

21!S x22
~jn

21r2!2

jn~jn
22r2!

t D G for an easy axis.

~135!
t-
li-
Substituting Eq.~134! into Eq. ~130!, we obtain

f m5 (
n51

N
1

j̄n2jm
~ f mf̄ n1 f m

21 f̄ n
21!rn

1 (
n51

N
1

jn1jm
~ f mf n1 f m

21f n
21!rn ~136!

and

f m
215 (

n51

N
1

jn2jm
~ f mf n1 f m

21 f̄ n
21!nn

1 (
n51

N
1

jn1jm
~ f mf n1 f m

21f n
21!nn . ~137!

By means of Eqs.~136! and~137!, one can findrn ,nn , and
PN8 (j), e.g.,

PN8 ~1!11512 (
n51

N
1

j̄n11
r̄nf̄ n2 (

n51

N
1

jn21
rnf n . ~138!

According to Eqs.~136! and ~137!, we obtain

15 (
n51

N
1

j̄n2jm
~11 f m

22 f̄ n
22!rnf n

1 (
n51

N
1

jn1jm
~11 f m

22f n
22!rnf n ~139!

and
15 (
n51

N
1

jn1jm
~11 f̄ m

22 f̄ n
22!rnf n

1 (
n51

N
1

jn2jm
~11 f̄ m

22f n
22!rnf n . ~140!

In terms of Eqs.~139! and ~140!, rn ,rn,PN8 (j)11, and
PN8 (j)12 can be easily determined. However, althoughrn and
rn appear in both Eqs.~139! and ~140!, it is hard to obtain
explicit expressions of them by the well-known Bine
Cauchy formula. The asymptotic behaviors of the multiso
ton solutions can be derived from them.

Introducing

D l5H rnf n if n5 l , lP1,2, . . . ,N

r̄nf̄ n if n5 l2N, lPN11,N12, . . . ,2N
~141!

and

En51, lP1,2, . . . ,2N, ~142!

whereE is a row matrix, Eqs.~139! and ~140! can be ex-
pressed by

E5DQ, ~143!

whereQ is a 2N32N matrix,

Qn,m5
1

jn1jm
~11 f n

22f m
22!, ~144!

Qn,N1m5
1

jn2 j̄m
~11 f n

22 f̄ m
22!, ~145!
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QN1n,m5
1

jn2jm
~11 f̄ n

22f m
22!, ~146!

QN1n,N1m5
1

jn1jm
~11 f̄ n

22 f̄ m
22!. ~147!

By means of Eq.~142!,

D5EQ21. ~148!

PN8 (1)11 in Eq. ~138! can be written as

PN8 ~1!11511(
l51

2N

D lRl511DRT, ~149!

where

Rl55
21

jn21
if n5 l , lP1,2, . . . ,N

21

j̄n11
if n5 l2N, lPN11,N12, . . . ,2N.

~150!

According to Eq.~142!, PN8 (1)11 in Eq. ~149! can be ex-
pressed as

PN8 ~1!11511EQ21RT5
det~Q1RTE!

detQ
. ~151!

WhenN51 and j5j j , detQ is written as

detQ5detS 1

2j j
~11 f j

24!
1

j j2 j̄ j
~11u f j u24!

1

j̄ j2j j
~11u f j u24!

1

2j̄ j
~11 f̄ j

24!
D .
~152!

By means of Eq.~135!, f n can be written as

f n5exp~2F1n1 iF2n!, ~153!

where
F1n5
2jn9~ ujnu21r2!

ujnu2
~x2V1nt2x1n0!,

F2n5
2jn8~ ujnu22r2!

ujnu2
~x2V2nt2x2n0!,

~154!

V1n5
2jn8~ ujnu41r4!

ujnu2~ ujnu21r2!
,

V2n5
~jn8

22jn9
2!~ ujnu21r2!

jn8ujnu
2

for an easy plane and

F1n5
2jn9~ ujnu21r2!

ujnu2
~x2V1nt2x1n0!,

F2n5
2jn8~ ujnu22r2!

ujnu2
~x2V2nt2x2n0!,

~155!

V1n5
4jn8~ ujnu22r2!

ujnu2
,

V2n5
2@2r2ujnu41~jn8

22jn9
2!~ ujnu41r4!#

jn8ujnu
2~ ujnu22r2!

for an easy axis.
Suppose alljn9.0 andV1N.V1(N21).•••.V11, and the

vicinity of V1nt2x1n0 is denoted byQn . For extremely
large t, these vicinities are separated from left to right
QN , QN21 , . . . ,Q1. In the vicinityQ j , we have the limits

~x2V1nt2x1n0!→2`, u f nu21→0 if n, j ,

~x2V1nt2x1n0!→`, u f nu21→` if m. j ,
~156!

while detQ tends to
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*
1

jn1jn8

1

jn1j j
0

1

jn2 j̄n8

1

jn2 j̄ j
0

1

j j1jn8

11 f j
24

2j j

f j
22f m8

22

j j1jm8

1

j j2 j̄n8

11u f j u24

j j2 j̄ j

f j
22 f̄ m8

22

j j2 j̄m8

0
f m

22f j
22

jm1j j

f m
22f m8

22

jm1jm8

0
f m

22 f̄ j
22

jm2 j̄ j

f m
22 f̄ m8

22

jm2 j̄m8

1

j̄n2jn8

1

j̄n2j j
0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8

11u f j u24

j̄ j2j j

f̄ j
22f m8

22

j̄ j2jm8

1

j̄ j1 j̄n8

11 f̄ j
24

2j̄ j

f̄ j
22 f̄ m8

22

j̄ j1 j̄m8

0
f̄ m

22f j
22

j̄m2j j

f̄ m
22f m8

22

j̄m2jm8

0
f̄ m

22 f̄ j
22

j̄m1 j̄ j

f̄ m
22 f̄ m8

22

j̄m1 j̄m8

* , ~157!

wheren,n8, j,m,m8.
Now only those terms leading tou f j11u28

•••u f Nu28 remain. It is hard to calculate this determinant. Similar to the proced
in Ref. @38#, we consider the term withoutf j ,

*
1

jn1jn8

1

jn1j j
0

1

jn2 j̄n8

1

jn2 j̄ j
0

1

j j1jn8

1

2j j
0

1

j j2 j̄n8

1

j j2 j̄ j
0

0 0
f m

22f m8
22

jm1jm8

0 0
f m

22 f̄ m8
22

jm2 j̄m8

1

j̄n2jn8

1

j̄n2j j
0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8

1

j̄ j2j j
0

1

j̄ j1 j̄n8

1

2j̄ j
0

0 0
f̄ m

22f m8
22

j̄m2jm8

0 0
f̄ m

22 f̄ m8
22

j̄m1 j̄m8

* . ~158!

The term involvingf j
24 is the determinant
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*
1

jn1jn8
0 0

1

jn2jn8

1

jn2 j̄ j
0

0
f j

24

2j j

f j
22f m8

22

j j1jm8

0 0
f j

22 f̄ m8
22

j j2 j̄m8

0
f m

22f j
22

jm1j j

f m
22f m8

22

jm1jm8

0 0
f m

22 f̄ m8
22

jm2 j̄m8

1

j̄n2jn8
0 0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8
0 0

1

j̄ j1 j̄n8

1

2j̄ j
0

0
f̄ m

22f j
22

j̄m2j j

f̄ m
22f m8

22

j̄m2jm8

0 0
f̄ m

22 f̄ m8
22

j̄m1 j̄m8

* , ~159!

In addition to the common factoru f j11u28
•••u f Nu28, these two determinants are clearly proportional to

U 1

jn1jn8

1

jn2 j̄n8

1

jn2 j̄ j

1

j̄n2jn8

1

j̄n1 j̄n8

1

j̄n1 j̄ j

1

j̄n2jn8

1

jn1 j̄n8

1

2j̄ j

U U 1

jm1jm8

1

jm2 j̄m8

1

j̄m2jm8

1

j̄m1 j̄m8

U . ~160!
lu
-

.
.

The proportional coefficients are

~j j1 j̄ j !
2

2j j uj j2 j̄ j u2
)
n51

j21
~j j2jn!

2~j j1 j̄n!
2

~j j1jn!
2~j j2 j̄n!

2
~161!

and

2
1

2j j
)

m5 j11

N
~j j2jm!2~j j1 j̄m!2

~j j1jm!2~j j2 j̄m!2
. ~162!

Therefore, the asymptotic behavior of the multisoliton so
tions in the limits~156! is similar to the single soliton solu
tion, but f j is replaced byf j

(1)

f j
~1 !5S t j

x j
D 1/2f j , ~163!
-

t j5 )
n51

j21
~j j2jn!~j j1 j̄n!

~j j1jn!~j j2 j̄n!
, ~164!

x j5 )
m5 j11

N
~j j2jm!~j j1 j̄m!

~j j1jm!~j j2 j̄m!
. ~165!

While detQ→detQj
(1) ,

detQj
~1 !52

~j j2 j̄ j !
2

4uj j u2uj j2 j̄ j u2
~11u f j

~1 !u28!

1
1

4uj j u2
@~ f j

~1 !!241~ f j
~1 !!24#, ~166!

the asymptotic expression of detQ8 should be obtained
Meanwhile,F1 j

(1) andF2 j
(1) corresponding to those in Eqs

~153!–~155! can be written as
F1 j
~1 !55

2j j9~ uj j u21r2!

uj j u2
~x2V1 j t2x1 j02G1 j

~1 !! for an easy plane

2j j9~ uj j u21r2!

uj j u2
~x2V1 j t2x1 j02G1 j

~1 !! for an easy axis

~167!

and
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F2 j
~1 !55

2j j8~ uj j u22r2!

uj j u2
~x2V2 j t2x2 j02G2 j

~1 !! for an easy plane

2j j8~ uj j u22r2!

uj j u2
~x2V2 j t2x2 j02G2 j

~1 !! for an easy axis,

~168!

where

V1 j55
2j j8~ uj j u41r4!

uj j u2~ uj j u21r2!
for an easy plane

4j j8~ uj j u22r2!

uj j u2
for an easy axis

~169!

and

V2 j55
~j j8

22j j9
2!~ uj j u21r2!

j j8uj j u
2 for an easy plane

2@2r2uj j u41~j j8
22j j9

2!~ uj j u41r4!#

j j8uj j u
2~ uj j u22r2!

for an easy axis,

~170!

while

G1 j
~1 !55

uj j u2

2j j9~ uj j u21r2!
~ lnut j u2 lnux j u! for an easy plane

uj j u2

2j j9~ uj j u21r2!
~ lnut j u2 lnux j u! for an easy axis

~171!
-
.,

et

sfi
a
th
e

d

-
oci-

city
oli-
e,
re-
that
x-
in
ter
ain
the

ef.
li-
the

ion
and

G2 j
~1 !5H argt j2argx j for an easy plane

argt j2argx j for an easy axis.
~172!

Similarly, whent→2`, the asymptotic behavior of multi
soliton solutions in the vicinity ofQ j can be obtained, e.g
analogously to Eqs.~171! and ~172!,

G1 j
~2 !52G1 j

~1 ! , G2 j
~2 !52G2 j

~1 ! . ~173!

Therefore, the total additional displacement ofG1 j and the
total phase shiftG2 j are

G1 j52G1 j
~1 ! , G2 j52G2 j

~1 ! . ~174!

V. DISCUSSION

In the present paper, we introduce an auxiliary param
j in Eqs. ~25! and ~26!, wherej56r corresponds to zero
m ~or l) and tol562r ~or m562r). In the complexl
~or m) plane, these two points are the edges of cuts.j con-
tributes to the determination factorCn in Eq. ~48!. Cn is
important to ensure that the Jost solution generated sati
the corresponding Lax equations. This indicates that in
inverse scattering transformation the edges of cuts in
complex plane must make a contribution even in the cas
nonreflection. Unfortunately, Borovik and Kulinich@29,30#
apparently did not consider these effects. Evidently, they
not obtain any expression of the solution.
er

es
n
e
of

id

Equations~90!–~95! show that soliton solutions in an an
isotropic spin chain are dependent essentially on two vel
ties: V1 in Eq. ~88! and V2 in Eq. ~89!. The center of an
inhomogeneity moves with a constant velocityV1, while the
shape of solitary waves also changes with another velo
V2. Therefore, the depths and widths of the surface of s
tary waves are not constants but vary periodically with tim
and the shape of solitary waves is not symmetrical with
spect to the center. By means of these features, we find
soliton solutions in an anisotropic spin chain are not e
pressed in the form of a product of separated variables
moving coordinates. Only when an anisotropic parame
r→0 do these soliton solutions in an anisotropic spin ch
reduce to those in an isotropic spin chain; for example,
single-soliton solutions~110! and ~111! in the polar coordi-
nates are equivalent to Eq.~22! obtained by means of the
method of separating variables in moving coordinates in R
@19#. Therefore, it is impossible to investigate the exact so
ton solutions in an anisotropic spin chain by means of
method of separating variables.

Using the Hirota method, Bogdan and Kovalev@31#
sought the soliton solutions of the Landau-Lifshitz equat
in an anisotropic spin chain in the form

Sx1 iSy5
2 f g

u f u21ugu2
, Sz5

u f u22ugu2

u f u21ugu2
, ~175!

where
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f5 (
n50

[N/2]

(
C2 ,n

a~ i 1 , . . . ,i 2n!exp~r i11•••1r i2n! ~176!

and

g*5 (
m50

[ ~N21!/2]

(
C2m11

a~ j 1 , . . . ,j 2m11!

3exp~r j 1
1•••1r j 2m11

!, ~177!

where @N/2# is the maximum integer in addition t
N/2, Cn represents the summation over all combinations
N elements inn, andr i5(ki1v i t1r i

0), while
n
n

a
n
p

an
ti
it
ro
ar
su

.
s

ic
f

a~ i 1 , . . . ,i n!5H (
k, l

~n!

a~ i k ,i l ! for n>2

1 for n50,1.

~178!

According to the expression of the single-soliton solutio
~90!–~95! in this paper, we find that they are difficult t
express in the form of Hirota factorization. Obviousl
Bogdan and Kovalev@31# did not obtain the desired results

Reducing the equations of motion to an appropriate fo
Kosevichet al. @25# found a solution in the classical Heisen
berg spin chain with an easy plane, while in terms of E
~96! in the polar coordinates in the present paper, there ex
tan2S u

2D5

j19
2H ~ uj1u22r2!214r2uj1u2sin2F2j18~ uj1u22r2!

uj1u2
~x2V2t2x20!G J

~ uj1u22r2!2H uj1u2cosh2F2j19~ uj1u21r2!

uj1u2
~x2V1t2x10!G2j19

2~ uj1u22r2!2J . ~179!
Lax
the
ti-
n-
ese
, by
cal

es
If we compare Eq.~179! with an approximate solution give
by Ref. @25#, we find that previous properties of the solito
solutions remain even in the approximation of order ofr2.
The solutions of Ref.@25# do not satisfy the Landau-Lifshitz
equation for the classical Heisenberg spin chain with an e
plane even in the first order of anisotropy, and there is
reason to consider it as an approximate solution; all attem
in this approximation were not successful.

In the previous discussion using the suitable rescaling
an appropriate spin Poisson bracket, the equations of mo
are obtained for an anisotropic Heisenberg spin chain w
Gilbert damping in an external magnetic field. Then, int
ducing an auxiliary parameter, the Lax equations for D
boux matrices are generated recursively. If constants are
sy
o
ts

d
on
h
-
-
it-

ably chosen, the Jost solutions satisfy the corresponding
equations. The exact soliton solutions are obtained; then
asymptotic behavior of the multisoliton solutions is inves
gated and thez components of the total magnetic mome
tum, and the total magnetic momentum, are given. Th
results have not previously been found, to our knowledge
any means tried. They may be useful for further theoreti
research and practical applications.
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