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Critical behavior of the square-well fluid with A=2: A finite-size-scaling study
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We report a Monte Carlo study of the liquid-vapor coexistence region and critical region of the square-well
fluid with range parametex=2. The liquid-vapor coexistence curve has been obtained by using the Gibbs
ensemble Monte Carlo method and the critical parameters estimated by analyzing the resulting coexistence
densities using a Wegner expansion truncated up to first-order terms. The shape of the coexistence curve in the
temperature-density plane of the phase diagram has been described in terms of an effective egpofemt,
results seem to indicate that the coexistence curve is well described by a nearly universal valueirof
contrast with previous results, where it is claimed that the coexistence curve is compatible with a mean-field
value of B,. The critical point of the system has been calculated with a higher degree of accuracy by
implementing the cumulant intersection method with the help of the reweighting technique. The universality
class to which this critical point belongs has been investigated implementing a mixed-field finite-size-scaling
simulation study within the grand canonical ensemble. By analyzing the scaling properties of the distribution
functions of the scaling operators at criticality, the Ising character of the critical point is confirmed for this
system. This is further corroborated by the calculated values of the critical exponeniatiaad 14, which
are compatible with the expected values for the three-dimensional Ising universality class and incompatible
with the corresponding mean-field valu¢S1063-651X97)00302-4

PACS numbg(s): 64.60.Fr, 64.70.Fx, 05.70.Jk

I. INTRODUCTION temperatures close enoughfg, B.— B, as expected. Simu-
lation results seem to confirm thgt, follows a similar pat-
tern for simple fluid models. From the analysis of Panagioto-
poulos’s Gibbs ensemble results for the Lennard-Jones
model[5], Singh and Pitzer found th#,, for this system, is
fairly constant over a temperature range :@8T.<0.97
with B.,~0.34. It was finally suggested that the shape of a

whereo: ando. are the liauid and vapor coexistence densi-LV coexistence curve is never accurately described by a
Pi Py q P mean-field effective exponenp(=1/2).

ties, respectively, at temperatuiie Here,t is defined as This point has been questioned by V 1.[6] in a

t:.(-l;; TC)/dTC with Te tbe'n? tTe critical ttelin.perlature, and subsequent simulation study of the square-w8NW) fluid
B is the (order-parametgrcritical exponent. It is also gener- model. This model constitutes the simplest fluid model in-

Z!Iy acc;epttla((dgtDr;atl th|s cnt!cal p(l?;nt blelongs.ttr? the tTree'cluding both repulsive and short-range attractive interactions
imensiona sing universality class with a value __ ¢ explicitly given by

B~1/3 [1]. This implies that the LV coexistence curve is
cubic in shape folf — T, .

It is well established1] that close to the liquid-vapor
(LV) critical point, the order parametep,—p,) vanishes
according to the scaling law

(p1=p,) |t (1)

. . ,  ifr<
Less well known is the shape of the LV coexistence curve * I 7
for temperatures well belov, . This question has been ad- u(r)y=y —€ if osr<io €
dressed by Singh and Pitzg?] in a study of particular in- 0, if r=\o,

terest in which existing experimental data on a number of

liquid-vapor systems have been reexamined. This analysigherer is the distance between the centers of mass of the
was implemented in terms of an effective expongpand & gy particless is the diameter of théspherical hard core,
Wegner expansiof8] which accounts for corrections to scal- , is the (dimensionlessrange of the potential, and is the

ing outside the critical region. well depth.

The effective exponeng, was first introduced by Ver- In Ref.[6], an extensive computer simulation study of the
shaffelt[4] a century ago as a sensitive parameter to measurie phase equilibria and critical properties of SW fluids is
the shape of the LV coexistence curve. Itis defined as  rgported for different values of the potential range with

1.25<\=<2. As claimed by Veget al, the results for SW

_9 In(p1—py) ) fluids with A=<1.75 seem to follow the general trend found

€ dlnjt] - by Singh and Pitzer, as the corresponding LV coexistence
curves are nearly cubic in shape and are well represented by

As claimed by Singh and Pitzg2], 8. is nearly constant an effective exponerg, very close to the expected universal
over a wide range of temperatures for simple fluids withvalue 8~ 1/3. Surprisingly, the results for the largest poten-
typical values ofg, in the range 0.33-0.36. Additionally, for tial range considered in RdE] are in stark contrast with this
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generic behavior: the coexistence curve Xer2 was found  universality class to which the critical point of the system
to be nearly quadratic in shape and described by an effectivieelongs. Finally, our results are summarized in Sec. IV.
exponentB,=0.53+0.11. Additionally, it was concluded in
Ref.[6] that either the shape of the coexistence curve should
change quite dramatically close enough to the critical point
(so as to observe the expect8d— B8 asT—T,.), or even The Gibbs ensemble Monte Carlo metH&]7,8] is one
that the SW fluid with\ =2 does not belong to the 3D Ising Of the most widely used techniques to study fluid phase equi-
universality class. Although classical behavig@=1/2) is libria from computer simulation. The reader is referred to the
expected in the limit of infinite range attractive interactions,original paperg5,7] and to a recent revielg] for details

it does not seem plausible that this limit has been attained fdiegarding the practical implementation of the method. In the
the SW fluid withh =2. present work, the LV coexistence properties of the SW fluid

é(\_/ith N =2 were investigated by using the GEMC technique.
A first set of simulations was performed for systems con-
aining N= 756 particles. In most cases, the initial vapor and

ensemble Monte CarléGEMC) simulation method5,7.9] |qU|_d conflguratlo_ns were generated. by placing 256 and 500
Vpartlcles, respectively, on a fcc lattice. For some tempera-

and considering larger systems than those reported pre fures, the starting configuration was taken from the final

ously [6] in order to check whether the results reported by(equilibra’tec] configuration corresponding to a different tem-

Vegaet al. were affected to some extent by system-size fy,q 41 re. The initial configuration was equilibrated in all in-

fect_s. Additionally, coexistence propertigs were obtained foki5nces for at least510* cycles, each cycle corresponding
a wider range of temperatures and, particularly, for temperag, N particle displacements, one volume change attempt, and
tures closer to the critical point. This is expected to yield ay, attempts to transfer a particle from one phase to the other.
more detailed information regarding the shape of the LVNt typically varied from 75Qfor the lower temperaturgso
coexistence curve and the approach to the critical point fopg (for near-critical temperaturgsThe value ofN, at each
this system. temperature was chosen so as to obtain equal chemical po-
The present work was completed with an independentential values in both subsystems at equilibrium. Averages
study of the critical properties of the SW fluid with=2  for the properties of the two coexisting phases were calcu-
within the context of finite-size scaling=SS simulation lated over X 10° additional cycles. For temperatures close
techniques[9]. These techniques have proven extremelyto the critical point, longer runs implying 2-8 10° cycles
powerful in obtaining the critical parameters from simula- were performed.
tions of finite-size systems in a large variety of physical sys- The coexisting densities for temperatures within the range
tems. In most applications, full FSS analysis has been limite@.25<T=<2.63 are included in Table |. The temperature is
to spinlike models with the Ising symmetf@]. More re- expressed in units af/kg and the particle density in units of
cently, Wilding and Bruc¢10,11] have extended these ideas o~ >. For temperature3 <2.60, both subsystems kept their
to the study of critical properties of fluids with reduced sym-initial (vapor or liquid identity during the simulations. In
metry incorporating explicitly the effects of field mixing. such cases, the coexistence values were obtained by averag-
The success of this extended mixed-field FSS theory haisg over blocks of 1000 cycles. At higher temperatures, how-
been convincingly demonstrated in the study of the criticalever, both subsystems were observed to switch identity, as
behavior of the two-dimensioné&D) and 3D Lennard-Jones expected for temperatures sufficiently close to the critical
fluid [10-12, 2D and 3D asymmetric lattice gas model temperature. For these temperatures, results were analyzed in
[13,14], and polymer mixturef§l5]. terms of histograms of the relative frequency of the particle
The remainder of the paper is organized as follows. Indensity. The corresponding coexistence densities were thus
Sec. Il we give details of the simulations performed for theassociated to the position of the peaks in the density histro-
SW fluid with A=2 using the GEMC method. The LV co- grams and standard deviations with the width of the corre-
existence properties for this system are then presented argponding peaks.
discussed for the two system sizes investigated in the present In order to check possible system-size effects on the cal-
work. In this section we also give details of the extrapolationculated coexistence properties, a second set of simulations
procedure used to obtain a first estimate of the critical conwas performed considering larger systems consisting on
stants of the system. The overall shape of the coexistendd=1364 SW particles. The initial vapor and liquid configu-
curve, as measured from the effective expon@pt is also  rations were generated in a similar way, by considering 500
studied and comparison is made with previous reg6lts and 864 particles, respectively, on a fcc lattice. The coexist-
In Sec. lll, a brief survey is given of the basic ideas un-ence densities for temperatures in the range G285
derlying the field-mixing FSS techniqué$0,11] as applied =<0.263 are included in Table I.
to the simulation of critical phenomena in fluid systems. We The liquid-vapor coexistence curve is shown in Fig. 1 in
then turn to the application of these ideas to the simulation othe temperature-density projection of the phase diagram for
the critical region of the SW fluid withh=2. The critical the two system sizes investigated in this work. No system-
point is located by using the cumulant intersection methodize effects were observed within the statistical accuracy of
[16] with the aid of histogram reweighting techniqugs’]  our results. The results obtained by Veefaal. [6] for sys-
within the grand canonical ensemble. We then analyze thtems withN=512 SW particles are also shown in the figure
scaling properties of the distribution functions of suitablefor comparison. According to Fig. 1, there is a slighut
scaling variables, which in turn, allow us to determine theappreciablg difference between the results obtained with

Il. GIBBS ENSEMBLE SIMULATION RESULTS

The above-mentioned considerations prompted us to an
lyze critically the behavior of the SW fluid withk=2. First,
the LV coexistence curve was recalculated using the Gibb
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TABLE I. Liquid (p;) and vapor p,) coexistence densities obtained from Gibbs ensemble Monte Carlo
simulations of systems witN =756 and\N = 1364 SW particles with a potential ranye-2. The temperature
(T) is expressed in units af/kg and the densitiesp(, andp,) are expressed in units of 3.

N=756 N=1364

T Py Pl Po P
2.63 0.13114) 0.36433) 0.1268) 0.367128)
2.62 0.12016) 0.361(45) 0.11810) 0.362326)
2.61 0.11022) 0.37036) 0.1169) 0.37%19)
2.60 0.10414) 0.37618) 0.1127) 0.37816)
2.58 0.10%7) 0.39218) 0.1075) 0.41313)
2.56 0.1046) 0.42911) 0.1016) 0.42612)
2.54 0.0985) 0.4428) 0.0945) 0.43310)
2.52 0.0914) 0.4529) 0.0874) 0.44310)
2.50 0.0845) 0.4629) 0.0794) 0.44710)
2.45 0.0723) 0.4899) 0.0742) 0.48538)
2.40 0.0642) 0.51438)

2.35 0.0562) 0.5347)

2.30 0.0512) 0.5757)

2.25 0.0402) 0.5746)

N=512 and those obtained in the present work. These difwe decided to keep only the leading terms in the general

ferences are attributed to an unsufficient equilibration of theNegner expansions. In practice, the critical temperature,

simulations reported in Ref6] and not to system-size ef- T, and the critical densityy., were obtained by fitting the

fects[18]. simulation data to
The liquid-vapor data can be used to estimate the location

of the critical point. A careful analysis would, in principle,

involve the use of several terms in the general Wegner ex-

pansion of the order parametes, - p,), and in the expan-

sion of the “diameters” of the coexistence curve,

(pi+ p,)/2. However, the Gibbs ensemble data included in p1— p,=Bolt|?, (5)

Table | are not of sufficient precision for a highly accurate

analysis. According to this, and in line with related works,

Pt

2 :pC+C2|t|’ (4)

whereB, andC, are the coefficients of the leading terms in

the general Wegner expansions afids the critical expo-

nent.

27l ] Equation(4) is the so-called law of rectilinear diameters
= and its use is justified considering that the anomaly in the

diameter of the coexistence curve close to the critical point is

normally very weak and difficult to observe.

Use of Eq.(5) for evaluatingT, using temperatures well
below the critical region should be regarded with some care.
In principle, Eq.(5) is just an asymptotic relation and its
validity is limited to data sufficiently close td.. It is nor-
mal practice, however, to fig in Eq. (5) to the appropriate
critical exponent and estimafg; by fitting the simulation
data over the entire range of temperatures. This procedure
o o oz o o yields a fairly good estimate of. for systems in which the

density effective exponent defined in E(R) is nearly constant over
Lo _ the considered range of temperatures.
FIG. 1. Temper_atur(_e-densny I|qU|d-_vapor coem_stence curve for A different possibility implies considering in Eq. (5) as
the square-well fluid with =2 as obtained from Gibbs ensemble - . - .
Monte Carlo simulation for systems with=756 particles(dots an addlt_lonal adjustable para_meter. This free pqrameter coin-
cides with B, for systems with a temperature-independent

and N= 1364 particlessquares Open symbols are for the vapor . . .
p, and liquid p, coexistence densities; filled symbols are for the effective exponent. Under this assumption, Vegal. [6]

diameters g+ p,)/2. The crosses correspond to the results fromUSed Ed.(5) with 8= B, to describe the shape of the coex-
Ref. [6]. The lines are obtained by fitting the simulation data for iStence curve for the SW fluid with variable As claimed in

N=756 (solid line) andN=1364 (dashed lingto Egs.(4) and(5).  Ref. [6], the LV coexistence curves for systems with
The estimated location of the critical point for eahis also shown ~ 1.25<A<1.75 were well described by an exponent close to
in the figure. The temperature is in units(@fkg) and the density is  the universal value, while fox=2 the best fit was obtained
in units of 3. for the valueB,=0.53+0.11.

26}

25}

temperature

24}

23}

2.2

0 0.1 0.2
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TABLE II. Values of the critical temperatur&_., critical densityp., and coefficient8, and C, as
obtained from fitting the Gibbs ensemble Monte Carlo simulation results for system&NvwBW particles
with =2 included in Table | to Eq94) and(5). Results forN=756 and 1364 correspond to the present
work. Also included are the results obtained =512 by Vegaet al.[6]. Results labeled T were obtained
by considering the effective exponef as a free parameter, and the remainder by fix#ago 1/3 or 1/2.

N Be Te Pc Bo C,
512 0.5411)f 2.76423) 0.225198) 1.31(12) 0.728)
756 0.40}5)Jr 2.67827) 0.2448) 1.129) 0.44(7)
1/3 2.64814) 0.2498) 1.0012) 0.437)
1/2 2.73Q14) 0.2358) 1.2922) 0.457)
1364 0.39:|.5)Jr 2.68451) 0.23582) 1.0633) 0.5021)
1/3 2.66685) 0.23881) 0.9440) 0.4921)
1/2 2.72189) 0.22885) 1.31(36) 0.5021)

We have included in Table Il the critical parameters ob-grand canonical ensemble. Ttarticle density will be de-
tained after fitting our Gibbs ensemble data for systems wittnoted asp=N/V and the energy density hy=U/V, where
N=756 and 1364 particles to Eggl) and (5) with 8=, U is the configurational energy of the system.
left as a free parameter. For both system sizes, the LV curves Let p, (p,u) be the probability distribution function of
were well represented by a substantially lower effective exdensity and energy fluctuations for a system of linear dimen-
ponent than that reported in Reff6]. For systems with sionL for given thermodynamic conditions specified by the
N=756 we foundpB,=0.40=0.05 and for systems with dimensionlesginverse temperature8=e/(kgT), and the di-
N=1364 we foundB,=0.39+0.15. mensionless chemical potentiad=u/(kgT). Here, kg is

We have also obtained the critical parameters by fixingBoltzmann’s constant anelis the energy scale of the system
the exponeng in Eq. (5) to B=1/3 andB=1/2. The corre-  This distribution can be formally written as an ensemble av-
sponding values are included in Table II. erage and is readily accessible from a computer simulation.

From these results it seems plausible to conclude that the |t is well established19] that the behavior of the system
shape of the coexistence curve for the SW fluid with2 is  close to the critical point is controlled by two relevant scal-
nearly cubic and is not accurately described by a mean-fielthg fields, namely, the thermal scaling fietdand the order-
effective exponent. ing scaling fieldh. These scaling fields are analytic functions

The question of whether the coexistence curve closes &f the chemical potential and temperature and vanish identi-
T. in a mean-field or universal fashiofi.e., whether cally at the critical point. In the critical regior, andh can
Be—1/2 or 1/3 asT—T,) still remains unresolved and is pe expressed as combinations of the deviationg @ind 8

addressed in Sec. IlI. from their critical valuesu. and B.. Specifically, and to
linear-order terms, it is expectgd9]

IIl. FINITE-SIZE SCALING -
7=Bc—BF+s(n—ue), (6)

One of the potential uses of FSS techniques is to investi-
gate critical phenomena from numerical computer simula- =
tions performed in small sampl§8]. The most widely used h=p—pct+r(Bc—B), (7)
approach exploits the scaling properties of the order-
parameter distribution functiofll6]. The prediction that the wheres andr are nonuniversal parameters which accounts
form of this distribution at the critical point is unique for all for the degree of field mixing10,11].
members of a given universality class has been largely sup- From the scaling fields and h two (conjugate scaling

ported from computer simulatiof®]. operatorsM andE are defined by requirinf0,11]
Only recently have these techniques been generalized to

deal with simulation of critical behavior in liquids lacking

the Ising symmetry. In this context, Wilding and Bruce have (E)= 1( J InQL), (8)
developed a FSS theory incorporating the effects of field Vi or

mixing [10,11]. This approach has been tested and its impli-

cations analyzed for a number of systems in a surprisingly 1/ InQ,

successful way10—15. (M)= v( h ) )

In the following subsection, we highlight some of the

ideas underlying the mixed-field FSS theory which are of ) - )
relevance for the present work. whereQ, denotes the grand canonical partition function for

a system of linear dimensidn and the brackets indicate an
average over this ensemble.
Following the above convention, the scaling operators
We consider a classical fluid system in a volukie L€, M andE can be explicitly written as a combinatigar mix-
whered is the dimensionality of the system, described in theing) of the particle density and energy density

A. Theoretical details
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1 B. FSS study of the SW fluid
M= 1—sr(p_su)’ (10 The critical region of the SW fluid with=2 was ex-
plored using Monte Carlo simulations in the grand canonical
1 ensemble. Several system sizes, corresponding to volumes
E= 1_sr(U—rp), (1)  v=800,1500, and 2500n o° units) were investigated. The

simulation box was cubic and usual periodic boundary con-
. . o . itions were used. The initial configuration was generated by
ertren. (M By s eratag o () oy om mlxedgonsidering 256for V=800), 500(for V=1500), and 864
SR L (for V=2500) particles on the sites of a fcc lattice.
For given values of the chemical potentialand tempera-
ture T, this starting configuration was allowed to relax to

Close to the critical point, and for sufficiently large system.eqUIIIbrIum by performing particle _displacements and

sizes, the distribution functions,(M)= [dEp,(M,E) and insertion-deletion of particles according to well established

= . Monte Carlo acceptance-rejection rul@]. Typically, this
pL(E)=/dMp,(M,E) of the single operators are eXpec'[e{j'nitial equilibration stage consisted onx3.0° cycles, each

E(iot')leﬂexpressed in terms of scaling relations of the forrﬂCyCIe comprisingN particle displacementévhereN is the
instantaneous number of particlesd 50 particle insertion-
o1y BIV= a1y Blv d—Blv Uy deletion attempts.
PL(M)~ay L Pu(ay L7 oM, ayL 7", al T()j’_3) The key obgervable in our simulations was the distribu-
tion function of particle density and energy density fluctua-
tions p_ (p,u), defined previously. Once equilibrium was
reached this quantity was measured as a double histogram.
Rather long simulations are required in order to obtain a
reliable sampling of (p,u). With the aim of saving com-
putational time, successive configurations were generated by
implementing just the particle insertion-deletion step, and no
explicit particle displacements were performed during the
production stage of the simulation. As claimed by Wilding

(14) constitute the basic scaling postulates. Exactly at thé”Ind Bruce[lO,lJ],.thls restricted implementation of Fhef
critical point, the scaling fields vanish and, from E¢s3) usual grand canonical ensemble Monte Carlo scheme is jus-
and(14), it fC;||OWS' ' tified, as the density fluctuations are correctly sampled. On

the other hand, particle displacements are performed implic-
itly as a result of the particle insertion-deletion step.
The double histogram, (p,u) was recorded by generat-
ing 12.5<10" (for V=800), 25<10’ (for V=1500), and
pUE)~ag 'L P E(ag LY SE), (16)  50x 107 (for V=2500) of such configurations. These simu-
lations were performed on a DEC Alpha 3000 workstation
wherepy,(x) andpg(y) are universal functions of the scal- and required, approximately, 12, 34, and 90 hours of CPU
ing variablesx=a,,’L#'*sM andy=ag L9 Y"SE, respec- time, respectively.
tively, and correspond to the fixed-point distributions which ~ The probability distribution functiomp,_(p,u) was calcu-
describe each universality class. lated at the reference thermodynamic statg=—3.0394
In most applications of mixed-field FSS techniques, theand T,=2.665. We then made use of the reweighting tech-
universality class is assuméadr known beforehandHaving  nique[17], which affords calculation op, (p,u) at different
then an independent evaluation of the corresponding fixedeconditions ,T) in the neighborhood of the reference state
point functionspy,(x) andpg(y) allows the determination point. Precisely in this regiofclose to the critical point this
of the critical point by requiring thap, (M) andp, (E) col-  technique is quite powerful due to the large critical fluctua-
lapse onto the respective fixed-point functions. tions which, in turn, allow for a reliable sampling of
We did not follow this procedure, as the determination ofp, (p,u).
the universality class is one the objectives of the present The coexistence line in the-T plane was calculated in
study. Instead, the critical point was independently evaluatethe neighborhood of g, T,) using the equal-weight crite-
(see below. According to Egs.(15) and(16), p.(M) and rion for the density distribution functiof21], obtained from
pL(E) for different system sizes should become independenp, (p,u) as
of L at the calculated critical point. The particular form of

pPL(M,E)=(1—-sr)p.(p,u). (12

pL(E)~ag 'L9 ¥pe(ag L9~V 6E,ayLd#h,agL Y 7).
(14

Here, 6M and S6E are given by SM=M-M. and
SE=E—-E., where M, and E; denote average values at
criticality. The functionsp,, andpg are expected to be uni-
versal under appropriate choices of the metric facaégrand
ag of the corresponding scaling fields. Relatiofi8) and

pL(M)~ay'LA"p f(ay'LF" M), (15)

these single, system-size independent curves constitutes an _
unambiguous signature of the corresponding universality pL(p)—j dup.(p,u). (17)
class.
It is important to recall at this point that all these conclu-
sions only apply in the limit of larg& in which correction- For a given temperature, the value of the chemical poten-

to-scaling effects are expected to be negligibly sif0,11.  tial at coexistence was found by reweightipg(p) until the
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FIG. 2. Liquid-vapor coexistence line in the-T plane as ob- FIG. 3. The values of Binder's cumulabt, defined in Eq(18)

tained from the equal-weight criterion for three systems of volumeas 3 function of temperature for different systems of volimgn
V. The reduced chemical potential is defined.as M((kBT??v the 43 units and calculated along the liquid-vapor coexistence line.
temperature is in units af/kg and the volume is in units af*. The  The intersection, which defines the location of the critical point,
arrow indicates the location of the critical point of the system. occurs forT,=2.6821(8) andu.= —3.0191). Thetemperature is

in units of e/kg.

area enclosed by the vapor and liquid peaks appearing iB given in Egs.(10) and (11), this mapping requires prior
pL(p) becomes equal. L knowledge of the field-mixing parametessandr.

We present in Fig. 2 the coexistence line in fhd plane In practice, the value of was found by reweighting
as obtained from the equal-weight criterion for the three sysp, (M) at the calculated values af, and u, for each value
tem sizes studied in the present work. We also show in thigf L until a single, system-size independent curve was found.
figure the location of the critical poirfsee below. One of  This is illustrated in Fig. 4, where the critical ordering op-
the effects of simulating finite-size systems is that the apparerator distributions are shown in terms of the scaling variable
ent (finite-size critical temperature is shifted to higher tem- x=a[,,1Lﬁ’V(M —My,). The scale factor is fixed by choosing
perature values when compared with the tfindinite-size  the distributions, for all system sizes, to have unit variance.
critical temperatur¢16]. This results in the observation of a The collapse of the data was effected by choosing
double-peak structure ip_(p) even above the critical tem- s=—0.01(1).
perature of the system. This effect becomes noticeable in gimilarly, the value of the parameterwas chosen by
Fig. 2, where it can be observed that the coexistence lingaweightingp, (E) at (e, T,) until the curves for different
extends for temperatures aboVg. system sizes collapsed onto a single, system-size indepen-

The critical point of the system was located as follows.dent curve. The scaling behavior pf(E) predicted by Eq.
For each value o¥/, we calculated the fourth-order Binder's (16) is demonstrated in Fig. 5 for the choice- —8.60(6).
cumulant,U, , defined ag16] A comparison of the scaling behavior @f (M) and

m* ' ' '
UL=1—<—;2, (18 oal o V=800
3(m°) | ﬁ%& o P
ﬁ [:]

-]
where m=p—(p). Again, the histogram extrapolation osl S
method[17] was used to evaluatd, as a function of tem- ' N
perature in the neighborhood of the reference thermody- .
namic state. The critical point coincides with the point at 02l s
f
:
;
g

P(x)

which U, becomes system-size independgi@].

The values ofU, for system sizes corresponding to
V=800, 1500, and 2500 are shown in Fig. 3 as a function of 01}
the temperature. According to Fig. 3, the curves intersect at a
temperature valueT.=2.6821(8) which corresponds to
ne=—3.0191). O3 “‘f 3 ; i q:‘“ 3

The universality class associated to the critical point in
the SW fluid withx =2 was independently assessed by prob- 1. 4. The distribution functions of the scaling operafibrat
ing the scaling behavior of the single scaling operator distriyiticality for systems with volumé/=800, 1500, and 2500in
butionsp, (M) andp,_(E). According to Eqs(15) and(16), 4® unity as a function of the scaling variable
these distributions are predicted to collapse into single=a,'L#*(M—M,). The metric factor has been chosen so that
curves which, in turn, characterize the appropriate universakhe distributions have unit variance. The matching is effected by

ity class. Following the definitions of the operatdvs and  choosing the mixing parameter= —0.01(1).
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our results are consistent with a nearly universal effective
exponent. This is in contrast with previous results, where it is
claimed that the LV curve for this system is compatible with
a mean-field effective exponent. The critical parameters have
been obtained, as a first approximation, by fitting the GEMC
data using a Wegner expansion including only the leading
terms. The critical temperature so obtained is slightly lower
than that reported previous[¥].

As a more precise route for obtaining the critical point of
I the system, we have used the fourth-order Binder’s cumulant
orr e ] method. With the help of the reweighting technique, we have

j I obtained the density distribution function in the neighbor-
0 . - : é?m 5 . hood of the critical point for three system sizes. These cu-

mulants intersect at a well defined point defining the critical

FIG. 5. The distribution functions of the scaling operaoat point. It has_been found.that?— —3.019(1) (in units of
criticality for systems with volume/=800, 1500, and 250Qin KeT), gpd Tc=2.6821(8)(in ur?|ts of e/kg). The va}lues of
o3 unity as a function of the scaling variable the critical temperature obtained by extrapolation of the
y=ag L4 Y(E—E,). The metric factor has been chosen so thatGibbs ensemble data af,=2.678(27) (for N=756 par-
the distributions have unit variance. The matching is effected byticles) and T,=2.684(51)(for N=1364 particles As in the
choosing the mixing parameter= —8.60(6). case of the Lennard-Jones model, the estimate of the critical

point by using the GEMC method is rather satisfactory. We

should stress that these values of the critical temperatures
p.(E) at criticality shown in Figs. 4 and 5 with the expected have been obtained by consideridgs an adjustable param-

fixed-point distributiong’,(x) andp(y), for the 3D Ising  eter. Had this exponent been fixed fo=1/3 (as done in

model (see, for instance, Figs. 6 and 8 from R@f5]), per-  Most applications the results would have been slightly dif-
mits us to conclude that the LV critical point for the SW ferent. From the data obtained in this work, fixigg=1/3

fluid with A =2 belongs to the 3D Ising universality class. yields T.=2.648(14) (N=756), and T.=2.666(85)
It is important to recall that the distribution functions ap- (N=1364).

pearing in Figs. 4 and 5 have been plotted with no assump- The neighborhood of the critical region has been explored

tion on the values of the critical exponen®8v and 1b.  py performing a finite-size-scaling analysis within the frame-

Moreover, the exponent ratios may be obtained by compafyork of the mixed-field FSS theory introduced by Wilding
ing the standard deviations @f (M) andp, (E) as a func-

o V=800
+ V=1500

0.4} o V=2500

0.3

02} 2

Ply)
Fog,
b e
4 oy oo °
"

<O

r _ i - ! and Bruce. Our major concern at this point has been to give
tion of system siz¢10,12. We carried out this comparison nymerical evidence regarding the universality class to which
for the two largest system sizes considered in this workine v critical point for the SW fluid with\=2 belongs.
obtaining the value@/v=0.55(3) and #=1.686). These

. 5 Although it is expected that the LV critical point in fluids
values are only in moderate agreement with the CorresponQy, o acterized by short-range interactions belongs to the Ising
Ing exponent ratio valueg obtained by Ferrenberg and I‘arl'miversality class, the results far=2 included in Ref[6]
dau [22] for the 3D Ising mo_del[,B/v:O_.518(7) and cast some doubts in this regard. We have shown that the
1/V:.1'594(4)]' Although corrections to scalmg may b? aP- gistribution functions of the scaling operators at criticality
preciable for the relatively small samples simulated in this the SW fluid with \ =2 bl ite closelv th
work, we believe that the discrepancies between the caIcLIpr ne | ul \(/jwf ; 3r|<3—:-slem € quite nge yh ose
lated and the expected exponent ratios arise essentially froff €viously reported for the 3D Ising magnet fluid, thus giv-
the somewhat poor statistics of the measured joint distribul"d Strong evidence that the SW fluid with=2 belongs to
tion functions for the larger system sizes and the errors in thie 3D Ising universality class. This is further corroborated,
location of the critical point. in part, by the vglues of the critical exponents obtained from
our FSS analysi$8/v=0.55(3) and #=1.68(6)]. Even
though affected by a substantial uncertainty, our estimates
V. SUMMARY for the exponent ratiog/v and 14 are in reasonable agree-

ment with the values expected for the 3D Ising universality
We have presented in this work a simulation study of theclass[8/»=0.518(7) and /=1.594(4), and are incom-

LV coexistence curve and critical region of the SW fluid patible with the corresponding mean-field valugd =1
model withA =2. The LV coexistence curve has been stud-and 1#=2).

ied by using the standard GEMC method for two system
sizes. Within the accuracy of our results, the resulting vapor
and liquid densities do not exhibit appreciable system-size
effects over the range of temperatures covered in the present ACKNOWLEDGMENTS
study.
The approach to criticality has been analyzed in terms of We would like to thank Elvira Mart del Ro and Lour-

the effective critical exponenf3., which constitutes an in- des Vega for useful comments and for their critical reading
dication of the shape of the LV curve. For both system sizespf the manuscript.
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