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Critical behavior of the square-well fluid with l52: A finite-size-scaling study
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Departamento de Fı´sica Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065, Sevilla 41080, Spain

~Received 21 August 1996!

We report a Monte Carlo study of the liquid-vapor coexistence region and critical region of the square-well
fluid with range parameterl52. The liquid-vapor coexistence curve has been obtained by using the Gibbs
ensemble Monte Carlo method and the critical parameters estimated by analyzing the resulting coexistence
densities using a Wegner expansion truncated up to first-order terms. The shape of the coexistence curve in the
temperature-density plane of the phase diagram has been described in terms of an effective exponent,be . Our
results seem to indicate that the coexistence curve is well described by a nearly universal value ofbe , in
contrast with previous results, where it is claimed that the coexistence curve is compatible with a mean-field
value of be . The critical point of the system has been calculated with a higher degree of accuracy by
implementing the cumulant intersection method with the help of the reweighting technique. The universality
class to which this critical point belongs has been investigated implementing a mixed-field finite-size-scaling
simulation study within the grand canonical ensemble. By analyzing the scaling properties of the distribution
functions of the scaling operators at criticality, the Ising character of the critical point is confirmed for this
system. This is further corroborated by the calculated values of the critical exponent ratiosb/n and 1/n, which
are compatible with the expected values for the three-dimensional Ising universality class and incompatible
with the corresponding mean-field values.@S1063-651X~97!00302-4#

PACS number~s!: 64.60.Fr, 64.70.Fx, 05.70.Jk
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I. INTRODUCTION

It is well established@1# that close to the liquid-vapo
~LV ! critical point, the order parameter (r l2rv) vanishes
according to the scaling law

~r l2rv!;utub, ~1!

wherer l andrv are the liquid and vapor coexistence den
ties, respectively, at temperatureT. Here, t is defined as
t5(T2Tc)/Tc with Tc being the critical temperature, an
b is the~order-parameter! critical exponent. It is also gener
ally accepted that this critical point belongs to the thre
dimensional ~3D! Ising universality class with a valu
b'1/3 @1#. This implies that the LV coexistence curve
cubic in shape forT→Tc

2 .
Less well known is the shape of the LV coexistence cu

for temperatures well belowTc . This question has been ad
dressed by Singh and Pitzer@2# in a study of particular in-
terest in which existing experimental data on a number
liquid-vapor systems have been reexamined. This anal
was implemented in terms of an effective exponentbe and a
Wegner expansion@3# which accounts for corrections to sca
ing outside the critical region.

The effective exponentbe was first introduced by Ver-
shaffelt@4# a century ago as a sensitive parameter to mea
the shape of the LV coexistence curve. It is defined as

be5
] ln~r l2rv!

] lnutu
. ~2!

As claimed by Singh and Pitzer@2#, be is nearly constant
over a wide range of temperatures for simple fluids w
typical values ofbe in the range 0.33–0.36. Additionally, fo
551063-651X/97/55~2!/1347~8!/$10.00
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temperatures close enough toTc , be→b, as expected. Simu
lation results seem to confirm thatbe follows a similar pat-
tern for simple fluid models. From the analysis of Panagio
poulos’s Gibbs ensemble results for the Lennard-Jo
model@5#, Singh and Pitzer found thatbe , for this system, is
fairly constant over a temperature range 0.68,T/Tc,0.97
with be'0.34. It was finally suggested that the shape o
LV coexistence curve is never accurately described b
mean-field effective exponent (be51/2).

This point has been questioned by Vegaet al. @6# in a
subsequent simulation study of the square-well~SW! fluid
model. This model constitutes the simplest fluid model
cluding both repulsive and short-range attractive interacti
and is explicitly given by

u~r !5H `, if r,s

2e, if s<r,ls

0, if r>ls,

~3!

where r is the distance between the centers of mass of
SW particles,s is the diameter of the~spherical! hard core,
l is the ~dimensionless! range of the potential, ande is the
well depth.

In Ref. @6#, an extensive computer simulation study of t
LV phase equilibria and critical properties of SW fluids
reported for different values of the potential range w
1.25<l<2. As claimed by Vegaet al., the results for SW
fluids with l<1.75 seem to follow the general trend foun
by Singh and Pitzer, as the corresponding LV coexiste
curves are nearly cubic in shape and are well represente
an effective exponentbe very close to the expected univers
valueb'1/3. Surprisingly, the results for the largest pote
tial range considered in Ref.@6# are in stark contrast with this
1347 © 1997 The American Physical Society
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1348 55ENRIQUE de MIGUEL
generic behavior: the coexistence curve forl52 was found
to be nearly quadratic in shape and described by an effec
exponentbe50.5360.11. Additionally, it was concluded in
Ref. @6# that either the shape of the coexistence curve sho
change quite dramatically close enough to the critical po
~so as to observe the expectedbe→b as T→Tc), or even
that the SW fluid withl52 does not belong to the 3D Isin
universality class. Although classical behavior (b51/2) is
expected in the limit of infinite range attractive interaction
it does not seem plausible that this limit has been attained
the SW fluid withl52.

The above-mentioned considerations prompted us to
lyze critically the behavior of the SW fluid withl52. First,
the LV coexistence curve was recalculated using the Gi
ensemble Monte Carlo~GEMC! simulation method@5,7,8#
and considering larger systems than those reported p
ously @6# in order to check whether the results reported
Vegaet al.were affected to some extent by system-size
fects. Additionally, coexistence properties were obtained
a wider range of temperatures and, particularly, for tempe
tures closer to the critical point. This is expected to yield
more detailed information regarding the shape of the
coexistence curve and the approach to the critical point
this system.

The present work was completed with an independ
study of the critical properties of the SW fluid withl52
within the context of finite-size scaling~FSS! simulation
techniques@9#. These techniques have proven extrem
powerful in obtaining the critical parameters from simu
tions of finite-size systems in a large variety of physical s
tems. In most applications, full FSS analysis has been lim
to spinlike models with the Ising symmetry@9#. More re-
cently, Wilding and Bruce@10,11# have extended these idea
to the study of critical properties of fluids with reduced sy
metry incorporating explicitly the effects of field mixing
The success of this extended mixed-field FSS theory
been convincingly demonstrated in the study of the criti
behavior of the two-dimensional~2D! and 3D Lennard-Jone
fluid @10–12#, 2D and 3D asymmetric lattice gas mod
@13,14#, and polymer mixtures@15#.

The remainder of the paper is organized as follows.
Sec. II we give details of the simulations performed for t
SW fluid with l52 using the GEMC method. The LV co
existence properties for this system are then presented
discussed for the two system sizes investigated in the pre
work. In this section we also give details of the extrapolat
procedure used to obtain a first estimate of the critical c
stants of the system. The overall shape of the coexiste
curve, as measured from the effective exponentbe , is also
studied and comparison is made with previous results@6#.

In Sec. III, a brief survey is given of the basic ideas u
derlying the field-mixing FSS techniques@10,11# as applied
to the simulation of critical phenomena in fluid systems. W
then turn to the application of these ideas to the simulation
the critical region of the SW fluid withl52. The critical
point is located by using the cumulant intersection meth
@16# with the aid of histogram reweighting techniques@17#
within the grand canonical ensemble. We then analyze
scaling properties of the distribution functions of suitab
scaling variables, which in turn, allow us to determine t
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universality class to which the critical point of the syste
belongs. Finally, our results are summarized in Sec. IV.

II. GIBBS ENSEMBLE SIMULATION RESULTS

The Gibbs ensemble Monte Carlo method@5,7,8# is one
of the most widely used techniques to study fluid phase e
libria from computer simulation. The reader is referred to t
original papers@5,7# and to a recent review@8# for details
regarding the practical implementation of the method. In
present work, the LV coexistence properties of the SW fl
with l52 were investigated by using the GEMC techniqu

A first set of simulations was performed for systems co
tainingN5756 particles. In most cases, the initial vapor a
liquid configurations were generated by placing 256 and 5
particles, respectively, on a fcc lattice. For some tempe
tures, the starting configuration was taken from the fi
~equilibrated! configuration corresponding to a different tem
perature. The initial configuration was equilibrated in all i
stances for at least 53104 cycles, each cycle correspondin
to N particle displacements, one volume change attempt,
Nt attempts to transfer a particle from one phase to the ot
Nt typically varied from 750~for the lower temperatures! to
40 ~for near-critical temperatures!. The value ofNt at each
temperature was chosen so as to obtain equal chemica
tential values in both subsystems at equilibrium. Averag
for the properties of the two coexisting phases were ca
lated over 13105 additional cycles. For temperatures clo
to the critical point, longer runs implying 2–33105 cycles
were performed.

The coexisting densities for temperatures within the ran
2.25<T<2.63 are included in Table I. The temperature
expressed in units ofe/kB and the particle density in units o
s23. For temperaturesT,2.60, both subsystems kept the
initial ~vapor or liquid! identity during the simulations. In
such cases, the coexistence values were obtained by av
ing over blocks of 1000 cycles. At higher temperatures, ho
ever, both subsystems were observed to switch identity
expected for temperatures sufficiently close to the criti
temperature. For these temperatures, results were analyz
terms of histograms of the relative frequency of the parti
density. The corresponding coexistence densities were
associated to the position of the peaks in the density his
grams and standard deviations with the width of the cor
sponding peaks.

In order to check possible system-size effects on the
culated coexistence properties, a second set of simulat
was performed considering larger systems consisting
N51364 SW particles. The initial vapor and liquid config
rations were generated in a similar way, by considering 5
and 864 particles, respectively, on a fcc lattice. The coex
ence densities for temperatures in the range 0.245<T
<0.263 are included in Table I.

The liquid-vapor coexistence curve is shown in Fig. 1
the temperature-density projection of the phase diagram
the two system sizes investigated in this work. No syste
size effects were observed within the statistical accuracy
our results. The results obtained by Vegaet al. @6# for sys-
tems withN5512 SW particles are also shown in the figu
for comparison. According to Fig. 1, there is a slight~but
appreciable! difference between the results obtained w
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TABLE I. Liquid ( r l) and vapor (rv) coexistence densities obtained from Gibbs ensemble Monte C
simulations of systems withN5756 andN51364 SW particles with a potential rangel52. The temperature
(T) is expressed in units ofe/kB and the densities (r l , andrv) are expressed in units ofs23.

N5756 N51364
T rv r l rv r l

2.63 0.131~14! 0.364~33! 0.126~8! 0.367~28!
2.62 0.120~16! 0.361~45! 0.118~10! 0.362~26!
2.61 0.110~22! 0.370~36! 0.116~9! 0.371~19!
2.60 0.104~14! 0.376~18! 0.112~7! 0.378~16!
2.58 0.105~7! 0.392~18! 0.107~5! 0.413~13!
2.56 0.104~6! 0.429~11! 0.101~6! 0.426~12!
2.54 0.098~5! 0.442~8! 0.094~5! 0.433~10!
2.52 0.091~4! 0.452~9! 0.087~4! 0.443~10!
2.50 0.084~5! 0.462~9! 0.079~4! 0.447~10!
2.45 0.072~3! 0.489~9! 0.074~2! 0.485~8!

2.40 0.064~2! 0.514~8!

2.35 0.056~2! 0.538~7!

2.30 0.057~2! 0.575~7!

2.25 0.040~2! 0.574~6!
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N5512 and those obtained in the present work. These
ferences are attributed to an unsufficient equilibration of
simulations reported in Ref.@6# and not to system-size ef
fects @18#.

The liquid-vapor data can be used to estimate the loca
of the critical point. A careful analysis would, in principle
involve the use of several terms in the general Wegner
pansion of the order parameter (r l2rv), and in the expan-
sion of the ‘‘diameters’’ of the coexistence curv
(r l1rv)/2. However, the Gibbs ensemble data included
Table I are not of sufficient precision for a highly accura
analysis. According to this, and in line with related work

FIG. 1. Temperature-density liquid-vapor coexistence curve
the square-well fluid withl52 as obtained from Gibbs ensemb
Monte Carlo simulation for systems withN5756 particles~dots!
andN51364 particles~squares!. Open symbols are for the vapo
rv and liquid r l coexistence densities; filled symbols are for t
diameters (r l1rv)/2. The crosses correspond to the results fr
Ref. @6#. The lines are obtained by fitting the simulation data
N5756 ~solid line! andN51364~dashed line! to Eqs.~4! and~5!.
The estimated location of the critical point for eachN is also shown
in the figure. The temperature is in units of~e/kB! and the density is
in units ofs23.
if-
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we decided to keep only the leading terms in the gene
Wegner expansions. In practice, the critical temperatu
Tc , and the critical density,rc , were obtained by fitting the
simulation data to

r l1rv
2

5rc1C2utu, ~4!

r l2rv5B0utub, ~5!

whereB0 andC2 are the coefficients of the leading terms
the general Wegner expansions andb is the critical expo-
nent.

Equation~4! is the so-called law of rectilinear diamete
and its use is justified considering that the anomaly in
diameter of the coexistence curve close to the critical poin
normally very weak and difficult to observe.

Use of Eq.~5! for evaluatingTc using temperatures wel
below the critical region should be regarded with some ca
In principle, Eq. ~5! is just an asymptotic relation and it
validity is limited to data sufficiently close toTc . It is nor-
mal practice, however, to fixb in Eq. ~5! to the appropriate
critical exponent and estimateTc by fitting the simulation
data over the entire range of temperatures. This proced
yields a fairly good estimate ofTc for systems in which the
effective exponent defined in Eq.~2! is nearly constant ove
the considered range of temperatures.

A different possibility implies consideringb in Eq. ~5! as
an additional adjustable parameter. This free parameter c
cides withbe for systems with a temperature-independe
effective exponent. Under this assumption, Vegaet al. @6#
used Eq.~5! with b5be to describe the shape of the coe
istence curve for the SW fluid with variablel. As claimed in
Ref. @6#, the LV coexistence curves for systems wi
1.25<l<1.75 were well described by an exponent close
the universal value, while forl52 the best fit was obtained
for the valuebe50.5360.11.

r
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TABLE II. Values of the critical temperatureTc , critical densityrc , and coefficientsB0 andC2 as
obtained from fitting the Gibbs ensemble Monte Carlo simulation results for systems withN SW particles
with l52 included in Table I to Eqs.~4! and ~5!. Results forN5756 and 1364 correspond to the prese
work. Also included are the results obtained forN5512 by Vegaet al. @6#. Results labeled † were obtaine
by considering the effective exponentbe as a free parameter, and the remainder by fixingbe to 1/3 or 1/2.

N be Tc rc B0 C2

512 0.54~11!† 2.764~23! 0.225~18! 1.31~12! 0.72~8!

756 0.40~5!† 2.678~27! 0.244~8! 1.12~9! 0.44~7!

1/3 2.648~14! 0.249~8! 1.00~12! 0.43~7!

1/2 2.730~14! 0.235~8! 1.29~22! 0.45~7!

1364 0.39~15!† 2.684~51! 0.235~82! 1.06~33! 0.50~21!
1/3 2.666~85! 0.238~81! 0.94~40! 0.49~21!
1/2 2.721~89! 0.228~85! 1.31~36! 0.50~21!
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We have included in Table II the critical parameters o
tained after fitting our Gibbs ensemble data for systems w
N5756 and 1364 particles to Eqs.~4! and ~5! with b5be
left as a free parameter. For both system sizes, the LV cu
were well represented by a substantially lower effective
ponent than that reported in Ref.@6#. For systems with
N5756 we foundbe50.4060.05 and for systems with
N51364 we foundbe50.3960.15.

We have also obtained the critical parameters by fix
the exponentb in Eq. ~5! to b51/3 andb51/2. The corre-
sponding values are included in Table II.

From these results it seems plausible to conclude that
shape of the coexistence curve for the SW fluid withl52 is
nearly cubic and is not accurately described by a mean-fi
effective exponent.

The question of whether the coexistence curve close
Tc in a mean-field or universal fashion~i.e., whether
be→1/2 or 1/3 asT→Tc) still remains unresolved and i
addressed in Sec. III.

III. FINITE-SIZE SCALING

One of the potential uses of FSS techniques is to inve
gate critical phenomena from numerical computer simu
tions performed in small samples@9#. The most widely used
approach exploits the scaling properties of the ord
parameter distribution function@16#. The prediction that the
form of this distribution at the critical point is unique for a
members of a given universality class has been largely s
ported from computer simulation@9#.

Only recently have these techniques been generalize
deal with simulation of critical behavior in liquids lackin
the Ising symmetry. In this context, Wilding and Bruce ha
developed a FSS theory incorporating the effects of fi
mixing @10,11#. This approach has been tested and its im
cations analyzed for a number of systems in a surprisin
successful way@10–15#.

In the following subsection, we highlight some of th
ideas underlying the mixed-field FSS theory which are
relevance for the present work.

A. Theoretical details

We consider a classical fluid system in a volumeV5Ld,
whered is the dimensionality of the system, described in t
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grand canonical ensemble. The~particle! density will be de-
noted asr5N/V and the energy density byu5U/V, where
U is the configurational energy of the system.

Let pL(r,u) be the probability distribution function o
density and energy fluctuations for a system of linear dim
sion L for given thermodynamic conditions specified by t
dimensionless~inverse! temperatureb̄5e/(kBT), and the di-
mensionless chemical potentialm̄5m/(kBT). Here, kB is
Boltzmann’s constant ande is the energy scale of the syste
This distribution can be formally written as an ensemble
erage and is readily accessible from a computer simulati

It is well established@19# that the behavior of the system
close to the critical point is controlled by two relevant sc
ing fields, namely, the thermal scaling fieldt and the order-
ing scaling fieldh. These scaling fields are analytic function
of the chemical potential and temperature and vanish ide
cally at the critical point. In the critical region,t andh can
be expressed as combinations of the deviations ofm̄ and b̄
from their critical values,m̄c and b̄c . Specifically, and to
linear-order terms, it is expected@19#

t5b̄c2b̄1s~m̄2m̄c!, ~6!

h5m̄2m̄c1r ~ b̄c2b̄ !, ~7!

wheres and r are nonuniversal parameters which accou
for the degree of field mixing@10,11#.

From the scaling fieldst and h two ~conjugate! scaling
operatorsM andE are defined by requiring@10,11#

^E&5
1

VS ] lnQL

]t D , ~8!

^M &5
1

VS ] lnQL

]h D , ~9!

whereQL denotes the grand canonical partition function f
a system of linear dimensionL and the brackets indicate a
average over this ensemble.

Following the above convention, the scaling operat
M andE can be explicitly written as a combination~ormix-
ing! of the particle density and energy density
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M5
1

12sr
~r2su!, ~10!

E5
1

12sr
~u2rr!, ~11!

According to these expressions, the distribution of mix
operators,pL(M ,E) is related topL(r,u) by

pL~M ,E!5~12sr!pL~r,u!. ~12!

Close to the critical point, and for sufficiently large syste
sizes, the distribution functionspL(M )5*dEpL(M ,E) and
pL(E)5*dMpL(M ,E) of the single operators are expect
to be expressed in terms of scaling relations of the fo
@10,11#

pL~M !'aM
21Lb/np̃M~aM

21Lb/ndM ,aML
d2b/nh,aEL

1/nt!,
~13!

pL~E!'aE
21Ld21/np̃E~aE

21Ld21/ndE,aML
d2b/nh,aEL

1/nt!.
~14!

Here, dM and dE are given by dM5M2Mc and
dE5E2Ec , whereMc and Ec denote average values
criticality. The functionsp̃M and p̃E are expected to be uni
versal under appropriate choices of the metric factorsaM and
aE of the corresponding scaling fields. Relations~13! and
~14! constitute the basic scaling postulates. Exactly at
critical point, the scaling fields vanish and, from Eqs.~13!
and ~14!, it follows:

pL~M !'aM
21Lb/np̃ M* ~aM

21Lb/ndM !, ~15!

pL~E!'aE
21Ld21/np̃ E* ~aE

21Ld21/ndE!, ~16!

wherep̃M* (x) and p̃E* (y) are universal functions of the sca
ing variablesx5aM

21Lb/ndM andy5aE
21Ld21/ndE, respec-

tively, and correspond to the fixed-point distributions whi
describe each universality class.

In most applications of mixed-field FSS techniques,
universality class is assumed~or known beforehand!. Having
then an independent evaluation of the corresponding fix
point functionsp̃M* (x) and p̃E* (y) allows the determination
of the critical point by requiring thatpL(M ) andpL(E) col-
lapse onto the respective fixed-point functions.

We did not follow this procedure, as the determination
the universality class is one the objectives of the pres
study. Instead, the critical point was independently evalua
~see below!. According to Eqs.~15! and ~16!, pL(M ) and
pL(E) for different system sizes should become independ
of L at the calculated critical point. The particular form
these single, system-size independent curves constitute
unambiguous signature of the corresponding universa
class.

It is important to recall at this point that all these conc
sions only apply in the limit of largeL in which correction-
to-scaling effects are expected to be negligibly small@10,11#.
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B. FSS study of the SW fluid

The critical region of the SW fluid withl52 was ex-
plored using Monte Carlo simulations in the grand canoni
ensemble. Several system sizes, corresponding to volu
V5800,1500, and 2500~in s3 units! were investigated. The
simulation box was cubic and usual periodic boundary c
ditions were used. The initial configuration was generated
considering 256~for V5800), 500~for V51500), and 864
~for V52500) particles on the sites of a fcc lattice.

For given values of the chemical potentialm̄ and tempera-
ture T, this starting configuration was allowed to relax
equilibrium by performing particle displacements a
insertion-deletion of particles according to well establish
Monte Carlo acceptance-rejection rules@20#. Typically, this
initial equilibration stage consisted on 33105 cycles, each
cycle comprisingN particle displacements~whereN is the
instantaneous number of particles! and 50 particle insertion-
deletion attempts.

The key observable in our simulations was the distrib
tion function of particle density and energy density fluctu
tions pL(r,u), defined previously. Once equilibrium wa
reached this quantity was measured as a double histog
Rather long simulations are required in order to obtain
reliable sampling ofpL(r,u). With the aim of saving com-
putational time, successive configurations were generate
implementing just the particle insertion-deletion step, and
explicit particle displacements were performed during
production stage of the simulation. As claimed by Wildin
and Bruce @10,11#, this restricted implementation of th
usual grand canonical ensemble Monte Carlo scheme is
tified, as the density fluctuations are correctly sampled.
the other hand, particle displacements are performed imp
itly as a result of the particle insertion-deletion step.

The double histogrampL(r,u) was recorded by genera
ing 12.53107 ~for V5800), 253107 ~for V51500), and
503107 ~for V52500) of such configurations. These sim
lations were performed on a DEC Alpha 3000 workstati
and required, approximately, 12, 34, and 90 hours of C
time, respectively.

The probability distribution functionpL(r,u) was calcu-
lated at the reference thermodynamic statem̄0523.0394
andT052.665. We then made use of the reweighting te
nique@17#, which affords calculation ofpL(r,u) at different
conditions (m̄,T) in the neighborhood of the reference sta
point. Precisely in this region~close to the critical point!, this
technique is quite powerful due to the large critical fluctu
tions which, in turn, allow for a reliable sampling o
pL(r,u).

The coexistence line in them̄-T plane was calculated in
the neighborhood of (m̄0 ,T0) using the equal-weight crite
rion for the density distribution function@21#, obtained from
pL(r,u) as

pL~r!5E dupL~r,u!. ~17!

For a given temperature, the value of the chemical pot
tial at coexistence was found by reweightingpL(r) until the
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1352 55ENRIQUE de MIGUEL
area enclosed by the vapor and liquid peaks appearin
pL(r) becomes equal.

We present in Fig. 2 the coexistence line in them̄-T plane
as obtained from the equal-weight criterion for the three s
tem sizes studied in the present work. We also show in
figure the location of the critical point~see below!. One of
the effects of simulating finite-size systems is that the app
ent ~finite-size! critical temperature is shifted to higher tem
perature values when compared with the true~infinite-size!
critical temperature@16#. This results in the observation of
double-peak structure inpL(r) even above the critical tem
perature of the system. This effect becomes noticeabl
Fig. 2, where it can be observed that the coexistence
extends for temperatures aboveTc .

The critical point of the system was located as follow
For each value ofV, we calculated the fourth-order Binder
cumulant,UL , defined as@16#

UL512
^m4&
3^m2&2

, ~18!

where m5r2^r&. Again, the histogram extrapolatio
method@17# was used to evaluateUL as a function of tem-
perature in the neighborhood of the reference thermo
namic state. The critical point coincides with the point
which UL becomes system-size independent@16#.

The values ofUL for system sizes corresponding
V5800, 1500, and 2500 are shown in Fig. 3 as a function
the temperature. According to Fig. 3, the curves intersect
temperature valueTc52.6821(8) which corresponds t
m̄c523.019(1).

The universality class associated to the critical point
the SW fluid withl52 was independently assessed by pro
ing the scaling behavior of the single scaling operator dis
butionspL(M ) andpL(E). According to Eqs.~15! and~16!,
these distributions are predicted to collapse into sin
curves which, in turn, characterize the appropriate univer
ity class. Following the definitions of the operatorsM and

FIG. 2. Liquid-vapor coexistence line in them̄-T plane as ob-
tained from the equal-weight criterion for three systems of volu
V. The reduced chemical potential is defined asm̄5m/(kBT), the
temperature is in units ofe/kB and the volume is in units ofs

3. The
arrow indicates the location of the critical point of the system.
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E given in Eqs.~10! and ~11!, this mapping requires prio
knowledge of the field-mixing parameterss and r .

In practice, the value ofs was found by reweighting
pL(M ) at the calculated values ofTc and m̄c for each value
of L until a single, system-size independent curve was fou
This is illustrated in Fig. 4, where the critical ordering o
erator distributions are shown in terms of the scaling varia
x5aM

21Lb/n(M2Mc). The scale factor is fixed by choosin
the distributions, for all system sizes, to have unit varian
The collapse of the data was effected by choos
s520.01(1).

Similarly, the value of the parameterr was chosen by
reweightingpL(E) at (m̄c ,Tc) until the curves for different
system sizes collapsed onto a single, system-size inde
dent curve. The scaling behavior ofpL(E) predicted by Eq.
~16! is demonstrated in Fig. 5 for the choicer528.60(6).

A comparison of the scaling behavior ofpL(M ) and

FIG. 3. The values of Binder’s cumulantUL defined in Eq.~18!
as a function of temperature for different systems of volumeV ~in
s3 units! and calculated along the liquid-vapor coexistence lin
The intersection, which defines the location of the critical poi
occurs forTc52.6821(8) andm̄c523.019(1). Thetemperature is
in units of e/kB.

FIG. 4. The distribution functions of the scaling operatorM at
criticality for systems with volumeV5800, 1500, and 2500~in
s3 units! as a function of the scaling variabl
x5aM

21Lb/n(M2Mc). The metric factor has been chosen so th
the distributions have unit variance. The matching is effected
choosing the mixing parameters520.01(1).
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pL(E) at criticality shown in Figs. 4 and 5 with the expecte
fixed-point distributionsp̃M* (x) and p̃E* (y), for the 3D Ising
model ~see, for instance, Figs. 6 and 8 from Ref.@15#!, per-
mits us to conclude that the LV critical point for the SW
fluid with l52 belongs to the 3D Ising universality class

It is important to recall that the distribution functions a
pearing in Figs. 4 and 5 have been plotted with no assu
tion on the values of the critical exponentsb/n and 1/n.
Moreover, the exponent ratios may be obtained by comp
ing the standard deviations ofpL(M ) andpL(E) as a func-
tion of system size@10,12#. We carried out this compariso
for the two largest system sizes considered in this wo
obtaining the valuesb/n50.55(3) and 1/n51.68(6). These
values are only in moderate agreement with the correspo
ing exponent ratio values obtained by Ferrenberg and L
dau @22# for the 3D Ising model@b/n50.518(7) and
1/n51.594(4)#. Although corrections to scaling may be a
preciable for the relatively small samples simulated in t
work, we believe that the discrepancies between the ca
lated and the expected exponent ratios arise essentially
the somewhat poor statistics of the measured joint distr
tion functions for the larger system sizes and the errors in
location of the critical point.

IV. SUMMARY

We have presented in this work a simulation study of
LV coexistence curve and critical region of the SW flu
model withl52. The LV coexistence curve has been stu
ied by using the standard GEMC method for two syst
sizes. Within the accuracy of our results, the resulting va
and liquid densities do not exhibit appreciable system-s
effects over the range of temperatures covered in the pre
study.

The approach to criticality has been analyzed in terms
the effective critical exponent,be , which constitutes an in-
dication of the shape of the LV curve. For both system siz

FIG. 5. The distribution functions of the scaling operatorE at
criticality for systems with volumeV5800, 1500, and 2500~in
s3 units! as a function of the scaling variabl
y5aE

21Ld21/n(E2Ec). The metric factor has been chosen so th
the distributions have unit variance. The matching is effected
choosing the mixing parameterr528.60(6).
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our results are consistent with a nearly universal effect
exponent. This is in contrast with previous results, where i
claimed that the LV curve for this system is compatible w
a mean-field effective exponent. The critical parameters h
been obtained, as a first approximation, by fitting the GEM
data using a Wegner expansion including only the lead
terms. The critical temperature so obtained is slightly low
than that reported previously@6#.

As a more precise route for obtaining the critical point
the system, we have used the fourth-order Binder’s cumu
method. With the help of the reweighting technique, we ha
obtained the density distribution function in the neighbo
hood of the critical point for three system sizes. These
mulants intersect at a well defined point defining the criti
point. It has been found thatm̄c523.019(1) ~in units of
kBT), andTc52.6821(8)~in units of e/kB). The values of
the critical temperature obtained by extrapolation of t
Gibbs ensemble data areTc52.678(27) ~for N5756 par-
ticles! andTc52.684(51)~for N51364 particles!. As in the
case of the Lennard-Jones model, the estimate of the cri
point by using the GEMC method is rather satisfactory. W
should stress that these values of the critical temperat
have been obtained by consideringb as an adjustable param
eter. Had this exponent been fixed tob51/3 ~as done in
most applications!, the results would have been slightly di
ferent. From the data obtained in this work, fixingb51/3
yields Tc52.648(14) (N5756), and Tc52.666(85)
(N51364).

The neighborhood of the critical region has been explo
by performing a finite-size-scaling analysis within the fram
work of the mixed-field FSS theory introduced by Wildin
and Bruce. Our major concern at this point has been to g
numerical evidence regarding the universality class to wh
the LV critical point for the SW fluid withl52 belongs.
Although it is expected that the LV critical point in fluid
characterized by short-range interactions belongs to the I
universality class, the results forl52 included in Ref.@6#
cast some doubts in this regard. We have shown that
distribution functions of the scaling operators at critical
for the SW fluid with l52 resemble quite closely thos
previously reported for the 3D Ising magnet fluid, thus g
ing strong evidence that the SW fluid withl52 belongs to
the 3D Ising universality class. This is further corroborate
in part, by the values of the critical exponents obtained fr
our FSS analysis@b/n50.55(3) and 1/n51.68(6)#. Even
though affected by a substantial uncertainty, our estima
for the exponent ratiosb/n and 1/n are in reasonable agree
ment with the values expected for the 3D Ising universa
class@b/n50.518(7) and 1/n51.594(4)#, and are incom-
patible with the corresponding mean-field values (b/n51
and 1/n52).
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