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Discoid solitons and solitary wave trains in an expanding collisionless local universe

Tzihong Chiueh and Tak-Pong Woo
Institute of Astronomy and Department of Physics, National Central University, Chung-Li, Taiwan

~Received 14 June 1996!

Nonlinear gravitational sound waves within an expanding collisionless background matter are investigated.
Under the assumptions of power-law time dependence and an equation of state for collisionless particles, two
classes of nonlinear waves are identified: solitons and solitary wave trains. The soliton solutions may describe
physically how the high-density sheets evolve immediately after the formation of caustics in the disk-collapse
scenario of large-scale structure formation. The solutions can describe either that a discoid continuously loses
matter that is expelled by the high pressure of the disk, reaching supersonic speeds and presumably blended
into the background Hubble flow, or that the disk collects matter from the low-density background and
becomes ever-increasingly massive. We also find that the multiple-mass-shell solutions, generally believed to
be caused by the crossing of mass shells after the gravitational collapse, exist in the form of solitons.
@S1063-651X~97!02701-3#

PACS number~s!: 03.40.Kf, 04.40.2b, 95.35.1d, 98.65.Dx
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I. INTRODUCTION

Collisionless dark matter increasingly has been belie
to contribute to the majority of gravitational masses in t
Universe.~For a review see@1#.! In the hope of extracting
some useful information about the dark matter, we inve
gated the wave characteristics in these collisionless part
in a previous work@2#. It is well known that the Newtonian
theory of gravity is sufficient to describe the general gra
tational dynamics as long as the temperature of the matt
nonrelativistic and the length scale well below the size of
horizon @3#. In our previous work, the focus was placed
waves in astatic background within the framework of th
Newtonian theory. It was concluded that all gravitation
sound wave solutions in a static background were not ph
cal. ~See the Appendix for a brief description of that wo
@2#.!

The present work is motivated by the notion that it is on
when the background is not static can the matter, in the p
ence of self-gravity, be distributed uniformly. Such a no
static background may provide suitable support for wave
exist. Moreover, observational evidence has accumulated
cently and indicates that the matter density of the local u
verse, including the dark matter, is less, by a sizable mar
than the critical densityrc[1/6pGt2, above which the ex-
pansion of the universe will be halted by gravity@4,5#. We
are also motivated by these observations and attempt to
amine how nonlinear structures, including waves, m
evolve in an underdense universe.

More importantly, we note that the disk collapse is pro
ably inevitable in the processes of structure formation
scales of superclusters@6–11#. It is thus relevant to under
stand how nonlinear evolution may proceed analytically,
opposed to numerically as pursued by most investigat
~See, for example,@12# for a brief summary of a certain clas
of simulations.! Mass-shell crossings have been proposed
the basic mechanisms yielding collisionless gravitational
bulence and producing small-scale structures@13,14#. In par-
ticular, multiple-mass-shell configurations also have be
observed in numerical studies and considered to be on
551063-651X/97/55~1!/1048~12!/$10.00
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the key features in collisionless gravitational turbulence@15#.
Thus any analytical model illustrating the physics of the
features is always useful. Therefore we hope that the an
ses of nonlinear waves conducted in the present work m
provide some insight for understanding these features.

This work extends a previous analysis@2# and examines
the dynamics in more general settings where the backgro
matter is not static. We find that in a very special situati
where the background matter is expanding at a particular
and has a density less than the critical value the gravitatio
sound waves exist in the form of solitary wave trains. F
thermore, we also find that an expansion slightly deviat
from this special rate can make the gravitational sou
waves change drastically, where the waves immediately
dergo transitions to become highly nonlinear in the form
isolated solitons. Sizable density oscillations are also fou
in most solitons, which may be identified as the multip
mass shells.

~In this paper, the terms solitons and solitary wave tra
are used in a rather loose sense. By ‘‘solitons’’ we refer
localized nonlinear density enhancement. This definition
certainly not what mathematicians may agree on since
have not shown whether the present soliton solutions m
obey the conservation laws upon collisions of solitons.!

This paper is organized as follows. Section II contains
mathematical formulation of the self-similar time-depende
solutions. In Sec. III, the water-bag model@16# used in a
previous work for representing a collisionless system is
tended to comply with the self-similar scaling@2#. The ana-
lytical result for the wave solution is obtained in Sec. IV a
the results for the solitons are presented in Sec. V. Fina
we give conclusions in Sec. VI, which discusses the as
physical implications of these solutions. The Append
briefly reviews the nonlinear waves in a static backgroun

II. MATHEMATICAL FORMULATION
FOR SELF-SIMILAR STRUCTURES

IN EXPANDING AND CONTRACTING FLUIDS

We consider a physical situation where the collisionle
fluid expands or contracts uniformly in two directions, sa
1048 © 1997 The American Physical Society
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55 1049DISCOID SOLITONS AND SOLITARY WAVE TRAINS . . .
thex andy directions, and the nonlinear waves propagate
the z direction. First, we may decompose the gravitatio
potentialf into two components

f~x,t !5c~z,t !1
1

2
@Dx~ t !x

21Dy~ t !y
2#, ~1!

wherec accounts for the amount of gravity in thez direction
and the second term for that in the other two directions. T
quantitiesDx(t)5dx /t

2 andDy(t)5dy /t
2 can be related to

the expanding or contracting rates in thex andy directions
and are inversely proportional tot2 with the proportional
constantsdx anddy . To understand Eq.~1! we may examine
the Poisson equation

¹2f54pGr ~2!

and thus

d2c

dz2
54pGr2~Dx1Dy!. ~3!

The time dependence (t22) of Dx andDy can be obtained
by considering the dynamics transverse to thez direction.
For a collection of collisionless particles, we may write th
momentum equation as

rS ]Vi

]t
1Vj

]Vi

]xj
D52

]Pi j

]xj
2r

]f

]xi
~4!

in tensor notation, where the repeated indices sum.
quantityPi j is a symmetric stress tensor and chosen als
be a diagonal tensor for this work. The velocity compone
in thex andy directions can be solved for straightforward
if the stress tensor has no variation in these two directi
and the velocity components in these two directions donot
depend onz. Let Di5di /t

b and the momentum equatio
perpendicular toz reads

]Vi

]t
1Vj

]Vi

]xj
52

xidi
tb

,

where the repeated indices on the right-hand side do not
and i runs only over 1 and 2. To obtain a general soluti
containing a power-law time dependence requires thatb52
and the solution be expressed as

Vx5
hxx

t
, Vy5

hyy

t
, ~5!

in which the constantshx and hy are related todx and dy
through the equalities

dx5hx2hx
2 , dy5hy2hy

2 . ~6!

The first requirement thus fixes thet22 dependence forD.
Because of the power-law time dependence ofD, Eq. ~3!

hints at the possible existence of nonlinear solutions that
separable in the independent variablest andz, for which the
time dependence of all variables is in the form of a pow
law. Proceeding in this direction, first we must employ
change of independent variables from (t,z) to a set of self-
similar variables (t,h),
n
l

e

r

e
to
s

s

m

re

r

t5t, z5hta, ~7!

wherea is a free parameter. It follows that

]

]z
5t2a

]

]h
,

]

]t
5

]

]t
2

ah

t

]

]h
. ~8!

In addition, we must assume thatr,Vz , andc all have the
power-law time dependence

r5n~h!t22, Vz5uz~h!tb,

c5x~h!t2212a, P335p~h!tg, ~9!

whereb andg are pure numbers andP33 is the (z,z) com-
ponent of the pressure tensor in a collisionless system.
t22 dependence ofr is required by Eq.~3! to be consistent
with the same time dependence ofD. In addition, the time
dependence ofc is also obvious, as required by Eq.~3!.

Under these assumptions, the momentum equation in
z direction can be cast into the form

tb21S buz2ah
duz
dh D1t2b2auz

duz
dh

52tg2a12n21
dp

dh
2t221a

dx

dh
~10!

and the continuity equation

]r

]t
1

]

]xi
~rVi !50 ~11!

becomes

t23S 22n2ah
dn

dh D1tb2a22
d~nuz!

dh
1t23~hx1hy!n50,

~118!

where the last term in Eq. (118) accounts for¹'–(nV') of
Eq. ~11!. If we demand that all terms in Eqs.~10! and
(118) separately have the same time dependence, it follo
that

b2152b2a5g2a125a22 ~12!

and

235b2a22, ~12’!

which yield

b5a21, g52a24. ~13!

These power indices can be completely determined as
as we fix an appropriate equation of state.

III. EQUATION OF STATE
FOR COLLISIONLESS PARTICLES

Determination of the equation of state that relates
pressureP33 to the mass densityr for a collisionless system
is widely known as not being a straightforward matter. Ne
ertheless, for an one-dimensional system, a so-ca
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1050 55TZIHONG CHIUEH AND TAK-PONG WOO
water-bag model has been proposed in the past and suc
fully applied to describing collisionless plasmas@17,18#. Re-
cently, this model has been investigated also in the contex
collisionless gravitational sound waves@2#. We will briefly
review the formulations in constructing the appropriate eq
tion of state within the context of the water-bag model.
addition, we will extend the formulation to situations whe
the water bag evolves self-similarly in accordance with
above scaling relations.

The key physics of the collisionless system are that
phase-space distribution functionF(v,x,t) is frozen in the
phase-space fluid elements and the phase-space elem
evolve as if they were incompressible fluids. The water-b
model is designed to capture these essential features
simple and relatively tractable manner.

The water-bag model considers a special initial confi
ration for the distribution functionF(v,x,t), which assumes
only two values in the phase space: either 0 or a cons
F0. Since the boundary separating 0 andF0 is frozen in the
phase-space fluids, the boundary acts as if it were a defo
able bag that separates the incompressible, constant-de
water within the bag from a vaccum outside. The subsequ
evolution of the distribution function is reduced to nothin
more than that of each boundary with the indexn. ~See Fig.
1 for an example of a two-boundary water bag.! The bound-
ary n assumes the formv5Vn„x(t)… as long asVn remains
a single-valued function. We may project the pha
space distribution functionF(v,x,t) to the (vz ,x) space to
obtain a reduced distribution function f z(vz ,x,t)
@[*F(v,x,t)dv'#. As long as the wave dynamics is in on
thez direction and the background expands or contracts
formly according to Eq.~5!, the reduced one-dimension
distribution function is independent ofx' and can be trivially
related to original distribution function through

F~v,x,t !5 f z~vz ,z,t ! f'~v' ,x' ,t !, ~14!

with

FIG. 1. Phase-space diagram of a typical water-bag mode
the distribution function of a collisionless system. The phase-sp
density is uniform and nonzero within the boundariesV1 andV2

~the shaded region!. The rest of the area has zero phase-space d
sity.
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f'~v' ,t !5FQS axvx2ȧxx1
cx
2 D2QS axvx2ȧxx2

cx
2 D G

3FQS ayvy2ȧyy1
cy
2 D2QS ayvy2ȧyy2

cy
2 D G ,
~15!

whereQ is the Heaviside step function,ax(t) anday(t) are
time-dependent scaling factors in thex andy directions, re-
spectively, andcx andcy are constants, the thermal widths
some reference time.

It can be shown straightforwardly that this distributio
function satisfies the collisionless Boltzmann equation

F ]

]t
1v'•

]

]x'

2
dxx

t2
]

]vx
2
dyy

t2
]

]vy
G f'50 ~16!

by direct substitution provided that

äx52
dx
t2
ax , äy52

dy
t2
ay . ~17!

Note that Eq.~17! yields the solutions

ax5thx, ay5thy, ~18!

wherehx andhy are given by Eq.~6!. Thus the above for-
mulation can self-consistently describe the uniform exp
sion of collisionless particles in the transverse directio
Generalization to a three-dimensional uniform expansion
any arbitrary distribution is a standard exercise in cosm
ogy.

What remains to be worked out is the dynamics in thez
direction, and this is where the power of the water-bag mo
lies. Given Eq.~14! for F, the mass density can be express
as

r~z,t !5E F~v,x,t !dv'dvx5
cxcy
axay

E f z~vz ,z,t !dvz

5F0

cxcy
axay

@Vz,1~z,t !2Vz,2~z,t !#, ~19!

the mass flow velocity as

V~z,t !5
*vF~v,x,t !dv'dvz

r~z,t !
5 ẑ

Vz,1~z,t !1Vz,2~z,t !

2

1 x̂
xȧx
ax

1 ŷ
yȧy
ay

, ~20!

and the pressure tensor as

Pi j ~z,t !5E ~v i2Vi !~v j2Vj !F~v,x,t !dv'dvz . ~21!

Pi j can be shown to be a diagonal tensor. The relevant c
ponent to be used later is

P33~z,t !5
F0cxcy@Vz,1~z,t !2Vz,2~z,t !#

3

24ax~ t !ay~ t !
. ~22!
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55 1051DISCOID SOLITONS AND SOLITARY WAVE TRAINS . . .
In Eq. ~19! we have let the mass of the particle be un
without loss of generality since the gravitational constantG
can be properly adjusted to accommodate this choice
mass.

Note that Eq.~5! for the perpendicular flow velocity is
recovered with the help of Eq.~18!. We also obtain
Pxx5cx

2r/24ax
2 andPyy5ay

2r/24ay
2

Equations~19! and ~22! are then combined to yield th
desired equation of state for the collisionless dynamics in
z direction:

P33~z,t !5
r3~z,t !ax

2~ t !ay
2~ t !

24F0
2cx

2cy
2 5kr3~z,t !t2~hx1hy!, ~23!

wherek is a constant and can be regarded as an effec
entropy. Armed with Eq.~23!, we may return to Eq.~9! and
find that

g52~hx1hy23! ~24!

and therefore the parametersa andb are completely fixed
with the help of Eq.~13!:

a5hx1hy21, b5hx1hy22. ~25!

The constant rates of perpendicular expansionhx andhy turn
out to be the only two free parameters in our problem.

IV. SOLITARY WAVE TRAINS

The final step of our manipulations entails integration
both Eqs.~3! and ~11! with respect toh once. It yields

dx

dh
5

4pG

322~hx1hy!
@uz2~hx1hy21!h#n2~dx1dy!h.

~26!

Substituting Eqs.~6! and~26! into Eq.~10!, we may obtain a
set of two first-order ordinary differential equations f
uz(h) andn(h). In fact, a more illuminating set of equation
can be obtained by replacing the variableuz in favor of the
mass flux in an expanding frame of referen
n@uz2(hx1hy21)h#, where (hx1hy21)h is the expand-
ing pattern speed of the waves. The governing equations
become

dq

dj
5

q3

s223q4 S 2s

3@322~hx1hy!#

2@hx1hy2hx
22hy

22~hx1hy21!~hx1hy22!#j D
~27!

and

ds

dj
5@322~hx1hy!#q, ~28!

where q[n/nc , j[h/ncAk, s[n@uz2(hx1hy21)h]/
nc
2Ak, andnc[1/6pG. The matter density is normalized t
the critical density and the length to the Jeans length ass
ated with the critical density.
of

e

ve
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This set of nonlinear equation is generally nonintegrab
However, we may locate two special parameter regimes
which the equations are integrable. These correspond to
ticular choices for the parametershx andhy .

First, we may let the coefficient ofj on the right-hand
side of Eq. ~27! be zero and Eqs.~27! and ~28! become
autonomous. The procedure for seeking solutions is stand
Divide Eq. ~27! by Eq. ~28! to form a first-order differential
equation, wheres2 can be regarded as the dependent varia
and 1/q as an independent variable, and one finds tha
becomes a linear equation, for whichs can be expressed a
an analytical function ofq in terms of the exponential inte
gral. Unfortunately,q is a double-valued function ofs and
the solution always runs into the point wheredq/ds5`.
This corresponds to the sonic singularity ats253q4 at which
the right-hand side of Eq.~27! diverges. This class of solu
tion is unphysical and we shall discard it. In this regard,
shall see later that the soliton solutions must also encou
the same singular denominator; however, the numerato
the right-hand side of Eq.~27! can actually be adjusted t
make the combined term finite. Therefore, the soliton so
tion can pass smoothly through the sonic transition, rep
senting a physical solution.

Second, let

hx1hy5
3
2 . ~29!

Although Eq. ~28! seems to yields5const, the right-hand
side of Eq.~27! diverges. To avoid such a pathological sit
ation, we may demand thats→0 ashx1hy→ 3

2 in order to
keep the quantity s/@322(hx1hy)# finite. Defining
S[s/@322(hx1hy)#2kj, where k[3(3hx22hx

22 1
2)/2,

we find that Eqs.~28! and ~29! become

dq

dj
52

2S

9q
~30!

and

dS

dj
5q2k. ~31!

Equations~30! and ~31! are combined to yield

d2S

dj2
5

22S

9~k1dS/dj!
, ~32!

which can be integrated once with a standard technique
multiplying both sides by the factor 1/(dS/dj) and using the
chain rule. It follows that

d

dSS dSdj D5
22S

9~k1dS/dj!~dS/dj!
~33!

or

S 1k dS

dj D 31 3

2 S 1k dS

dj D 21 S2

3k3
5
c0
3
, ~34!

wherec0 is an integration constant. The quantitydS/dj can
be solved for from the cubic equation~34! as a function of
S. Among the three roots, the physical roots are
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FIG. 2. Typical solitary wave trains.~a! Normalized densitiesq and ~b! flow speedsuz . The solid, dashed, and dotted lines are f
c050.67, 0.44, and 0.24, respectively. The three flow speedsuz almost coincide in this plot.
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dS

dj
52SQ11Q2

2
1
a

3D1A3i

a
~Q22Q1! ~35!

and

1

k

dS

dj
52SQ11Q2

2
1
a

3D2A3i

a
~Q22Q1!, ~358!

where

Q1~S![F 112SS2k3 2c0D 2
Q0

108
2

i

18
AS c02 S2

k3DQ0G1/3,
Q2~S![F 112SS2k3 2c0D 2

Q0

108
1

i

18
AS c02 S2

k3DQ0G1/3,
and

Q0~S![9S 322c01
S2

k3D ~36!

provided thatc02S2/k3>0 and

c0<
3
2 . ~37!

The resulting equation can thus be integrated once a
where the integration goes from one root to the other w
the two roots merge, which occurs whenS2/k35c0 or
Q050. The solution is an anharmonic oscillatio
S(j)5S01DS(j), with S0 being the mean andDS purely
oscillatory as shown in Fig. 2. The meanS050 because the
solution oscillates aboutS50. The oscillationDS can be
reduced to a linear wave in the small-amplitude limit wh
c0→0 from above. In this limit one can expandc02S2/k3 as
a small parameter and find thatdS/dj satisfies the standar
form of oscillation

1

2 S 1k dS

dj D 21 S2

9k3
5
c0
9
. ~38!
in
n

In general cases, the oscillation amplitude isuDSu5Ak3c0
even in the nonlinear regime. The amplitude increases w
c0; however, there is an upper limit thatc0 can reach. The
valuec0 is bounded by

3
2 according to Eq.~37! and the maxi-

mum amplitude for the nonlinear oscillations becomes

uDSumax5A3k3

2
. ~39!

One may determine the maximum amplitude fordS/dj as
well. Note from Eq.~31! that the density is

q5k1
dS

dj
,

which must be non-negative. The maximum of2dS/dj is
thereforek, occurring atS50. ReplacingdS/dj by 2k and
S by 0 in Eq. ~34!, we find thatc0 is also bounded from
above, which is incidentally identical to Eq.~37!. Thus
maximum-amplitude oscillations for the solitary wave yie
periodic vacuum states.

The mean background density is

^q&5k5
3~3hx22hx

22 1
2 !

2
<
15

16
, ~40!

where the equality holds whenhx5hy5
3
4, an isotropic per-

pendicular expansion. Thus the average density^n& is always
less than the critical densitync . In the regime that gives
physical solutions, we demand thatk.0 or

32A5
4

<hx<
31A5
4

. ~41!

For a very underdense local universe,hx should approach the
two bounds given by Eq.~41! and the perpendicular expan
sion inx andy exhibits extreme anisotropy. However, for a
values ofhx within the bounds of Eq.~41!, we always find
that
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FIG. 3. Solitons of the odd-period solution forh'50.749.~a! Normalized densitiesq, ~b! normalized mass fluxess, ~c! flow speeds
uz , and ~d! flow speeds relative to the pattern speedsw. The solid, dashed, and dotted lines are forq(0)51.393,1.365, and 1.34
respectively.
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The inequality~41! will be referred to again in the discussio
of the soliton solutions in the next section since the m
interesting soliton solutions mimicking the multiple ma
shells are near this range of expansion rates. Interestin
we also notice that whenhx5

1
2 andhy51, the background

can expand isotropically in thex andz directions, but not in
the y direction, with a mean densitŷn&53nc/4.

V. SOLITON SOLUTIONS „h'[hx5hy…

For the sake of demonstrating the key physics of the s
tons, we shall now focus on the case of isotropic perpend
lar expansion wherehx5hy5h' . The extension to the gen
eral anisotropic cases is straightforward. We first exam
what happens when Eq.~29! is slightly violated, for which
e[h'2 3

4!1. The coupled equations,~27! and~28! are gen-
erally nonintegrable; however, ase→0, we expect that the
solutions to Eqs.~27! and~28! should in some way resembl
the integrable solitary wave solution obtained earlier. O
notes that the solitary wave solution (e50) contains a sub-
sonic flow, where the denominator of Eq.~27! is always a
negative definite quantity. In the present case, wheree is not
zero, it is possible that the denominator can turn from
negative value to a positive value at some largej if the
quantitys grows with the distancej. In this case, the solu
tions, originally not much different from the solitary wave
can undergo a drastic qualitative change as the denomin
crosses zero. This rapid transition will give rise to a quali
n
ost
ss
gly,
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-
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s,
ator
ta-

tively very different solution from the solitary wave.
With this qualitative understanding in mind, we carry o

the numerical integration for Eqs.~27! and ~28!. A second-
order Runge-Kutta integration scheme has been ado
This set of nonlinear differential equations possesses p
symmetry, in thatq can be symmetric ands antisymmetric
upon the reflection ofj. This symmetry property fixes
boundary conditions(j50)50. Another boundary condi
tion is given by the requirement that the solution be non
gular at the trans-sonic point where the denominator of
~27! vanishes. A shooting technique is used for the integ
tion, starting from the boundaryj50. This is a nonlinea
eigenvalue problem withq(0) being the eigenvalue.

It turns out that there are two types of soliton solution
each value ofh' , where the number of oscillations prior
the rapid transition at the sonic point can be either odd
even integers.~Note that since the soliton has reflection
symmetry the oscillations on the both sides ofj50 must be
included in the counting.! Plotted in Figs. 3 and 4 are th
typical solutions for the two types of soliton solutions at t
expansion rateh'50.749 ore521023. Both figures con-
tain three different eigensolutions, which correspond to
ferent nonlinear eigenvaluesq(0). ~We have not exhauste
all eigenfunctions for this choice ofh' .) Not far from the
boundaryj50, the solution closely resembles the solita
waves of Sec. IV. However, at a largej, the solution
abruptly makes a transition to a low-density, high-sp
state.

For this particular choice ofh' , each type of solution
contains only three eigenfunctions corresponding to ei
period-1, period-3, and period-5 solutions or period
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FIG. 4. Solitons of the even-period solution forh'50.749. The panels are the same as in Fig. 3. The solid, dashed, and dotted lin
for q(0)50.22, 0.307, and 0.371, respectively.
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period-4, and period-6 solutions. Such solutions repres
expanding material slabs embedded in a low-density ba
ground and these material slabs can be regarded as
dimensional solitons. The expansion of the slab pattern
driven by the upstream matter pressure. Figures 3~d! and
4~d! shows that the relative flow speedw is positive through-
out the entire region. This means that the velocityuz is al-
ways greater than the soliton pattern spe
t2b(]z/]t)5(2h'21)h, according to Eqs.~7!, ~9!, and
~25!, indicating that the disks are losing masses to the ba
ground.

Plotted in Figs. 5 and 6 are the cases fore51023, where
s becomes negative throughout the entire region. Despite
fact that the flow speed relative to the pattern speedw is
always negative, the flow speed in the laboratory frameuz
can be both positive and negative. This illustrates that
matter in the disks tend to expand, driving the pattern exp
sion, but this matter, at some finite distance, must coll
with the materials falling in from the background. These s
lutions represent another situation where the solitons grow
become more massive by collecting the background ma
All soliton solutions show smooth behaviors at the so
transition, resulting from the fact that both the denomina
and numerator in Eq.~27! pass through zero simultaneousl
This reflects that the relative flow velocitys/q, starting from
the subsonic~supersonic! region, smoothly accelerates~de-
celerates! to supersonic~subsonic! speeds by the particle
pressure in the high-density slab. The slab thus loses~gains!
mass to~from! the background.

Our numerical integration finds both period-1 a
period-2 soliton solutions down toe52 1

12, whereh'5 2
3, the
nt
k-
ne-
is

d

k-

he

e
n-
e
-
to
r.
c
r

Hubble expansion, and the period-1 solution up toe50.06,
but the period-2 solution up toe50.04. As ueu increases
from zero, the number of eigenfunctions decreases, with
sequential disappearance of the many-period solutions d
to the period-2 and finally period-1 solutions. At a certa
point the period-1 solution is lost completely. The prec
range ofe, beyond which soliton solutions no longer exist,
relatively difficult to locate since Eqs.~27! and~28! are non-
linear singular equations and the solution can become hig
chaotic. Consequently, a higher-order integration sche
does not help improve the accuracy of the solutions near
sonic points. The range ofe given above is a conservativ
estimate.

Plotted in Figs. 7 and 8 are the period-1 solutions a
period-2 solutions, respectively, for three different values
h' . These figures show some tendencies of the solito
First, the sonic point moves inwards ase increases. When
h'→ 2

3, only the period-1 and period-2 solutions survive a
the top of the soliton has an almost flat-top density up to v
large distances before it drops to match the asymptotic s
tion described below. This implies the existence of a disk
large thickness, within which the matter expands almost
cording to the Hubble law and its density is nearly critic
Second, we may also refer to Fig. 9 to assist in detec
another tendency. Plotted in Fig. 9 are the nonlinear eig
valuesq(0) of the period-1 and period-2 solutions versus t
perpendicular expansion ratesh' . The soliton density of the
period-1~period-2! solutions at the coreq(0) first increases
~decreases! toward decreasinge, and aftere becomes nega
tive, the tendency reverses and the top densityq(0) de-
creases~increases!.



es are

55 1055DISCOID SOLITONS AND SOLITARY WAVE TRAINS . . .
FIG. 5. Solitons of the odd-period solution forh'50.751. The panels are the same as in Fig. 3. The solid, dashed, and dotted lin
for q(0)51.338,1.36, and 1.335, respectively.
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The asymptotic supersonic regime of the soliton solutio
can be roughly analyzed as follow. In Eq.~27! we ignore the
pressure term 3q4 in the denominator and the gravity term
proportional tos, in the numerator. Equation~27! then be-
comes

dq

dj
5
2q3j@h'2h'

222~h'21/2!~h'21!#

s2
. ~43!

By inspection, we find that Eq.~43! is homogeneous in tha
it allows for a power-law solution where

s5s0j
l, q5

s0l

324h'

jl21. ~44!

Substituting the power-law solution into Eq.~43!, we obtain

l5
216A114a

2a
, ~448!

wherea[2(3h'21)(12h')/(324h')
2. The flow velocity

in the comoving frame follows

w5
s

q
5
324h'

l
j, ~45!

a linear expansion. Note that such an asymptotic flow ha
kinetic energy density

quz
2

2
5

s0j
2

2~324h'! S 324h'

l
1
1

3D
2

, ~46!
s

a

which is of the order of the asymptotic potential-energy de
sity, proportional to*(*r dx)dx}*s dj}jl11. The value of
l can be shown to be less than unity and therefore the
ymptotic total-energy density (propotional toj11l) is al-
ways smaller than that of the homogeneous and isotro
expansion (propotional toj2) at large distances.

VI. DISCUSSION AND CONCLUSIONS

This work addresses the nonlinear wave characteristic
an expanding local universe filled with collisionless da
matter. Two classes of waves are found: solitary wave tra
and solitons. The length scales of both waves are typically
order the Jeans length associated with the critical dens
The density ratiodr/^r& of the solitary waves remains con
stant in time, indicative of stable waves, as expected fr
the notion that their length scale is about the Jeans len
Although similar conclusions can be drawn also for the so
tons, the matter within the solitons can be either contin
ously lost to, or collected from, a much-lower-density bac
ground. The solitons therefore can become either less
more massive as time progresses.

A. Solitons

As far as the astrophysical implications of these waves
concerned, the soliton solutions may describe a certain ph
of nonlinear evolution for high-density sheets in the collap
ing disk scenario of large-scale structure formation@6–11#.
At the deep nonlinear stage of the disk collapse, sheet
density caustics can form@6,19#. While matter is compresse
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FIG. 6. Solitons of the even-period solution forh'50.751. The panels are the same as in Fig. 3. The solid, dashed, and dotted lin
for q(0)50.22,0.307, and 0.372, respectively.
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in one direction, it may expand in the other two direction
This configuration sets up an initial condition for the po
collapse rebound phase to begin. The hot and dense
expands outward, where either the disk matter can be p
sured out of the hot slab at supersonic speeds and blend
the much-lower-density background Hubble flow or t
background matter falls back into the expanding slab, le
ing to an increasingly massive disk. Interestingly, we n
that near the perpendicular expansion rateh'; 3

4 the expand-
ing disk exhibits periodic density depressions at sizable
els, as illustrated in Fig. 8 for an extreme doubled-sheet c
whereh'50.7501. Many-period soliton solutions can act
ally exist for this value ofh' . In fact, if we are not limited
to the isotropic perpendicular expansion, there is a fin
range ofhx and hy , which are related byhx1hy'

3
2, that

yields the many-period soliton solutions. The range is
proximately identical to that for the solitary waves indicat
in Eq. ~41!.

This type of multiple-mass-shell solution has been
lieved to be the basis for dissipationless gravitational tur
lence arising from multiple-mass-shell crossings@13–15#.
The physics beyond such configurations may be trace
instabilities such as the two-stream instability or the inve
Landau damping. As two collisionless mass flows penet
each other, the free energy associated with the relative
tion can be released and vigorously generates fluctuation
length scale the Jeans length. Our multiple mass-sh
solution may represent the nonlinearly saturated state
such instabilities.
.
-
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To elaborate further the connection of the soliton solut
with the post-disk-collapse phase, we notice that the s
similar time scaling assumed in Sec. II begins at the rebo
phase, for which we denote its time ast r . The critical den-
sity defined in the previous sections should have referre
this definition of time and beenrc[1/6pGtr

2 which is much
greater than the cosmological critical density 1/6pGth

2 when
t r!th , where th is the cosmological age. Although the a
symptotic states of these soliton solutions do not contain
background Hubble flow, it is understood that the solit
flows should ultimately match the Hubble flow at some lar
distances where additional physics, such as shock transit
is required. Also note that the soliton solutions in this cont
will become invalid whent r;th , whererc;1/6pGth

2 . Un-
less the average density of the universe is less than the
cal density by a huge factor, it is expected that the desc
tion of the disk evolution by the soliton solutions should ho
only for a finite range of time.

B. Solitary wave trains

For the implications of the solitary wave trains that ex
only in an underdense and anisotropically expanding ba
ground, we feel that these solutions are probably of lit
relevance to the real world unless one is bold enough
challenge the validity of an isotropic universe. This is b
cause the solitary wave trains do not drastically modify
background density and therefore should not be expecte
drastically change the background expansion from an iso
pic to an anisotropic one. But how can an underdense
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FIG. 7. Period-1 soliton solutions for various values ofh' . The solid lines are forh'50.79, the dashed lines forh'50.7501, the
dash-dotted lines forh'50.71, and the dotted lines forh'50.669.

FIG. 8. Period-2 soliton solutions for various values ofh' . The respective lines are the same as those described in Fig. 7.
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FIG. 9. Parameter space of th
nonlinear eigenvaluesq(0) for the
period-1 ~squares! and period-2
~circles! solutions versus the per
pendicular expansion ratesh' .
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isotropically expanding local universe, in which we belie
we live, support wave fluctuations?

An underdense, homogeneous, and isotropically expa
ing universe is known to have two stages of evolution@20#:
an initial stage where the expansion factora(t) scales as
t2/3 ~the matter dominated regime! and a late stage wher
a(t);t ~the curvature dominated regime!. This time depen-
dence does not satisfy the self-similar time scaling assu
throughout the above analyses, thus explaining why we c
not obtain a solution describing an underdense, homo
neous, and isotropically expanding background configu
tion. The evolution of waves in such a background can
solved as an initial-value problem. The equation of state
scribed in the first equality of Eq.~23! can be adopted in an
approach treating the collisionless particles as a fluid. As
the nonlinear waves, there is probably no straightforw
analytical treatment; numerical simulations are probably
only tool for understanding the nonlinear evolution of wav
in such a background.

Related to the question of how an underdense unive
may evolve, the soliton solutions nearh'5 2

3 may reveal an-
other interesting possibility, in contrast to the conventio
answer described in the preceding paragraph. Figures 7 a
show the flat-density-top soliton solutions nearh'5 2

3. Al-
though the density will eventually drop to zero at some la
distance, within the flat-top region, the density always
sumes nearly the critical value and the flow expands alm
isotropically at a rate nearly the critical rate. That is, t
solution locally looks little different from the Newtonia
Hubble flow. This type of solution suggests that if the u
verse does not have sufficient mass to halt its expansion
bally, it may manage to halt the expansion locally. This c
be nearly achieved by aggregating most of the mass in
very thick slab, within which the density is sufficiently hig
and its gravity can just balance the expansion. Such a s
however, is continuously losing its mass to the nearly em
d-

ed
n-
e-
-
e
e-

r
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s
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d 8

e
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ty

space outside (r}x22/3), at a mass flux
(propotional tox1/3) much less than that of the Hubble flo
(propotional tox). As far as the real universe is concerne
in view of the isotropy of the quasar distribution, one m
want to look for such interesting solutions for the Einste
equation in spherically symmetric configurations. If su
spherically symmetric solutions can indeed be found, th
may provide a new challenge for cosmology, in that the u
verse expansion will be distance dependent and determ
tion of the cosmic time that relies so much on the extrapo
tion from the current Hubble expansion rateH0 will be
misleading. Indeed, if our galaxy is located well within
large flat-top region of the local universe, it is not easy
the current observations to distinguish such an inhomo
neous universe from the classical homogeneous one.
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APPENDIX A: SINGULAR SOLITARY WAVE TRAINS
IN A STATIC BACKGROUND †2‡

Propagating wave solutions in a static background can
best studied in the wave rest frame of reference. In this
erence frame, the system is stationary, although the flow
nonzero. One may treat this problem as a time-independ
problem, for which the mass flux, momentum flux, and e
ergy flux are all uniform in order to ensure stationarity. F
one-dimensional (z-direction! propagation, these conserve
fluxes are

rVz5c0 , ~A1!
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T03[SVz
2

2
1E~r!1f D rVz5c1c0 , ~A2!

and

T33[rVz
21P331

1

8pG S df

dzD
2

5c2 , ~A3!

respectively, wherec0 , c1, and c2 are constants and
E(r)[*dP33/r is the internal energy. The corresponden
to Eq. ~23! for the equation of state of collisionless particl
reads

P335kr3, ~A4!

which can be obtained from Eq.~23! by setting the expan
sion factorsax5ay51.

Having expressedP33 and E as functions ofr, we are
now in a position to solve fordf/dz as a function off
algebraically. This can be carried out because we have
unknowns (df/dz, f, r, and Vz) and three equation
@Eqs. ~A1!, ~A2!, and ~A3!#. Alternatively, one may also
solve fordr/dz as a function ofr after some algebraic ma
nipulations. This alternative yields a familiar form

1

2 S l j dr

dzD
2

1U~r!50, ~A5!
.

J.

. J
e

ur

where

U~r![
r5@r42r~c2 /k!1~c0

2/k!#

@~c0
2/k!23r4#2

, ~A6!

with l j[Ak/8pG, of order the Jeans length. The solutions
Eq. ~A6! are anharmonic oscillations, wherer is bouncing in
between two zeros ofU(r).

However, we note that this ‘‘potential’’U(r) has a
second-order pole at the sonic point. It can be shown rig
ously that the sonic point must always be located in betw
the two zeros ofU(r), meaning that whenr is bouncing in
between the ‘‘potential well’’U(r), it always encounters the
sonic singularity. The solution may be obtained by consid
ing an analogy to the particle dynamics where a particle m
roll down the potential well from one side of the singulari
to the other.

Although it may seem that this singularity is rather wea
in that r, Vz , and f are all continuous across the son
point anddr/dz and dVz /dz diverge at the sonic point a
uz2zsu21/2, in fact, a careful analysis shows thatdf/dz is
discontinuous and there must be a negative density s
located at the singularity. It is this negative density spike t
makes this solution unphysical, as pointed out by Adam
Fatuzzo, and Watkins in a similar problem for the molecu
clouds@21#.
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