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Using the stereographic projection of the unit sphere of the spin field onto a complex plane for the equations
of motion in a uniaxial anisotropic Heisenberg spin chain with Gilbert damping in an external magnetic field,
the effect of the magnetic field for the integrability of the system is discussed. The effect of the Gilbert
damping is also analyzed. Then, introducing an auxiliary parameter, the Lax equations for the Darboux
matrices are generated recursively. The Jost solutions satisfy the corresponding Lax equations if constants are
suitably chosen. The exact soliton solutions are then investigated. These results show that the solitary waves
depend essentially on two velocities that describe a spin configuration deviated from a homogeneous magne-
tization, while the depths and widths of surface of solitary waves vary periodically with time. The center of an
inhomogeneity moves with a constant velocity, while the shape of a soliton also changes with another constant
velocity and it is not symmetrical with respect to the center. Zhemponent of the total magnetic momentum
and the total magnetic momentum vary with time. The asymptotic behavior of multisoliton solutions is also
given.[S1063-651X97)03002-X|

PACS numbgs): 05.90+m, 75.10.Hk, 75.30.Gw, 75.50.Ee

I. INTRODUCTION Capel[20] obtained separately the Landau-Lifshitz equation
. . . - L for an isotropic chain and for a spin chain with an easy axis.
The classical Heisenberg spin chain is a fascinating non- . . . . .
. . o Reducing the equation of motion to a sine-Gordon equation
linear dynamical system that exhibits both coherent and chaf—

. . .~ ."for a spin chain with an easy plane, Mikeskal] got a
otic st.ructures depending on.the nature .Of the ma}gnetlc Nsolution. However, there exist some questions about this ap-
teractions [1-4]. Its study is of considerable interest,

, ) ; - proach. First, this reduction has not been rigorously estab-
especially from the points of view of soliton theory and lished, except forT—0. Second, it does not include the
condensed-matter physics. In particular, its continuum ”m“tquantum effectd3], which are particularly crucial for the
is governed by the Landau-Lifshitz equation and it displays;ase of CsNif with spin S=1. Third, it is inadequate
fascinating geometrical aspects: isotroffie-7] and pure an- [22,23, as shown by the neutron scattering experiments in
isotropic [8—13 systems are geometrically equivalent andCsNiF,. Finally, when the external field tends to zero, this
gauge equivalent to a nonlinear Sotirgger equatiorf14].  selution becomes a traveling-wave solution, which does not
These systems, as well as the biaxial anisotr¢fe~17  obviously relate to the nonlinearity of the spin interaction.
systems, are completely integrable. On the experimentadlong and Bishog 24] proposed another solution. However,
side, an easy plane ferromagnet in a symmetry-breaking exvhen the anisotropic approach vanishes this solution does
ternal transverse field has received continuing interestot tend to the well-known solution of an isotropic chain. By
though most theoretical treatments have been based on @me variation method, Nakumura and Sasft# obtained a
approximate mappinfl8] to a sine-Gordon equation. solution. If this solution is directly substituted into the equa-
There are many works in the study of solitons in the clastion of motion, it does not satisfy the equation. Reducing the
sical Heisenberg spin chain. By separating variables in thequation to an appropriate form, Kosevich, Ilvanov, and
moving coordinates, Tjon and Wright9] and Quispel and Kovalev[25] found a solution. But it could not be considered
as an approximate solution of an equation for a spin chain
with an easy plane since it does not satisfy this equation even
*Electronic address: wmliu@itp.ac.cn in the approximation of first-order anisotropy. Borisi6]
"Mailing address. and Sklyaninf27] found separately Lax pairs of the equation
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of motion for a spin chain with a complete anisotropy. By the astonishing fact that the effect of Gilbert dampjd§—
means of an inverse scattering transformation, Mikhailow48] is just a rescaling of the time variabteby a complex
[28] and Rodin[13] were able to reduce the problem to the constant, so that for every given solution of the undamped
Riemann boundary-value problem on a torus. Howevergquations of motion in any dimension the exact solution of
since these results are expressed by the elliptic function, thetjpe fully damped version can be given straightforwardly.
are more complicated and are therefore difficult to transform It is the purpose of this paper to investigate the exact
to those in the case of an easy plane. Even though solitopPliton solutions in a uniaxial anisotropic Heisenberg spin

solutions were found, they are difficult to transform to thosechain with Gilbert damping in an external magnetic field.
This article is organized as follows. In Sec. Il using the ste-

in the limit of an easy plane. Deriving the Marchenko equa- \ 99 ; e

tion by an inverse scattering transformation, Borof/] reographic projection of the unit sphere qf the spin field onto

and Borovik and Kulinich[30] could not find even the acompl_ex.plane f_or the equations of motlon!thg effect of the

single-soliton solution in a ferromagnet with uniaxial anisot-Magnetic field for m_tegrablllty O.f th? system s d|scusseq and

ropy. Using the Hirota method, Bogdan and Kova[@d] the _effect of t_h'e Gilbert damping is analyzgd. Then, intro-

attempted to construct exact multisoliton solutions in an anfjUCIng an _auxmary parameter, the La_x equations for the Dar-
boux matrices are generated recursively. Section Il shows

isotropic ferromagnet. However, they could not prove a seth t the Jost soluti tisfy th dina L
ries of nontrivial identities on the parameters of the solution. . at the Jost solutions satisfy the corresponding Lax equa-

When the anisotropy of an easy plane was weak, they did nc?tons if constants are suitably chosen. The exact soliton so-
obtain the explicit expressions of the solutions. Taking into utions, thez component of the total magnetic momentum,
account only the first-order approximation, Ivanov, Ko- and the total magnetic momentum are obtained. In Sec. IV

sevich, and Babich32] obtained useful results the asymptotic behavior of multisoliton solutions is also
There exist some difficulties in the study of a uniaxial 9VEN- Section V is discussion. This approach is a good

anisotropic Heisenberg chain with Gilbert damping in an ex_me_:thod i_n the study of solitons in the classical Heisenberg
ternal magnetic field. Its equations of motion, which differ SPIN chains.

from those of an isotropic chain, could not be solved by the

method of separating variables in moving coordinates Il. EQUATIONS OF MOTION

119,24 Also, this equation could not be solved by the pre- The Hamiltonian describing a uniaxial anisotropic
vious form of an inverse scattering transformation since thef—|eisenberg spin chain with Gilbert damping in an external
double-valued function of the usual spectral parameter apr'nagnetic fieldB(t) can be written as

pearing here required the introduction of a Riemann surface.
The reflection coefficient at the edges of cuts in the complex

plane could not be neglected even in the case of nonreflecH=—-J>, S-S, ;+AY, ($)2—gus>, B-S

tion. Introducing an auxiliary parameter, Chen, Huang, and ! ! !

Liu [33] developed an inverse scattering transformation to

solve the Landau-Lifshitz equation only for a spin chain with +€S-| -3 S-S 1+AY ($H2-gus>, B-S|,

an easy axis. The Marchenko equation, soliton solutions, and ! ! '

asymptotic behavior were derived. The results can reduce (1)
naturally to those of an isotropic chain when the anisotropy

vanishes. By means of the method of Darboux transformagyhere S=(S,9,59), with i=1,2,...N are three-

tion [34-38, Huang, Chen, and Lii39] found the exact component unit vectord g =1) with only nearest-neighbor
soliton solutions of the Landau-Lifshitz equation for a spininteractions,d>0 is the pair interaction parametek, is a
chain only with an easy plane without an external magnetigniaxial anisotropic parameterAG0, easy planeA<O,

field. The external magnetic field would affect the integrabil-easy axig g is the Lande factoryg is the Bohr magneton,

ity of the system. It would be instructive if the effect of the g(t)= (BX(t),BY(t),B%(t)), ande is a dimensionless Gilbert
magnetic field is discussed. Pu, Zhou, and40] reported  gamping parameter. Using the suitable rescaling and an ap-

the multisoliton solutions of the Landau-Lifshitz equation in hropriate spin Poisson bracket, the corresponding equation of
an isotropic ferromagnetic chain with a magnetic field. By motion in the continuum limit can be written as

means of the Holstein-Primakoff transformation and Glaub-

er's coherent state representation, Huat@l. [41,42 and 9.S=SX[Jd5,S— 2A(S-n)n+gugB]
Shi et al. [43] used an inhomogeneous Heisenberg spin
Hamiltonian with single ion anisotropy in a magnetic field to +€SXSX[JxS—2A(S-n)n+gugB]l, (2

investigate the nonlinear excitations in a ferromagnetic

chain. They reduced the equation of motion into a nonlineawhere S(x,t) =(S*,9,5%), $*(x,t)=1, andn=(0,0,1). In
Schralinger equation. Then, in terms of an inverse scatteringhe undamped case € 0), when an external magnetic field
transformation, they obtained the corresponding singleis zero, an anisotropic spin chaiA0) with an easy plane
soliton and two-magnon bound-state solutions in a homogeA>0) [39] and that with an easy axisAKO0) [33] are
neous system. Introducing the coherent-state ansatz, tl@mpletely integrable. When the oscillations of the spin vec-
time-dependent variational principle, and the method of multor S are localized near an easy plane, E2).can be trans-
tiple scales, Liu and Zhou reduced the equation of motiorformed into a sine-Gordon equation. Similarly, it is also re-
into a nonlinear Schidinger equation and obtained solitons duced to a nonlinear Schiimger equation when the
in the pure[44] and the biaxial[45] anisotropic antiferro- oscillations of the spin vectd8 are localized in the vicinity
magnetic spin chains with an external field. We wish to showof the vacuum stateS(x,t)=(0,0,1). In the special case
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A=0, an isotropic spin chain in an external magnetic field is
also completely integrablg40]. When a magnetic field is
zero, Eq.(2) is equivalent to a nonlinear Scliinger equa-
tion [5-7].

We first consider the effect of the Gilbert damping term,
proportional toe in Egs. (1) or (2), on undamped spin mo-
tion. Traditional treatments for Eq6l) or (2) in polar coor-
dinates tend to mix up the evolutions of the two angles in a
complicated way, so the Gilbert damping is treated only ap-
proximately[48]. However, now the parametrization of the
spin field in terms of a stereographic variable simplifies the
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3, S= (S 04 F— S04 S) — 2ASY S+ gugSB?
+ €] 9y S — (S04 S — 2A(S?) %+ gugB*) S,

structure of Eqs(1) or (2) drastically. Using stereographic

projection of the unit sphere of the spin field onto a complex

plane
S+isY
P(X,t):1+—sz 3
or
stig=2 g Pl @
1+|P|*’ 1+|PJ*’
the derivatives can be written as
asxz—l [(1-P*2)9,P+(1—-P?)4,P*], (5
[P’ ‘ c
i
_ *x2 _ 2 *
z__ _ * *
&S TP [P* P+ PgP*], 7)
and
X 1 * 2 2 *
xS :W[(l_P )&xxp+(1_P )‘9xxp ]
-z [2(P+P*)d,PaP* +P*(1—P*?)
(1+[P[*? o
X (95P)2+ P(1—P?)(9,P*)?], (8)
i *2 2 *
3XX§:—W[(1+P )9xxP—(1+P%) dyxP™ ]
P [2(P—P*)d,PdyP* +P*(1+P*?)
(1+]P[%)* .
X (9,P)2—P(1+4 P?)(9,P*)?], 9)
Z 1 * 2 2 *
IS :W[P (1+|P| )(9XXP+P(1+|P| ) dxxP

+2(1—|P|?) 9,PaP* —2P*2(4,P)?
—2P?(9,P*)?]. (10

Substituting Egs(4)—(10) into the equations of three com-
ponents of Eq(2),

(11
;S = (S04 S — S0, ) — 2AFS*+ g u g S?B*
+ f[axxsy_ (Sy&xxsy_ZA(SZ)z'FgMBBy)Sy]:
(12
3,57= (S04 — 994, S) —2AS'S + g upS'BY
T €] 94 S*— (S5 S" — 2A( SZ)2+ gusB)S],
(13
we can obtain
(1-P*3)®(P,P*)—(1-P?)®*(P,P*)=0,
—i(L+P*2)®(P,P*)—i(1+P?)®*(P,P*)=0,
(14

P*d(P,P*)—PdO* (P,P*)=0,

where

O(P,P*)=i(1+|P|?) 9P+ (1—ie){ (1+]|P|?)dysP

—2P*(9,P)?+2AP(1—|P|?)+ gug(1+]|P|?)

X

BX BY

- (1= P?)+i - (1+ P?)—B?P|;. (15
The consistency of Eq(14) implies ®(P,P*)=0 and

®* (P,P*)=0; therefore, the evolution equation for the ste-

reographic variableP(x,t) in the presence of the Gilbert
damping becomes

i(1+|P|2)atP+(1—ie):(1+|P|2)aXXP—2P*(aXP)2

+2AP(1—|P|®) +gug(1+|P[?)

B* BY
X 7(1—P2)+i7(1+P2)—BZP”=O. (16)
If the time variable is redefined

t—-r=(1-iet, (17)

we can obtain
i(14|P|?)a,P+(1+]|P|?) dgP—2P* (9,P)?

+2AP(1-|P|®)+gug(1+|PJ?)

BX BY
X 7(1—P2)+i7(1+P2)—BZP =0, (18)

which is the same as the undamped evolution equation for
P endowed here with the scaled timeTherefore, as long as
every solution in the undamped case=0) is obtained, the
corresponding spin fiel&(x,t) in the Gilbert damping case
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(e#0) can be constructed simply by E@) just with the L(u,N)=—iu(S‘ox+Say)—irSa, (22
rescaling in Eq(18) of the time parameter.

According to Eq.(18), we can also analyze the effect of and
an external magnetic field for the integrability of the system.
When an external field is directed at an anisotropic axis, €.9., M(u,\)=i2u\(S'o+ Soy) +i2u’So,—iu(90,S
B=(0,0B%t)), the magnetic-field term in Eq18) can be
removed by the following gauge transformation: —§0,9) oy =i u(S°9,S = S0, §) oy,

— NS0, - 5,0, (22)

. (19) whereo, (a=X,y,z) are the Pauli metrics and the param-
' eters\ and u satisfy the relation

P—P=P ex;{ig,ugf d7B*(7)

the system becomes integrable. The influence of the mag- w?+4p? for A>0 (easy plang
netic field for the classical Heisenberg spin chain with an \2= 2_4,2 for A<O , (23
easy axis amounts to a change of the precession frequency of - P or (easy axis,
the spin fieldS by wg=gugB. Therefore, if we can intro- _ i
duce a new angular variablg= ¢ — wgt in the polar coordi- Wherep is defined as
nates @,¢), then in terms of the angular variablésand ¢
the equation of motiori2) will not depend orB. 2AS—gugB\?
However, the dynamics of the classical Heisenberg spin a5 for A>0 (easy plang
chain with an easy plane is very sensitive to a magnetic fieldo = 12 (29
Even a weak magnetic field can alter the character of the 2AS+gueB ) for A<O (easy axis
ground state and therefore the form of localized solutions. 4JS '

When an external magnetic field is perpendicular to an eas . ) ,

plane, it does not alter the axial symmetry associated witlf On€ of the parameters in E3) is taken as an indepen-
the z axis; the form of the ground state depends on thedent parameter, then the others are the double-value func-
strength of the external field. The critical value is tions of the first, and it is then necessary to introduce a Rie-

B.=2ASgus. When the external magnetic fieBf<B, mann surface. In order to avoid the complexity brought
the spin fieldS in the ground state deviates from an easyabout by a Riemann surface, we shall introduce an auxiliary

plane and it is characterized by an inclinatiér 6, to the  Parameteg,
z axis, where co=B%B,.. The anglee remains arbitrary.

For brevity, such a ground state is referred to as an easy &+p2¢e Y foran easy plane
cone. As an external magnetic field increases, th.e angular = ¢—p2&~t  foran easy axis (25
opening of the easy cone becomes smaller, especially in the
case ofB?>B,; the spin fieldS in a nonexcited Heisenberg and
spin chain with an easy plane lies along thaxis.
In the context of exper!men[QZ,ZIﬂ, the situation where £~ p?e!  for an easy plane
the external magnetic field lies in an easy plane, e.g., w= - . (26)
B=(B*(t),0,0), or B=(0,B¥(t),0), seems quite typical. In E+pé for an easy axis,

experiments on samples of easy plane ferromagnets

CsNiF; and (GHy;N Hs)Cu Br, an external field is applied Wheré é==p corresponds to zerq. (or \) and to A

as a rule in an easy plafi#8,21). The presence of an exter- — +2p (Or u = =2p). In the complex (or u) plane, these
nal field that lies in an easy plane makes finding solitonWO Points are the edges of cuts. This indicates that in an
solutions of the equation of motiof2) more difficult. The inverse sca_ltterlng trf_msformatlon the edges c_Jf cuts must give
magnetic-field term in Eq(18) is not removable by gauge & contribution even in the case of nonreflection. _
transformatior(19) and none of the spin components remain  FOr fransformation£25) and (26) we have the relations
conserved quantities. Consequently, the combined Galilean .

plus gauge invariance of the equation of motion is broken )\(—g)z—@,

and no Lax pairs seem to exist; the system appears to be

nonintegrable.

Equation(2) may be represented as a compatibility con- m(=8&=—u(d). (27
dition ;L — 9,M +[L,M]=0 of two equations for X2 ma-
trices W (x,t; u,N): The corresponding Lax equations are written as
AW (Xt N) =L, M)W (Xt 1, N), KW (E=L(EWY(E),
KV (X, N) =M (u, M)W (Xt u,N), (20) AW (E)=M (&)W (&), (28

while where
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(- (£=p2E 1) (S‘oy+Yay) —i(£+p?E 1)So, foran easy plane
L(§)= —i(&+p2E N (S'a+Fa,)—i(é—p2 1) Fa, foran easy axis 29

and 1
WO(&):E[I —i(oyt oyt Uz)]eXp{ - iSOSinGO(f_ngil)

M(&)=i2(&2=p*E ?)(S'ox+ Fa,) +i2(é—p*¢ ™) S0,
_i(g_ngil)(syﬁxsz_ $9,) o
~i(E p2 (S0, S-S0, x
_i(f_Pzg_l)(Sx’?xSy_Sy&xSx)Uz (30

X[x=2(&+p?E Ht]oy—iSecodp(€+p?E™H)

(£-p?)?
X 2@+ )"

Since thez axis is an easy axis in the classical Heisenberg
spin chain with an easy axis, the boundary condition is cho-

O'Z} . (37

for an easy plane and sen as
M(§)=i2(£=p*¢ ?)(S'ox+ Say) +i2(E+p’E Y)?So, S-5=(0,08) at x—*wx. (38)
—i(&+p2E (99, S0, Y) oy The corresponding Jost solution of E8) may be chosen
as
—i(&+p%E (S0, S~ 9, oy
. _ 1
—i(£+p%E 1) (S0, - 90,80, (31 Vo(§)=5[1=i(oxtoy+0y)]
f is. W find the relati 2+ p?)?
or an easy axis. We can find the relations Xexp[ —iso(g—ngl){x—z(é 2_/0 )2 ¢ 02}1
£(&°—p°)
— | oyL(§) o, foraneasyplane (39
L(-H={ — (3
oL (§)o, foran easy axis, with the relations
— [—=L(é foran easy plane — | —iox¥o(§) foran easy plane
L'(g)= _ (33 Vo(-H=1  — .
—L(¢) for an easy axis, —io,¥y(§) foran easy axis
- and
M( _5_ o M(&)oy foran easy plane 34 B
o,M(&)o, foran easy axis, T(_): Wo (§) foraneasy plane (41)
0 W,1(¢) foran easy axis.
and The method of Darboux transformati¢®4—39 is one of
the most powerful methods for constructing exact solutions
4= | =M(§) foran easy plane of nonlinear integrable systems. In the rest of this paper, we
MIO=] —m (¢§) foran easy axis. (39 will use the Darboux matrice® () to define the Jost solu-
tion W (&) of Eq. (28) such that
There are two different types of physical boundary condi- V() =Dy ()V,_1(&), (42)

tions in Eg.(2). The boundary condition of the first type
corresponds to a breatherlike solution, which is usuallyyheren=1,2,3 ... andD,(¢) has two poles, and —¢, .
called a magnetic soliton. In the classical Heisenberg spin  gpstituting Eq.(42) into Eq. (28) with a suitable sub-

chain with an easy plane in an external magnetic field, th%cript the Lax equations fdD,(¢) can be written as
spin fieldS in the ground state deviates from an easy plane

and it is characterized by an inclinati#ly to thez axis and D (E)=Ln(E)D () —D(E)L_1(E),

the asymptotic spin lies on the surface of an easy cone. The

simplest solution of Eq(2) can be written as 3D (E)=M(£)D (&)= Dp(EIM,_1(&). (43)
S=S=(Sgsinfy, 0, SHcosh,). (36)  Then, using the previous relations, we can find

The corresponding Jost solution of E&8) may be chosen q;n(___ ~ioyWn(¢) - foran easy plane

as —io, ¥, (& foran easy axis,
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= v -1(&) foran easy plane
Wn(6)= 45
né) v L&) foran easy axis, (45)
b (_5_ o,Dp(€)oy  foran easy plane
" o,D,(&) 0, foraneasy axis,
and
— (D,%¢&) foran easy plane
Dl@):[ oot . 47
5 (& foran easy axis.

When D (&) has only two simple poleg, and —g, one
can define

Dn(£)=CqBn(8),

Di(&)=Bl(&)C], (48)
D, Y(&=B,1(§C, ",
where
L fn_g_n _g_n_ fn"‘
Bn(g)_l §n—§ Fn g_n"rf Fna (49)

Cn, Fn, andrlfn are 2x 2 matrices independent gf and
(gn_f_n)CnFni (fn_g_n)CnEn

are residues at poles, and —g_n, respectively.

(50

Ill. SOLITONS

In this section, we will determine separatey,, and
B,(&). By means of Eqs(46)—(48) for C,, we can obtain
the relations

o,C,o, foran easy plane

Cn= O'ZC_nO'Z for an easy axis ®)
and
Ci=C, 1,
C.Cl=1. (52)
This shows thaC,, is a diagonal, i.e.,
(Cn)12=(Cp)21=0,
(C1=(Cn)z (53)

|(Cn)1d =1.

Since only the module ofG,); is equal to 1, one can write

i
ex;{ > d)n(rz) for an easy plane
Cn= (54)

[
exy{i%az) for an easy axis,
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where ¢, is real and characterizes the rotation angle of spin

in an easy plane; while ekf)/2)¢,0,] is a rotation around
an easy axis, it does not affect the valueSpf

In order to determineC,,, substituting Eq(48) into Eq.
(43) and then taking the limit§—«~ and 0, we can obtain

Cr=—12p(S,),0,C+C,i2p(S;),0,,

I CnBn(0)]=12p(S;),0C,Bx(0) ]

—[CnBn(0)]i2p(Sp),0, (55
for an easy plane and
3,Cn=—12p(Sy)x0xCn+ Cyii 2p(Sy) 0,
[ CnBx(0)]=12p(S)xox[ C,Bn(0)]
—[CnBn(0)1i2p(Sy)x0« (56)

for an easy axis. Comparing these two equations, one can

find

C,2=By(0). (57
Therefore, we can obtai@,, as long a8,(0) is determined.

In terms of Eqs(46)—(48) for B,(£), we can also obtain
the relations

- o,.B. (&) o, foraneasy plane

Ba()=) ——x (58)

o,B, (&) o, foran easy axis
and
BI(6)=B, (&), (59)
where
T g_n_ gn gn_g_n
tigy S t_ T
B, (&)= Fr Y oy F oy (60)
for an easy plane and
o g_n_ gn gn_g_n
Ty S t_ T
B, (&)= : Fr T o,Fno, (61)

for an easy axis, where the superscflptneans transpose.
By means of Eq(48), Dy(£)D, *(£) =Dy *(£)Dn(é) =1; it
has not poles, i.eF,B/(£,)=0,

Fn( I—Fi- g”z_f” oxFIax) =0 (62
n
for an easy plane and
Fn( |—Fl— g“z_;“ aZFIaz) =0 63
n

for an easy axis. This shows th}, is degenerate. Setting

Fn:(anﬁn)T( ¥n%n) (64)
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and then substituting it into Eq&2) and(63), we can obtain

the linear equations Bn(§)= —
T EE(E A,
Ry X(gnlvn|2+§n|5n|2 0 )
v (oD en™ =g =0, 0 Elalredvl?
o X{§2< §n|5n|2+§n|')’n|2 0
— &= ¢ 0 Enl vnl >+ &nl 607
5n_(|7n|2+|5n|2)ﬁn_ ng n7’n‘sna'nzo- (65 _ mn men
n — 0 Yn%n
2 2 2
~ +E(&— &) 5 0 — &l
Using vy, and &, to expresse,, and B,,, F, andF, can be n¥n
expressed by Enlyal2+ &4 842 0
X — ik
_ ) 5 o 0 §n|5n| +§n|'}’n|
3 §n|7n| +§n|5n| 0 Yn (69)
Fn:A_n 0 §_|5 |2+§ | |2 ? (Yn6n)
ni=n nlYn n (66) Using Egs.(57) and (69), C,, can be determined by
and 1 (a B2+ &0 7l 0 ) 70
" W 0 §n|7n|2+§n|5n|2 '
~ & &lylP+E&lsl? 0 Yn| —— while ¢, in Eq. (54) can be written as
Fn:A_ a2 2/l s (Ynbn)»
n 0 §n|5n| +§n|')’n| n
(67) =2 tart [fﬁ(lynlz—lénl%} a1
" Elvnl? 1607 )"
where
where &/, and &, denote the real and imaginary part &f,
— i ) respectively.
A= (&l vnl®+ &l 8al®) (&0l 0l >+ Enl wal ). (68) Up to now, we have obtaine@, and B,(&), i.e., the

Darboux matriceD ,(£) have been recursively determined.
Substituting Eqs(66) and (67) into Eq. (49), B,(§¢) can  Substituting Eqs(69) and (70) into Eq. (48), D,(£) can be

be written as written as
|
b () B (<§_n|6n|2+§n|yn|2><§_n|yn|2+sn|5n|2) B 0
T ()€ AT 0 (Enl Val2+ &l 8212 (&0 80l 2+ &nl 70l
g—n|5n|2+§n|')’n|2 0 ) —( 0 %‘%)
X 2 - + 2 g2\
M 0 iz elalz) TEETEN S, o
f_n|')’n|2+§n|5n|2 0 )
—1£)2 _ ) (72
4l ( 0 £+ £l 2

In order to determine/,, and §,,, substituting Eq(48) into Eq.(43) and then taking the limif— &,, Eq.(43) can be rewritten
as

HCaFa W10 1= La(En)ChFnWr-1(&n)s A ChFaWin-1(&n) =M (&0 ChFn W 1(€n), (73

where the factor is independent &f and t. BecauseF,, is degenerate, the second factor on the right-hand side, i.e.,
(vn6n) ¥ n_1(&n), should appear on the left-hand side with its original form, therefore, we can simply obtain

(780 =(by )W 21(&p), (74)

whereb,, is a constant that will be determined by the boundary condition and the initial condition. ¥¥hén according to
Egs.(43)—(47), we can obtain

(Sh- 0)=Dp(1)(S,-1- )D](1), (75)
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whereD,(1) can be written as

o1 1 ((§_n| Sal*+ &l vl Gl vl + ol 0
(1= &) (1+£,)AG? 0 (&nl yal*+ &l 80 %) (&nl 80>+ &nl vl?)
. ( (1= &)l i (1= &)l vl 2 (G- o | 79
(€3 &) a7 (1= &) &l val*+ (1= €0 &l 812
Similarly, by means of Eqg43)—(47), we can also obtain the relations fér — 1,
(S 0)0,=Dyp(—1)0/(Sy-1- )0, D}(—1) (77)
for an easy plane and
0x(Sh- @) 03 =Dp(~1)oy(Sy-1- @) o, DJ(— 1) (79)
for an easy axis. Using Eq&43)—(47) and CnCEZI in Eq. (52), Egs.(77) and(78) can be rewritten as
oSy 0)0,= — 04(Sy @) o (79
for an easy plane and
xSy 0) 0=~ 0 (S )0 (80)
for an easy axis. When=1, in terms of Eqs(55), (56), (79), and(80), we can obtain
Si=iS{=[D1(1)]1d D1(1)Tar+[D1(1) 11 Da(1)]z (81)
and
Si=[D1(1) 11 D1(D)]u+[D1(D 1 D1(D 1 (82
whereD (1) can be rewritten as
o1 1 [@ElalralnP@ynlPrala 0
(1= &) (1+£)7" 0 (&1l yal+ &1l 81*) (&a] 1>+ &l val?)
X( (1=&lol’+1A-Ealnl’ (@ ) | .
(- E)on (1= &>+ (1-&)&laf
According to Eq.(74), only the relative values oft(;1) have meaning, so one can find
<7161)~<f1f11>(i1 _1|) (84)
where
- b}’zex;{i(gﬁngll)( x2%t) for an easy plane o
b}’zex;{ i(&—p2E] 1)( X— Zﬁfpz)t) for an easy axis.
Therefore,
yi=f+if o =f,—ift, (86)
while
fi=exp(— @ +idy), (87)

where
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281(1&1*+p 281(1&17~p?
D, 1—|€1|2_(X Vit=Xy9), ®p= 1—|§1|2L(X Vot —Xa0),
2&1(1&]*+ Y (&°- &2 (&l +p?)
= > \/,=
Ylaldal+pn 2 &lélf? ’ (88
for an easy plane and
281(1&1%+p%) 2&1(1&17=p?)
¢1=1|¢(X—V1t—xm), ¢z=#(X—Vzt—Xzo),
4¢1(1&12-p?) 2[2p%|&)]*+ (£17— €19 (|&4]*+ 0]
=, V,= p 89
T g 2 §1|§1|2<|gl|2—p2> (89
for an easy axis. By means of Eq81)—(89), the single- soliton solutions can be written as
e 2&1[£1(|&4]>— p®)?coshb 1c08D,+ £1(]€4]*— p*) sinhd Sind ]
S Sosinfo™ 2L (&7 p) 200t + 4pZE PSP, ] ‘ 90
Sél,:25,1,[5'1'“§1|2_P2)25inh‘131003132_51(|§1|4_P4)003@15in‘b2] (1)
|€1/°L(|&1]°— p?)cosi® +4p? &7 i D, ] ’
2817 (14|~ p?) 2+ 4p?|£4)%sint D, |
5= Socoso |§1|2[ |§1|2_ Z)ZCOSH‘Dl"“‘PZf’l’ZSian)z] (92
for an easy plane and
sio 2&1|&|(|£,]2+ p?)coshb,cosb, ©3
(&1 +p*=2p2(&17 = &) 1M E1%( &4+ p) |0+ p* = 2p%(£17— €77) ]+ | £1] *coshib }*
9= 2£1|&1|(|£1]*+ p®) coshibsind, 94
[[&1]*+ p? = 2p2( &%= EP T €21 &1°+ pD) 2L éa] *+ p*— 2p%( €17~ £17) ]+ | 4] coshib,}
2 " 2+ 2\2
sos_ E(l&l*+p?) -

EP( &%+ p?) 2+ &1+ p* — 2p%(£1%— €1%) JcosH

for an easy axis. Similarly, we can also obtain the two-, three-, and multisoliton solutions.

These results show that the soliton solutions depend essentially on two veloaftjes—Eg. (88) andV, in Eq. (89—
which describe a spin configuration deviated from a homogeneous magnetization. The center of an inhomogeneity moves with
a constant velocity/;, while the shape of the solitaithe direction of a magnetization in its centatso changes with another
velocity V.

In the polar coordinates, taking tlzeaxis as the polar axis,

2872[(1&4)%— p?)%+ 4p?| &1|SiINPD ]

CO¥=Ccoy— - , (96)
O &P €4]7— p?)PcosRd , + 4p2£; 2SIt D, |
for an easy plane and
2¢1(|6/°+p%)?
co¥=1—- m 7 (97)
E2(1 &+ p2) 2+ &P &0l *+ p* = 2p%(£17 - £1%) JcostED,

for an easy axis. We can find the property

cog —Xx,—t)=cogx,t). (998

In order to analyze the feature of the previous soliton solutions, setting the preliminary values as zero in the moving
coordinates of the soliton,
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2¢1(1&4°—p?) H

S (x—Vyt)
&4

/12{ (|§1|2_P2)2+ 4p2|§1|25|r]2

COsH=CcoHy— e VPRV (99
2£1(1&1]°+p%) L1 261(1&61°—p?)
|§1|2{(|§1|2—P costf 1—|11|2LX +4PZ§'125'HZ{1—|11|2L(X—V20”
for an easy plane and
2 " 2 2\2
co—1— E1([&1]*+p?) (100

// ’ ” g;ll.(|§1|2+p2)
2(|&a2+ p2)2+| &[]+ p*— 20%(£17— €17) Jcosif — T X

for an easy axis. Therefore, the depths and widths of the surface of solitary waves are not constants, but vary periodically with

time. The shape of solitary waves in a spin chain with an easy plane also changes with a Wlaecityit is not symmetrical

with respect to the center, while the shape of solitary waves in a spin chain with an easy axis is symmetrical with respect to

the center. In a spin chain with an easy plane, the integral of the motion coincident witltahgponent of the total magnetic
momentum

P?=S, f dx(1— cosh) (10D

is not a constant and is dependent on time periodically, wPflen a spin chain with an easy axis is a constant, wh&rdas
the sense of the mean number of spin deviated from the ground state in a localized magnetic excitation. This feature did not
appear in the soliton solution of all other nonlinear equations solved.

While

£1(&41]?— p?)?sinhd 1co8b,— £1(| 4]~ p*) coshib ;sind,

e :fi(|§1|2_P2)2005hD1005Dz+§Z(|§1|4_P4)5in@15im)2 (103
for an easy plane and
i :[5/1'(|§1|2_P2)2+4P2§i|§1|2]Sinm)10031)2_§1(|§1|4_P4)003@13ir@2 (103
™ G &l o) cosb .cosb,+ [€]([ €2~ p2)2+ 4p7E, &P Isintid 1sind,
for an easy axis, setting the preliminary values as zero in the moving coordinates of the soliton,
[281([&]2+p%) | E(1&IP+p?) (281 &|7+p?) 2£1(1&41°—p?)
sin 2 T en 2 2 C 2 2 (X_VZt)
tano = |fl| 51(|§1| —p°) |§1| |§1| (104)
YT EIEP ) y{zﬂugﬂ%p% } | r{zg’;ugﬁp% } {2§1<|fl|2—p2> v t)}
(&2 +pD)” BE |&4]° |&4]° 2
for an easy plane and
Sim{zfﬂlalzwﬁ }_ &6 -p% hos{zfﬂlalzwz) X}t r{zgmfllz—p?) oy t)}
o &7 G617 ")+ 4p%] &% B B ’ 105
" &(&*=p" AOS%%MJ%Z) X}+sin)‘{2§g(|§ll2+p2) X}t r{mefllz—pz) v t)}
(&l —p2+ap%E &> & & & ?
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for an easy axis. The total magnetic momentum

P:Sof dx(1—cos9) Ve (106)

also is not constant. These properties are important for the
classical Heisenberg spin chain with a uniaxial anisotropy in v
an external magnetic field, but they have never been obtained .5

by all other methods.
Obviously, when an anisotropic paramejer0, these

soliton solutions in the classical Heisenberg spin chain with a
uniaxial anisotropy reduce to those in an isotropic spin chain,

for example, the single-soliton solutio(®0)—(95) are trans-
formed to

"

¢
3>1<=|§—lzsecﬁ[§/1’(><— 4&1t—Xy0)]

1

x| €4St &(x— 4&1t—xq0)Isin

) o ]
X{gi X_Z(fi_é_li)t_xzo ]

+ §1c0sH & (x—4&t—X;0)]cos

"2
1

X{fi X_z(fi_g_i)t_xzo ]) (107

"

2¢
S%=@secﬁ[§a’<x—4§1t—xw>]

X

gsini €1 (x—4&1t—xy0)]
"2
1

XCO% fi f_i
—&;cosh €7 (x—4&1t—X0)]

}

] ) . (109
"2

¢
Si=so—@secﬁ[ﬂ(x—%it—xm)]. (109

X—Z( &1— )t_xzo

"2

S
&

xsin[ & x—2( & )t—xzo

These results are equal to E§73 obtained by the method
of an inverse scattering transformation in Ref0]. While
taking thez axis as the polar axis in the polar coordinates,

"2

cosf=1— @secﬁ[ El(x—4&t—x19], (110

"2

1
P=¢ot & T
1

X_2<§i_ )t_xzo

"

+ tanl[ g—itant{ El(x—agt— xlo)]] . (111

Sz

FIG. 1. (a) Graphical illustrations of the motion of the center
and the change of shape of a soliton solut&nexpressed by Eq.
(92 in the classical Heisenberg spin chain with an easy plane,
wherep=0.1, £=0.1, £]=0.2, X;0=0, X=0, andw/4V, as a
unit of time. (b) Graphical illustrations of the motion of the center
and the change of shape of a soliton solut&nexpressed by Eq.
(95) in the classical Heisenberg spin chain with an easy axis, where
p=0.1, £&=0.1, £=0.2, x;0=0, X,=0, andw/4V, as a unit of
time.

whent—0, these results are equivalent to E2Q) obtained
by means of the method of separating variables in the mov-
ing coordinates in Ref.19].
In terms of soliton solution§110) and(111) in an isotro-
pic spin chain, we can find that tlzecomponents of the total
magnetic momenP, and the total magnetic momentukh
are constants of motion, P?=4S,¢;/(|£€,]%)  and
P=4Ssin” }(&//|&]). Tjon and Wright[19] took advantage
of this feature in solving the equation of motion. These prop-
erties are important for the classical Heisenberg spin chain
with a uniaxial anisotropy in an external magnetic field, but
they have never been obtained by all other methods.
Figures 1-4 give some graphical illustrations of the mo-
tion of the center and the change of shape of a previous
soliton solutionS; expressed by Eqg92) and (95) in an
anisotropic spin chain and that by EqQ.09 in an isotropic
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FIG. 3. Graphical illustrations of a soliton soluti& expressed
by Eqg. (109 in an isotropic Heisenberg spin chain, where
p=0, £=0.1, £=0.2, x10=0, X50=0, and7/4V, as a unit of
time.

(95) in an anisotropic spin chain, reduces to that in @49
in an isotropic spin chain. The shape of the surfaceSpf
does not change with velocity, and the surface is sym-
metrical with respect to the center, as shown in Fig. 3.

(i) The depth and width of the surface & are not
constants but vary periodically with time, as shown in Fig. 4.
When p—0, the depth and width of the surface $f, ex-
pressed by Eq(109 in an isotropic spin chain, do not
change periodically with time and the surface is also sym-
metrical with respect to the center, as illustrated by Fig. 3.

IV. ASYMPTOTIC BEHAVIOR OF MULTISOLITON

FIG. 2. (a) Graphical illustrations of the motion of the center SOLUTIONS

and the change of shape of a soliton solut&rexpressed by Eq. In this section we will construct a direct procedure for

(92) in the classical Heisenberg spin chain with an easy planegtdying the asymptotic behavior of multisoliton solutions in
wherep=0.3, £=0.1, £/=0.2, x;0=0, X»=0, and=w/4V, as a

unit of time. (b) Graphical illustrations of the motion of the center
and the change of shape of a soliton solut&nexpressed by Eqg.
(95) in the classical Heisenberg spin chain with an easy axis, where
p=0.3, £=0.1, £=0.2, x40=0, Xo,=0, andw/4V, as a unit of
time.

spin chain. In the figures, we took the parameters
£,=0.1, £/=0.2, x10=0, X,0=0, andw/4V, as a unit of
time and then sgt=0.10 in Figs. 1 and 49=0.3 in Fig. 2, S
andp=0 in Fig. 3, respectively. If tha-S; plane is taken a
reference plane whein=0, we can directly find the follow-

ing feature of solitary wavé; .

(i) Since the lowest point of the surface is located in the
plane of the center of the surface, we can observe the motion
of the center by looking at the motion of the lowest point.
The lowest point of the surface in the figures moves with five
constant velocitied/; corresponding to anisotropic param-

etersp, respectively. . . FIG. 4. Graphical illustrations of the depth and width of the
(if) The shape of the surface 8f changes with velocity  gyrface of a soliton solutio8; expressed by E¢92) in the classi-

V, and the surface is not symmetrical with respect to thecal Heisenberg spin chain with an easy plane changing periodically

center, as illustrated by Figs. 1 and 2, respectively. Wheyith time, wherep=0.1, £=0.1, £&=0.2, x;5=0, X»=0, and

p—0, the soliton solutiorS], expressed by Eq$92) and  #/4V, as a unit of time.
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the classical Heisenberg spin chain with uniaxial anisotropywhereKy is a 2x2 matrix independent of, i.e.,

in an external magnetic field. According to E42), we can
define

V(&) =In(E)¥o(£), (112
while

IN(E)=Dn(£)Dn-1(£)- - -D1($), 113

where Jy(€) has N pairs of poles ¢, and —g_n,
n=1,2,... N. Similar to Eq.(28), we can obtain the Lax
equations for¥ (&),

N(E)=Ln(E)Wn(E),

1387
i
ex;{z(@,\,(gf)a'z) for an easy plane
Kn(é) = i (118
exr{EG)N(g)az) for an easy axis,
with
N
On(E)= 2 ¢n(é). (119

Y NE)=MpN(EP (&), (114 By means of Egs(51) and(52), we can obtain the relations
On the basis of Eq48), Jy(£) can be written as
@ o J(—&)oy, foran easy plane (120
= J = 1
IN(E)=KnP(&), (115 N o, J(—&) o, foran easy axis
while
and
Kn(€)=CnCn-1---Cy (116
and F(O=I1E), AN O=I1 OO =],
N N (121
Pu()=1-2, ! G+2_1 G,, (117
N i1 En—E " S e while
|
N N
|- > ——GI—> o,Glo,  foran easy plane
t n=1¢,—§& n=1 énté
PN(&): N 1 N 1 (122)
|- > —G'— Gl for an easy axis
n§=:l n—g n nzl §n+§0'z n7z y
|
and N 1 N 1
Gyl - >, ——G!- > ——0,Glo,|=0
. f = m ngl En—Em n nzl §n+§m0-z n9z
PN (£) =Py (&), (123 (126)
where for an easy axis. This result shows tl&at, is degenerate; it
can be defined
g —0,Gnoy  for an easy plane 124 Gn=(a,B)) T (y,60). (127
" —0,G,0, foran easy axis.

BecauseJy(£)JIy1(8) =I5 (€)In(E) =1 in Eq. (12D, its
residue att= &, should vanish, i.e. GmP{(&m) =0,

N

| —
”Zl gn_gm

N

1
GI->

n n=1 §n+§m

1

Gm o,Groy | =0

(125

for an easy plane and

In order to solve Eqgs(125 and (126), we can introduce a
transformation

J(H=U"1 (&)U, (128

and

G/=U"1G,U, G/'=U"1GU=-G,, (129

whereU ~o,U=i. Corresponding to Eq$125 and(126),
we can write
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% 1

n=1 §n+§m

(G)T|=0. (130

n —

N
2_
=§n m

Taking the limité— &, in Eq. (114), we obtain
KNG o(€n) 1= Ln(ENTKNGRWo(€n) ],

H KNG o(£n)]=MN(E) KNG Wo(£n)].  (13D)
BecauseG,, is degenerate, the factor
(7aSn) Vol &n) (132

bi’zex;{i@ﬁp%ll)(x—z

fy
b%’zexr{ugn p2En >(

Substituting Eq(134) into Eq. (130), we obtain

N
m= > (ffat frmtfrbpn
n=1 &~ &m
N
+ fofntf 1t 136
1§n+§m( n )pn ( )
and
N 1 .
fol=> —— ottt Doy,
n=1 &n ‘fm
Noooq
+ fofntf 1t 13
2 §n+§m( )Vn ( 7)

By means of Egs(136) and(137), one can fingp,,,v,, and
Pu(é), eg.,

P4

1),,=1—- 138
PA(L)1 Elgnﬂ _1pnn (138
According to Eqs(136) and(137), we obtain
N 1 _
1= 2 ——(1+1,%, %) pnfn
n=1&,—&m
N
+2 3 +§m(1+f;2f;2)pnfn (139

and

AND HUANG 55

must be independent of andt. Therefore, we can simply
obtain

(yh60)=(b, )W (&), (133

whereb,, is a constant that has been shown in &4), while

a, Brn, vn, andés) are different frome,,, B,, yn, and
Sn, except thaty; =y, and §; = &;. Noting Eq.(132), G|,
can be expressed as

Gn:(pnvn)T(fnf;l)v (139
where
(gﬁ_—)t) for an easy plane
(€t p?) yPp
n—t) for an easy axis.
En(Ea—p?)
T
N —_—, —
:Z §_ 1+fr;|2fr72)pnfn
N
2 (1, 22 pofy. (140

n~ Sm

In terms of Egs.(139 and (140), py,pn,Pn(€)11, and
P (€) 12 can be easily determined. However, althoygland
pn appear in both Eqg139 and (140, it is hard to obtain
explicit expressions of them by the well-known Binet-
Cauchy formula. The asymptotic behaviors of the multisoli-
ton solutions can be derived from them.

Introducing
enfn if n=1, 1€1,2,... N
A|: e
pofn if n=1=-N, leN+1N+2,... N
(141
and
E,=1, lel.2,... N, (142

where E is a row matrix, Eqs(139 and (140 can be ex-
pressed by

E=AQ, (143
whereQ is a 2N X 2N matrix,
Q ! —— (14,29, (144
"M gyt Em
Qunem=———(1+f,%3), (145

n m
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1 .
QN+n,m:_—(1+fn 2fm2),

(1406
gn_gm
1 f-2¢-2
QN+n,N+m:m(l+fn 1:m ) (147)
By means of Eq(142),
A=EQ L. (148
Py(1)11 in Eq. (138) can be written as
2N
PL(1);;=1+ > AR=1+AR", (149
I=1
where
E-1 if n=1, 1e€1,2,...,N
R|:
— if n=I—-N, leN+1IN+2, ... N.

&+l
(150

According to Eq.(142), P{(1),, in Eq. (149 can be ex-

pressed as

def{Q+R'E
P(1)11=1+EQ 'R"= % (151
WhenN=1 and {=¢;, deQ is written as
1 1
E(Hf;“) ﬁ(1+|fj|*4)
deQ=de b
1 - 1 —.
—— 1+ =+t
i€ 2§
(152
By means of Eq(135), f, can be written as
fo=exp(— P +idy,), (153

where
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2&0(1€n1%+p?)
D= : |;|2 (X=V1nt—=X1n0),
n

)

q)Zn_ 2 (X_VZnt_ X2n0)v
&l

(154

2¢0(| &4+ p%)

Vi Te P&+ 0?)

_ &g (& +07)
o El&l?

for an easy plane and

2&0(1€n1%+p?)
D= : |;|2 (X=V1nt—=X1n0),
n

2& (&%= p?)
q)anT

(X=Vant—=Xzn0),

(155

Ag (&) p?)

Vin=—— 17—
n €]

2207 &l*+ (62— 60 (&l P+ p?)]
grﬁ|§n|2(|§n|2_l)2)

2n

for an easy axis.

Suppose al;>0 andV >V n-1)>- - - >Vy;, and the
vicinity of Vi,t—Xq,0 IS denoted by®,. For extremely
large t, these vicinities are separated from left to right as
On, On-1, ...,04. Inthe vicinity ®;, we have the limits

(X=Vipt=Xqno) — — 2, |fn|71_’0 if n<j,

(X=Vipt=Xgno) =, |[fo| 1= if m>j,

(156)

while detQ tends to
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wheren,n’ <j<m,m’.
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Now only those terms leading ;4| 2 - -|fy| ~® remain
in Ref.[38], we consider the term withou,

The term involvingfj_4 is the determinant

f*Zf*Z

m 'm’

§m+§m’

?szz

m 'm’

g_m_gm’

1 1 1 1 0
Entén  Enté & &
R B O P o N RO 17 R s
ETén 25 EtEw &—Ev  §& & m
e LS T o’ ? f5éf;f
Emt &) Emtém Em— & Em— &
_1 _1 0 _1 _1_ 0
En—&n & § éntén Enté
Vo T 1 et
Gt §-&  Ebw §TEn 28 Etém
. f_jzfj—z Ezf;’z o szri Ezf_i’z
bn— b € m Enté)  Emtém

(157)

. Itis hard to calculate this determinant. Similar to the procedure

gn_gn’

gj_gn’

1
— 0
‘fn_gj
1
o 0
&-¢
fo2f 2
Em— Em
1
_— 0
§n+§j
— 0
2§;
F—2¢-2
o ImTw
§m+§m’

(158
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1 1 1
0 0 — 0
§n+§n' gn_gn’ fn_gj
2§; &t &m &= Em
[ S e fmZf o’
0 §m+J§_ g“‘+§m’ 0 0 mom
mT& Em™ &m Em— &y (159
1 1 1
—_ 0 0 _— 0
gn gn’ §n+§n’ gn gj
1 1
_ 0 0 _ — 0
§J gn’ §j+§n’ 2§]
f 272 f %2 -2 2
o ~J _mw 0 o o™
fm_fj gm_gm’ §m+§m’
In addition to the common factdf ;| 8- - -|fy| 8, these two determinants are clearly proportional to
1 1 1
Enténr En—&n gn_gj 1 1
1 1 1 Emt&m £ Em
_ — — . (160
gn_fn’ gn""fn' §n+§j _ 1 _ 1_
1 1 1 Em—E€m EmTém
én_fn’ gn""fn' 25]
|
The proportional coefficients are _i—l (& &4 +§_n)
o ) o Tj— -, (164)
(6+6)° G- Er e GG
& |&— &2 n21 (£ + DA .__n)2 N - e
&1 ¢l (§+&n)°(§—¢ (& §m)(§1+é) (165

X s (64 Em) (6~ Em)

and
N — While deQ—deQQ{*",
1 (gj_fm)2(§j+§m)2 16 I
_2_§'m='+1 4 206 g )2 (162 +)_ (§j—§j)2 +)1—8
J I (f] &m) (é] &m) deQ< _——_(1+|f( |78)
APl

Therefore, the asymptotic behavior of the multisoliton solu- 1
tions in the limits(156) is similar to the single soliton solu- + 2[(f}+))—4+(w)74], (166)
tion, butf; is replaced byf{" 4/¢j]

12 the asymptotic expression of ¥t should be obtained.
f,“):(ﬂ) i, (163 Meanwhile,fb(l}r) and db(zj’) corresponding to those in Egs.
Xj (153 —(155 can be written as

j—ZIEJ,-I_(X_vllt_xljo_F(J)) for an easy plane
. (167)
P 28617+ 07
%(X_vlit_xljo_r(ﬂ)) for an easy axis
J

and
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2&1(|&]%—p?)
&éﬂ;(x—vzjt—xzjo—m}“)) for an easy plane
i
W(X—Vz;t—mo—r(ﬁ)) for an easy axis,
j
where
w for an easy plane
&P+ P
1j= A8 (|E12= p2 (169
fl (|§J| p .
T for an easy axis
i
and
(&2 &2)(1&12+p?
e for an easy plane
jlsj
V,i= , " (170
B TSt 151 ) I casy axis
&1&17(1&17—p%) '
while
|&12
W(Im 7jl=In[x;|) foran easy plane
jtlsj
(= 22 (171
m(lm 7il—=Inlx;|) for an easy axis
j\lsj
|
and Equations(90)—(95) show that soliton solutions in an an-
isotropic spin chain are dependent essentially on two veloci-
(+)_ | &ro7j— arg; for an easy plane 29 ties: V, in Eqg. (88) andV, in Eq. (89). The center of an
2j argrj—argy; for an easy axis. ) inhomogeneity moves with a constant velocity, while the

Similarly, whent— — o, the asymptotic behavior of multi-
soliton solutions in the vicinity oB; can be obtained, e.g.,
analogously to Eq9171) and(172),

-)_ + -)_ +
ryy)=-ry’, 15)=-T%".

J (173

Therefore, the total additional displacementldf; and the
total phase shiff’,; are
Iy=2r, TIy=2ry". (174

V. DISCUSSION

In the present paper, we introduce an auxiliary paramet

¢ in Egs. (25 and (26), whereé= *+p corresponds to zero
m (or A) and toh==*2p (or u==*2p). In the complexr
(or u) plane, these two points are the edges of céitson-
tributes to the determination fact@®, in Eq. (48). C, is

shape of solitary waves also changes with another velocity
V,. Therefore, the depths and widths of the surface of soli-
tary waves are not constants but vary periodically with time,
and the shape of solitary waves is not symmetrical with re-
spect to the center. By means of these features, we find that
soliton solutions in an anisotropic spin chain are not ex-
pressed in the form of a product of separated variables in
moving coordinates. Only when an anisotropic parameter
p—0 do these soliton solutions in an anisotropic spin chain
reduce to those in an isotropic spin chain; for example, the
single-soliton solution§110) and(111) in the polar coordi-
nates are equivalent to E¢R2) obtained by means of the
method of separating variables in moving coordinates in Ref.
19]. Therefore, it is impossible to investigate the exact soli-
on solutions in an anisotropic spin chain by means of the
method of separating variables.

Using the Hirota method, Bogdan and Koval§81]
sought the soliton solutions of the Landau-Lifshitz equation
in an anisotropic spin chain in the form

important to ensure that the Jost solution generated satisfies

the corresponding Lax equations. This indicates that in an

inverse scattering transformation the edges of cuts in the 2fg
complex plane must make a contribution even in the case of
nonreflection. Unfortunately, Borovik and Kulinidl29,30
apparently did not consider these effects. Evidently, they did

not obtain any expression of the solution. where

R

P +lgl*

175
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[N/2] (n)
f= aliq, ... jon)explp;, +- - +p; 176 a(iy,i for n=2
2y &, Al dzexlp, Piyy) (176 alie, .. Q)= 2 alii) 178
and 1 for n=0,1.
[(N=1)/2] . . . . .
. 2 z . . According to the expression of the single-soliton solutions
S a(ja, - dom+a) (90)—(95) in this paper, we find that they are difficult to
2m+1 . . . . .
express in the form of Hirota factorization. Obviously,
Xexplpj,+- - +pj, ), (1770 Bogdan and Kovaley31] did not obtain the desired results.

Reducing the equations of motion to an appropriate form,
where [N/2] is the maximum integer in addition to Kosevichet al.[25] found a solution in the classical Heisen-
N/2, C, represents the summation over all combinations oberg spin chain with an easy plane, while in terms of Eq.

N elements im, andp;= (k; + a)it-l-p?), while (96) in the polar coordinates in the present paper, there exists
" . 2%1(|§1|2_P2)
) 12{(|§1|2—P2)2+4P2|§1|23'n2 T(X—Vzt—xzo)
tar? —)— ; (179
281(|€1)%+p?)

(|§1|2_P2)2{ |£1]°costt T(X_Vlt—xlo) —5/1,2(|§1|2_P2)2)

If we compare Eq(179 with an approximate solution given ably chosen, the Jost solutions satisfy the corresponding Lax
by Ref.[25], we find that previous properties of the soliton equations. The exact soliton solutions are obtained; then the
solutions remain even in the approximation of orderpdf asymptotic behavior of the multisoliton solutions is investi-

The solutions of Refl25] do not satisfy the Landau-Lifshitz gated and the components of the total magnetic momen-

equation for the classical Heisenberg spin chain with an easjym, and the total magnetic momentum, are given. These
plane even in the first order of anisotropy, and there is nQesults have not previously been found, to our knowledge, by
reason to consider it as an approximate solution; all attemptgny means tried. They may be useful for further theoretical

in this apprOXimation were not successful. research and practica| app"cationsl
In the previous discussion using the suitable rescaling and

an appropriate spin Poisson bracket, the equations of motion
are obtained for an anisotropic Heisenberg spin chain with
Gilbert damping in an external magnetic field. Then, intro-
ducing an auxiliary parameter, the Lax equations for Dar- This work is supported by the National Natural Sciences
boux matrices are generated recursively. If constants are suifoundation of China.
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