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Discoid solitons and solitary wave trains in an expanding collisionless local universe
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(Received 14 June 1996

Nonlinear gravitational sound waves within an expanding collisionless background matter are investigated.
Under the assumptions of power-law time dependence and an equation of state for collisionless particles, two
classes of nonlinear waves are identified: solitons and solitary wave trains. The soliton solutions may describe
physically how the high-density sheets evolve immediately after the formation of caustics in the disk-collapse
scenario of large-scale structure formation. The solutions can describe either that a discoid continuously loses
matter that is expelled by the high pressure of the disk, reaching supersonic speeds and presumably blended
into the background Hubble flow, or that the disk collects matter from the low-density background and
becomes ever-increasingly massive. We also find that the multiple-mass-shell solutions, generally believed to
be caused by the crossing of mass shells after the gravitational collapse, exist in the form of solitons.
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I. INTRODUCTION the key features in collisionless gravitational turbulefica.
Thus any analytical model illustrating the physics of these
Collisionless dark matter increasingly has been believedeatures is always useful. Therefore we hope that the analy-
to contribute to the majority of gravitational masses in theSes Of nonlinear waves conducted in the present work may
Universe. (For a review seél].) In the hope of extracting provide some insight for understanding these features.

some useful information about the dark matter, we investi- 1S Work extends a previous analy$® and examines

gated the wave characteristics in these collisionless particletg'e dyn_amlcs in more ge’?era' sett_lngs where the_ baqurqund
in a previous work2]. It is well known that the Newtonian matter is not static. We find that in a very special situation

theory of gravity is sufficient to describe the general graVi_where the background matter is expanding at a particular rate

tational dynamics as long as the temperature of the matter gnd has a density Ie;s than the criticql value the grgvitational
nonrelativistic and the length scale well below the size of th(—:‘Sound waves exist in the form of sollta_ry wave trains. FF”'
horizon[3]. In our previous work, the focus was placed onthermore, we also find that an expansion slightly deviating

waves in astatic background within the framework of the from th'f] spec(ljal re_lte”can hmakeh the gra\(ltatlorzjal slound
Newtonian theory. It was concluded that all gravitationalWaVe€s change drastically, where the waves immediately un-

sound wave solutions in a static background were not physf_jergo transitions to become highly nonlinear in the form of

cal. (See the Appendix for a brief description of that work isolated solitons. Sizable density oscillations are also found

[2]) in most solitons, which may be identified as the multiple
The present work is motivated by the notion that it is only Mass shells. _ . .
when the background is not static can the matter, in the pres- (In thls_paper, the terms solitons and sc_)lltary wave trains
ence of self-gravity, be distributed uniformly. Such a non-3'¢ ‘!Sed n a_rather Iooge sense. By sohton; we rgfer to
static background may provide suitable support for waves t(l)ocallged nonlinear density enhancement. This def|r)|t|on IS
exist. Moreover, observational evidence has accumulated r&€"ainty n%t what rrra;hemﬁtlmans may ?gree oln since we
cently and indicates that the matter density of the local uni\'av€ not shown whether the present saliton solutions may

verse, including the dark matter, is less, by a sizable margirﬁb?‘r}r’].the conservation Ia\(/jvs u?o”n Co”';'°”$ Of“SO"tbnS' h
than the critical density.=1/67rGt?, above which the ex- IS paper is organized as follows. Section Il contains the

pansion of the universe will be halted by gravi5s]. We mathematical formulation of the self-similar time-dependent
are also motivated by these observations and attempt to e§plutlons. In Sec. Ill, the water-bag moddlé] used in a

amine how nonlinear structures, including waves, ma A re(\j/'oéji work f(l)r refhr(iﬁentlnlgf:; a c_(l)II|S|onI|_eIﬁss] s%/rs]tem IS ex-
evolve in an underdense universe. enaded to comply wi e self-similar scalingl. The ana-

More importantly, we note that the disk collapse is Iorob_lytlcal result for the wave solution is obtained in Sec. IV and

ably inevitable in the processes of structure formation forIhe rgsults fo: th_e sol_ﬂogs arc\e/lpreignr:eg in Sec. \t/h Flnatlly,
scales of superclustef6—11]. It is thus relevant to under- WE gIVE conclusions In sec. Vi, which diSCUSSes the astro-

stand how nonlinear evolution may proceed analytically, a h_ysu:al |_mpI|cat|ons (.)f these sol_ut|ons. _The Appendix
riefly reviews the nonlinear waves in a static background.

opposed to numerically as pursued by most investigators:
(See, for exampld,12] for a brief summary of a certain class
of simulations). Mass-shell crossings have been proposed as
the basic mechanisms yielding collisionless gravitational tur-
bulence and producing small-scale structdide%14]. In par-
ticular, multiple-mass-shell configurations also have been We consider a physical situation where the collisionless
observed in numerical studies and considered to be one dluid expands or contracts uniformly in two directions, say,

Il. MATHEMATICAL FORMULATION
FOR SELF-SIMILAR STRUCTURES
IN EXPANDING AND CONTRACTING FLUIDS
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thex andy directions, and the nonlinear waves propagate in t=7, z=n7y1% 7)
the z direction. First, we may decompose the gravitational
potential ¢ into two components wherea is a free parameter. It follows that
1 ) 5 J L J J _ Jd amn o 8
(ﬁ(X,t):lﬂ(Z,t)‘FE[Dx(t)X +Dy(t)y ]l (1) &Z_T (97]’ at_ T - 57] ( )

wherey accounts for the amount of gravity in theirection In addition, we must assume thatv,, andy all have the
and the second term for that in the other two directions. Theower-law time dependence

quantitiesD(t) =dy/t* andDy(t)=d, /t* can be related to _2 5

the expanding or contracting rates in thendy directions p=n(n)7 % V,=U(n)71",

and are inversely proportional ¥ with the proportional

— —2+2a — y
constantsl, andd, . To understand Edq1) we may examine y=x(n)7 » Pa=p(m) 7, ©)
the Poisson equation whereB and y are pure numbers arf,; is the (z,z) com-
V2¢h=4nG ®) ponent of the pressure tensor in a collisionless system. The
P 72 dependence of is required by Eq(3) to be consistent
and thus with the same time dependence Df In addition, the time
dependence of is also obvious, as required by E®).
dzt/f_ Under these assumptions, the momentum equation in the
@‘4WGP—(DX+ Dy). (3 2 direction can be cast into the form
The ti_me _dependencﬂz) of D, andD, can be_obtgined #1 gu,—a au, 4 2B ay %
by considering the dynamics transverse to thdirection. 2= @7 dy 2q
For a collection of collisionless particles, we may write their q q
momentum equation as _ r"“*zn‘ld—s _ 7‘2”% (10
Vi Vv, dPj; ¢
Pl ™ ja_xj - X P @ and the continuity equation
in tensor notation, where the repeated indices sum. The 1“7_P+ 9 V=0 (11)
quantity P;; is a symmetric stress tensor and chosen also to gt X (pVi)=
be a diagonal tensor for this work. The velocity components
in thex andy directions can be solved for straightforwardly becomes
if the stress tensor has no variation in these two directions d d(nu,)
and the velocity componepts in these two dlrectlonsndi_a 7'_3< —on—anp—|+ a2 " 7‘3(hx+hy)n=0,
depend onz. Let D;=d;/t® and the momentum equation dn
perpendicular t@ reads (11)
AV, AV x;d; where the last term in Eq. (1)L accounts foV, -(nV,) of
E+Vj§:—_tb—, Eqg. (11). If we demand that all terms in Eg$10) and
J

(11') separately have the same time dependence, it follows

where the repeated indices on the right-hand side do not suhat
andi runs only over 1 and 2. To obtain a general solution

containing a power-law time dependence requires ka2 B-l=2p-a=y-at2=a=2 (12
and the solution be expressed as and
h,x h '
V=, vy=t ) ~3=p-a-2 12)
. ) which yield
in which the constants, and h, are related tad, andd,
through the equalities B=a—-1, y=2a—A4. (13
dx=hx—h)2(, dy=hy—h§. (6) These power indices can be completely determined as long

. ) . as we fix an appropriate equation of state.
The first requirement thus fixes the? dependence fob.

Because of the power-law time dependenc®pEq. (3)
hints at the possible existence of nonlinear solutions that are
separable in the independent variallesdz, for which the
time dependence of all variables is in the form of a power Determination of the equation of state that relates the
law. Proceeding in this direction, first we must employ apressureP;;to the mass density for a collisionless system
change of independent variables fromzj to a set of self- is widely known as not being a straightforward matter. Nev-
similar variables ¢, 7), ertheless, for an one-dimensional system, a so-called

Ill. EQUATION OF STATE
FOR COLLISIONLESS PARTICLES
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) Cyx : Cy
fi(v, ,1)=|0O axvx—axx+5 -0 AUxTAXT S
) c . c
F=0 x| 0| ap,—ay+—|—0 au—ay——y),
Q1 () yy YT yyT YT S

(19

where® is the Heaviside step functioa,(t) anda,(t) are
time-dependent scaling factors in tkeandy directions, re-
spectively, anat, andc, are constants, the thermal widths at
some reference time.

It can be shown straightforwardly that this distribution

FIG. 1. Phase-space diagram of a typical water-bag model fol;unctlon satisfies the collisionless Boltzmann equation

Q,(x,v)

F=0

the distribution function of a collisionless system. The phase-space 9 g dx o dy o
density is uniform and nonzero within the boundaries and Q, — 4V, —— _XT - — _yz_ —|f, =0 (16)
(the shaded regignThe rest of the area has zero phase-space den- ot ox, 10 duy 17 duy
sity. . o .
Y by direct substitution provided that
water-bag model has been proposed in the past and success- . Oy . dy
fully applied to describing collisionless plasmds,18. Re- &= T AT T 28y (17)

cently, this model has been investigated also in the context of
collisionless gravitational sound wavgg]. We will briefly ~ Note that Eq(17) yields the solutions
review the formulations in constructing the appropriate equa- N N
tion of state within the context of the water-bag model. In a=tx,  ay=twy, (18)
addition, we will extend the formulation to situations where .
whereh, andh, are given by Eq(6). Thus the above for-

the water bag evolves self-similarly in accordance with the ; : . i
. : mulation can self-consistently describe the uniform expan-
above scaling relations.

sion of collisionless particles in the transverse direction.
Generalization to a three-dimensional uniform expansion for

phase-space distribution functidf(v,x,t) is frozen in the  ony arpitrary distribution is a standard exercise in cosmol-
phase-space fluid elements and the phase-space elemey

evolve as if they were incompressible fluids. The water-bag What remains to be worked out is the dynamics in zhe

model is designed to capture these essential features indiection, and this is where the power of the water-bag model

simple and relatively tractable manner. lies. Given Eq(14) for F, the mass density can be expressed
The water-bag model considers a special initial configugs

ration for the distribution functiorfr(v,x,t), which assumes
only two values in the phase space: either 0 or a constant () j
p(z,t)=

Gy
Fo. Since the boundary separating 0 dglis frozen in the F(v.x,)dv, du,=-— J fo(v;,2,)dv,

. - X2y
phase-space fluids, the boundary acts as if it were a deform-
able bag that separates the incompressible, constant-density —F CxCy Oz =0 (2.t 19
water within the bag from a vaccum outside. The subsequent Oaxay[ 22 = Q242 0], 19

evolution of the distribution function is reduced to nothing i
more than that of each boundary with the indexSee Fig. he mass flow velocity as

1 for an example of a two-boundary water baghe bound- FVE(V.x D) dv, do Q, () +Q, z1)
1Ny 1L z z,1\ & 2,2\ %

ary n assumes the form=Q,(x(t)) as long ad},, remains V(z,t)= =7

a single-valued function. We may project the phase- p(z,t) 2

space distribution functiofr (v,x,t) to the @,,x) space to A yéy

obtain a reduced distribution functionf,(v,,x,t) FR—+y, (20)
[=JF(v,x,t)dv, ]. As long as the wave dynamics is in only ax 8y

the z direction and the background expands or contracts uni
formly according to Eq.(5), the reduced one-dimensional
distribution function is independent &f and can be trivially
related to original distribution function through Pij(Z't):f (vi—V)(vj—V)F(v,x,t)dv, dv,. (21)

and the pressure tensor as

Pj; can be shown to be a diagonal tensor. The relevant com-
F(v,x,t)=f,(v,,z,t)f (v, ,x 1), (14 ponent to be used later is
FOCny[Qz,l(th)_sz(zat)]3
24a,(t)ay(t)

Pss(z,t)= (22)

with
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In Eg. (19 we have let the mass of the particle be unity  This set of nonlinear equation is generally nonintegrable.
without loss of generality since the gravitational const@nt However, we may locate two special parameter regimes for
can be properly adjusted to accommodate this choice ofvhich the equations are integrable. These correspond to par-
mass. ticular choices for the parameteng andh, .

Note that Eq.(5) for the perpendicular flow velocity is First, we may let the coefficient of on the right-hand
recovered with the help of Eq(18). We also obtain side of Eq.(27) be zero and Eqs(27) and (28) become
P,x=CZp/24aZ and P, =a’p/24a; autonomous. The procedure for seeking solutions is standard.

Equations(19) and (22) are then combined to yield the Divide Eq.(27) by Eq.(28) to form a first-order differential
desired equation of state for the collisionless dynamics in thequation, whers? can be regarded as the dependent variable
z direction: and 14 as an independent variable, and one finds that it
becomes a linear equation, for whistcan be expressed as
an analytical function ofj in terms of the exponential inte-
gral. Unfortunately,q is a double-valued function of and
the solution always runs into the point whedg/ds=cc.
where k is a constant and can be regarded as an effectiv&his corresponds to the sonic singularitysat 3q* at which
entropy. Armed with Eq(23), we may return to Eq(9) and  the right-hand side of Eq27) diverges. This class of solu-
find that tion is unphysical and we shall discard it. In this regard, we

shall see later that the soliton solutions must also encounter
y=2(hy+hy—3) (24 the same singular denominator; however, the numerator on
the right-hand side of Eq27) can actually be adjusted to
make the combined term finite. Therefore, the soliton solu-
tion can pass smoothly through the sonic transition, repre-
senting a physical solution.
Second, let

bz p*(z.b)ag(Hag(t)
3o 24Fcc;

= kp®(z, 2Ny (23)

and therefore the parametexsand 8 are completely fixed
with the help of Eq(13):

a=hc+h,—~1, B=h+h,—2. (25)

The constant rates of perpendicular expansipandh,, turn

=3
out to be the only two free parameters in our problem. hythy=2. (29

Although Eq.(28) seems to yields=const, the right-hand
IV. SOLITARY WAVE TRAINS side of Eq.(27) diverges. To avoid such a pathological situ-
ation, we may demand that-0 ash,+ hy—>§ in order to
keep the quantity s/[3—2(h,+hy)] finite. Defining
S=s/[3—2(hs+h,)]—ké, where k=3(3h,— 2hZ—1)/2,

The final step of our manipulations entails integration of
both Egs.(3) and(11) with respect ton once. It yields

dy 477G we find that Eqs(28) and(29) become
E]_m[uz_(hx+hy_1)77]n_(dx+dy)77- aq ”s
(26) —=— (30
dé 9q
Substituting Egs(6) and(26) into Eq.(10), we may obtain a
set of two first-order ordinary differential equations for and
u,(7) andn(#). In fact, a more illuminating set of equations ds
can be obtained by replacing the variablgin favor of the —=q—k. (31)
mass flux in an expanding frame of reference dé
nfu,— (hy+hy—1)75], where fi,+h,—1)7 is the expand- . . :
ing pattern speed of the waves. The governing equations then Equations(30) and (31) are combined to yield
become d2s ~ _25 i
dg 2 48~ 8(k+d5dg)” (32

He <2 4 _
dé  s°=3q7\3[3—2(hx+hy)] which can be integrated once with a standard technique by

multiplying both sides by the factor d§d¢) and using the

—[hy+hy—hZ—hi—(h+hy—1)(h+hy—2)]¢ chain rule. It follows that
(27) d (dS| -2S 33
ds\dé)  9(k+dSdé)(dSdé) 33
and
or

ds
d_§:[3_2(hx+hy)]qu (28 1dS\3 3/1dS\?2 <2 ~ Co a4
Kde) T2lkde TaeT 3 34

where q=n/n., é=n/nek, s=n[u,—(hy+h,—1)75]/
nﬁ k, andn.,=1/6wG. The matter density is normalized to wherecy is an integration constant. The quantitd¢ can
the critical density and the length to the Jeans length assodbe solved for from the cubic equatidB4) as a function of

ated with the critical density. S. Among the three roots, the physical roots are
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FIG. 2. Typical solitary wave traingda) Normalized densities| and (b) flow speedsu,. The solid, dashed, and dotted lines are for
0=0.67, 0.44, and 0.24, respectively. The three flow spegdsdmost coincide in this plot.

1ds Q1+ Q2 In general cases, the oscillation amplitude|AsS| = Vk3c,
KdE (Qz Q1) (39  even in the nonlinear regime. The amplitude increases with
Co; however, there is an upper limit thag can reach. The
and valuec, is bounded by according to Eq(37) and the maxi-
mum amplitude for the nonlinear oscillations becomes
1dS Q1+ Q2 a
T (Qz Q). (35) 33
| AS| max_ o (39
where
One may determine the maximum amplitude &®/d¢ as
1/[s? Qo well. Note from Eq.(31) that the density is
Qu(9=| 15|13 %o _T_ Co— k_ Qo
v ds
1 2 q_ + d_ga
NRAEIIN =
? 12k~ 108 18 A which must be non-negative. The maximum-etS/d¢ is
and thereforek, occurring atS=0. ReplacingdSd¢ by —k and
S by 0 in Eqg.(34), we find thatc, is also bounded from
3 ? above, which is incidentally identical to Ed37). Thus
Qo(S)=9 E_C°+ Eg) (36) maximum-amplitude oscillations for the solitary wave yield
periodic vacuum states.
provided thatc,— S/k3=0 and The mean background density is
2_ 1
Co=3. 3 3(3h,—2hi—3) 15
o 7 (Qy=k=——5"——=1 (40

The resulting equation can thus be integrated once again

where the integration goes from one root to the other whenvhere the equality holds whem =h, = 2 an isotropic per-

the two roots merge, which occurs whe8t/k®=c, or  pendicular expansion. Thus the average densihyis always

Qo=0. The solution is an anharmonic oscillation less than the critical density.. In the regime that gives

S(§)=Sg+AS(¢), with Sy being the mean and S purely  physical solutions, we demand tHat-0 or

oscillatory as shown in Fig. 2. The me& =0 because the

solution oscillates abous=0. The oscillationAS can be 3_\/5 3+\/§

reduced to a linear wave in the small-amplitude limit when 4 hye= 4

co— 0 from above. In this limit one can expang— S?/k® as

a small parameter and find tha& d¢ satisfies the standard For a very underdense local univerbg should approach the

form of oscillation two bounds given by Eq41) and the perpendicular expan-

5 sion inx andy exhibits extreme anisotropy. However, for all
(1 dS) S _Co 38) values ofh, within the bounds of Eq(41), we always find
k d¢ 9 that

(41)
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FIG. 3. Solitons of the odd-period solution for =0.749.(a) Normalized densities], (b) normalized mass fluxes, (c) flow speeds
u,, and (d) flow speeds relative to the pattern speedsThe solid, dashed, and dotted lines are ég0)=1.393,1.365, and 1.34,
respectively.
(42) tively very different solution from the solitary wave.

With this qualitative understanding in mind, we carry out

] ) ] o ] _ the numerical integration for Eq$27) and (28). A second-
The |nequ_allty(41) WI|| be_referred to again in th_e discussion grger Runge-Kutta integration scheme has been adopted.
of the soliton solutions in the next section since the Mostrhis set of nonlinear differential equations possesses parity
interesting soliton solutions mimicking the multiple Mass symmetry, in thaty can be symmetric and antisymmetric
shells are near this range of expansion rates. Interestingl)bpon the reflection of. This symmetry property fixes a
we also notice that wheh,=; andhy=1, the background o ndary conditions(¢=0)=0. Another boundary condi-
can expand isotropically in the andz directions, but notin o s given by the requirement that the solution be nonsin-

u,=

N3

they direction, with a mean densityn) =3n /4. gular at the trans-sonic point where the denominator of Eq.
(27) vanishes. A shooting technique is used for the integra-
V. SOLITON SOLUTIONS (h, =h,=hy) tion, starting from the boundar§=0. This is a nonlinear

For th ke of demonstrating the k hvsi fth Ii_eigenvalue problem witlq(0) being the eiger_lvalue. _
or the sake of demonstrating the key physics of the so It turns out that there are two types of soliton solution for

tons, we shall now focus on the case of isotropic perpendicu- o .
lar expansion wherb,—=h,=h, . The extension to the gen- each value oh, , where the number of oscillations prior to

eral anisotropic cases is straightforward. We first examinéhe ra.pld transition at the sonic point can be either O.dd or
what happens when Eq29) is slightly violated, for which even mtegers(NoFe t_hat since the SO|I!.‘OH has reflectional
e=h, — 3<1. The coupled equation€27) and(28) are gen- symmetry the oscillations on the both sidestef0 must be
erally nonintegrable; however, as—0, we expect that the |nc!uded In 'the counting.Plotted in Flgs_. 3 and 4 are the
solutions to Eqs(27) and(28) should in some way resemble typical solutions for the two types of soliton solutions at the

. _ _ _3 . _
the integrable solitary wave solution obtained earlier. Onef[axpatrrl]smn dr_?ftdnl—to._749 orle; 10 h E;oth figures dc?n dif
notes that the solitary wave solutioe=0) contains a sub- ain three airierent eigensolutions, which correspond fo dit-

sonic flow, where the denominator of E@Q7) is always a ferent nonlinear eigenvalueg0). (We have not exhausted

negative definite quantity. In the present case, wldgenot all eigenfunctions for th'$ choice df, .) Not far from th_e
zero, it is possible that the denominator can tumn from goundaryé=0, the solution closely resembles the solitary

negative value to a positive value at some laggéf the waves of Sec. IV. HOW?VG“ at a largh t_he sqlutlon
guantity s grows with the distancé. In this case, the solu- abruptly makes a transition to a low-density, high-speed

tions, originally not much different from the solitary waves, state.

can undergo a drastic qualitative change as the denominator For this particular choice oh, , each type of solution

crosses zero. This rapid transition will give rise to a qualita—Contains only three eigenfunctions corresponding to either

period-1, period-3, and period-5 solutions or period-2,
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FIG. 4. Solitons of the even-period solution for =0.749. The panels are the same as in Fig. 3. The solid, dashed, and dotted lines are

for q(0)=0.22, 0.307, and 0.371, respectively.

period-4, and period-6 solutions. Such solutions represertiubble expansion, and the period-1 solution up:st0.06,

expanding material slabs embedded in a low-density backsut the period-2 solution up te=0.04. As|e| increases

ground and these material slabs can be regarded as onfeem zero, the number of eigenfunctions decreases, with the
dimensional solitons. The expansion of the slab pattern isequential disappearance of the many-period solutions down
driven by the upstream matter pressure. Figureh and
4(d) shows that the relative flow speedis positive through-
out the entire region. This means that the velocityis al-

ways (greater than the

soliton

pattern

7 P(9zldT)=(2h, — 1)y, according to Eqgs(7), (9), and
(25), indicating that the disks are losing masses to the backehaotic. Consequently, a higher-order integration scheme

ground.

Plotted in Figs. 5 and 6 are the casesder10 3, where
s becomes negative throughout the entire region. Despite thestimate.
fact that the flow speed relative to the pattern speets

to the period-2 and finally period-1 solutions. At a certain
point the period-1 solution is lost completely. The precise
range ofe, beyond which soliton solutions no longer exist, is

speedrelatively difficult to locate since Eq$27) and(28) are non-

linear singular equations and the solution can become highly

does not help improve the accuracy of the solutions near the
sonic points. The range & given above is a conservative

Plotted in Figs. 7 and 8 are the period-1 solutions and

always negative, the flow speed in the laboratory frame period-2 solutions, respectively, for three different values of
can be both positive and negative. This illustrates that théa, . These figures show some tendencies of the solitons.
matter in the disks tend to expand, driving the pattern expankirst, the sonic point moves inwards asincreases. When
sion, but this matter, at some finite distance, must collideh, — 2, only the period-1 and period-2 solutions survive and
with the materials falling in from the background. These so-the top of the soliton has an almost flat-top density up to very
lutions represent another situation where the solitons grow ttarge distances before it drops to match the asymptotic solu-
become more massive by collecting the background mattetion described below. This implies the existence of a disk of
All soliton solutions show smooth behaviors at the soniclarge thickness, within which the matter expands almost ac-
transition, resulting from the fact that both the denominatorcording to the Hubble law and its density is nearly critical.
and numerator in Eq27) pass through zero simultaneously. Second, we may also refer to Fig. 9 to assist in detecting
This reflects that the relative flow velocigyq, starting from  another tendency. Plotted in Fig. 9 are the nonlinear eigen-
the subsonidsupersonit region, smoothly acceleratéde-  valuesq(0) of the period-1 and period-2 solutions versus the
celerates to supersonic(subsoni¢ speeds by the particle perpendicular expansion rates. The soliton density of the
pressure in the high-density slab. The slab thus lége®9  period-1(period-2 solutions at the corg(0) first increases
mass to(from) the background. (decreasestoward decreasing, and aftere becomes nega-

Our numerical integration finds both period-1 andtive, the tendency reverses and the top dengit9) de-
period-2 soliton solutions down = — 35, whereh, =%, the  creasegincreases
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FIG. 5. Solitons of the odd-period solution for =0.751. The panels are the same as in Fig. 3. The solid, dashed, and dotted lines are
for q(0)=1.338,1.36, and 1.335, respectively.

The asymptotic supersonic regime of the soliton solutionsvhich is of the order of the asymptotic potential-energy den-
can be roughly analyzed as follow. In H&7) we ignore the  sity, proportional tof (f p dx)dxo [s déx &1, The value of
pressure term & in the denominator and the gravity term, A can be shown to be less than unity and therefore the as-
proportional tos, in the numerator. Equatio(®7) then be-  ymptotic total-energy density (propotionalgd™) is al-
comes ways smaller than that of the homogeneous and isotropic

expansion (propotional t&) at large distances.
dq_ 2¢°%fh, —h?-2(h, -1/2)(h, - 1)]

de 2 43
VI. DISCUSSION AND CONCLUSIONS
By inspection, we find that Eq43) is homogeneous in that  This work addresses the nonlinear wave characteristics in
it allows for a power-law solution where an expanding local universe filled with collisionless dark
matter. Two classes of waves are found: solitary wave trains
s=58", q= Soh ol (44) and solitons. The length scales of both waves are typically of
3—4h, order the Jeans length associated with the critical density.

o o ) The density ratiadp/{p) of the solitary waves remains con-
Substituting the power-law solution into E@3), we obtain  stant in time, indicative of stable waves, as expected from
1+\174a the notion .thgt their Iength scale is about the Jeans Iengj[h.
A= , (44 Although similar co_nc!usmns can be drawn als_o for the s_oll-
2a tons, the matter within the solitons can be either continu-
ously lost to, or collected from, a much-lower-density back-
wherea=2(3h, —1)(1—h,)/(3—4h,)? The flow velocity  ground. The solitons therefore can become either less or

in the comoving frame follows more massive as time progresses.
s 3—4h,
w= Y 3 (45 A. Solitons

As far as the astrophysical implications of these waves are
a linear expansion. Note that such an asymptotic flow has goncerned, the soliton solutions may describe a certain phase
kinetic energy density of nonlinear evolution for high-density sheets in the collaps-
5 ) ) ing disk scenario of large-scale structure formatiér11].
qu; Soé 3—4h, n }) (46) At the deep nonlinear stage of the disk collapse, sheetlike
2 2(3—-4h)) A 3’ density caustics can forfi6,19]. While matter is compressed
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FIG. 6. Solitons of the even-period solution foy =0.751. The panels are the same as in Fig. 3. The solid, dashed, and dotted lines are
for q(0)=0.22,0.307, and 0.372, respectively.

in one direction, it may expand in the other two directions. To elaborate further the connection of the soliton solution
This configuration sets up an initial condition for the post-with the post-disk-collapse phase, we notice that the self-
collapse rebound phase to begin. The hot and dense slaimilar time scaling assumed in Sec. Il begins at the rebound
expands outward, where either the disk matter can be preghase, for which we denote its time s The critical den-
sured out of the hot slab at supersonic speeds and blend witity defined in the previous sections should have referred to
the much-lower-density background Hubble flow or thethis definition of time and beep.= 1/67Gt? which is much
background matter falls back into the expanding slab, leadgreater than the cosmological critical densityﬁﬂﬁtﬁ when

ing to an increasingly massive disk. Interestingly, we notet,<t,,, wheret,, is the cosmological age. Although the a-
that near the perpendicular expansion tate- 2 the expand-  symptotic states of these soliton solutions do not contain the
ing disk exhibits periodic density depressions at sizable levbackground Hubble flow, it is understood that the soliton
els, as illustrated in Fig. 8 for an extreme doubled-sheet cas#ows should ultimately match the Hubble flow at some large
whereh, =0.7501. Many-period soliton solutions can actu- distances where additional physics, such as shock transitions,
ally exist for this value oh, . In fact, if we are not limited is required. Also note that the soliton solutions in this context
to the isotropic perpendicular expansion, there is a finiteVill become invalid whert, ~t,, WherePcflleﬂGtﬁ- Un-
range ofh, and h,, which are related by, +h,~ 3 that less the average density of thg universe is less than the c_r|t|—
yields the many-period soliton solutions. The range is apS@l density by a huge factor, it is expected that the descrip-
proximately identical to that for the solitary waves indicated!ion Of the disk evolution by the soliton solutions should hold
in Eq. (41). only for a finite range of time.

This type of multiple-mass-shell solution has been be-
lieved to be the basis for dissipationless gravitational turbu-
lence arising from multiple-mass-shell crossings8—15. For the implications of the solitary wave trains that exist
The physics beyond such configurations may be traced tonly in an underdense and anisotropically expanding back-
instabilities such as the two-stream instability or the inverseground, we feel that these solutions are probably of little
Landau damping. As two collisionless mass flows penetrateelevance to the real world unless one is bold enough to
each other, the free energy associated with the relative mahallenge the validity of an isotropic universe. This is be-
tion can be released and vigorously generates fluctuations ehuse the solitary wave trains do not drastically modify the
length scale the Jeans length. Our multiple mass-shelbackground density and therefore should not be expected to
solution may represent the nonlinearly saturated states afrastically change the background expansion from an isotro-
such instabilities. pic to an anisotropic one. But how can an underdense and

B. Solitary wave trains
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dash-dotted lines fon, =0.71, and the dotted lines fér, =0.669.
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isotropically expanding local universe, in which we believespace  outside pxx 2%, at a mass flux

we live, support wave fluctuations? (propotional tax'”®) much less than that of the Hubble flow
An underdense, homogeneous, and isotropically expandpropotional tax). As far as the real universe is concerned,
ing universe is known to have two stages of evolutiaf]: in view of the isotropy of the quasar distribution, one may

an initial stage where the expansion factft) scales as want to look for such interesting solutions for the Einstein
t?/® (the matter dominated regimend a late stage where equation in spherically symmetric configurations. If such
a(t)~t (the curvature dominated regimé his time depen- spherically symmetric solutions can indeed be found, they
dence does not satisfy the self-similar time scaling assumehay provide a new challenge for cosmology, in that the uni-
throughout the above analyses, thus explaining why we canrerse expansion will be distance dependent and determina-
not obtain a solution describing an underdense, homogeion of the cosmic time that relies so much on the extrapola-
neous, and isotropically expanding background configuration from the current Hubble expansion raltk, will be
tion. The evolution of waves in such a background can bemisleading. Indeed, if our galaxy is located well within a
solved as an initial-value problem. The equation of state delarge flat-top region of the local universe, it is not easy for
scribed in the first equality of Eq23) can be adopted in an the current observations to distinguish such an inhomoge-
approach treating the collisionless particles as a fluid. As foneous universe from the classical homogeneous one.

the nonlinear waves, there is probably no straightforward

analytical treatment; numerical simulations are probably the ACKNOWLEDGMENT
only tool for understanding the nonlinear evolution of waves . ) ] i i
in such a background. This work is supported in part by the National Science

Related to the question of how an underdense universgouncil of Taiwan under Grants Nos. NSC 85-2112-M-008-

may evolve, the soliton solutions near= 2 may reveal an- 018 and NSC 86-2112-M-008-018.
other interesting possibility, in contrast to the conventional

answer described in the preceding paragraph. Figures 7 and 8
show the flat-density-top soliton solutions ndar=3. Al- APPENDIX A: SINGULAR SOLITARY WAVE TRAINS

though the density will eventually drop to zero at some large IN'A STATIC BACKGROUND  [2]

distance, within the flat-top region, the density always as- propagating wave solutions in a static background can be
sumes nearly the critical value and the flow expands almosjest studied in the wave rest frame of reference. In this ref-
isotropically at a rate nearly the critical rate. That is, theerence frame, the system is stationary, although the flow is
solution |0ca.”y looks little different from the Newtonian nonzero. One may treat this pr0b|em as a time-independent
Hubble flow. This type of solution suggests that if the uni- problem, for which the mass flux, momentum flux, and en-
verse does not have sufficient mass to halt its expansion glesrgy flux are all uniform in order to ensure stationarity. For

bally, it may manage to halt the expansion locally. This cangne-dimensional z-direction propagation, these conserved
be nearly achieved by aggregating most of the mass into fiyxes are

very thick slab, within which the density is sufficiently high
and its gravity can just balance the expansion. Such a slab,
however, is continuously losing its mass to the nearly empty pV,=Cy, (A1)
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V4 where
T%=| - +E(p)+ ¢ pV,=C1Co, (A2)
U )Ep5[p4—p<c2fx>+<céfx>] 6
and P () —3p"F
2
T33= pV§+ Pt L(d_d)) =c,, (A3) with | ;= \/«/87G, of order the Jeans length. The solutions to
87G\ dz Eq. (A6) are anharmonic oscillations, whesgs bouncing in

respectively, wherec,, c;, and c, are constants and betl\—INc?vig\}(\al\:o aioﬁo(:g(?%.at this “potentialU(p) has a
E(p)=/dP33/p is the internal energy. The correspondence ’ P P

to Eq. (23) for the equation of state of collisionless particles second-order pole_ at the sonic point. It can be shpwn rigor-
reads ously that the sonic point must always be located in between

the two zeros ofJ(p), meaning that whep is bouncing in
Pas=kp°, (A4) between the “potential well’'U(p), it always encounters the
sonic singularity. The solution may be obtained by consider-
which can be obtained from E@23) by setting the expan- ing an analogy to the particle dynamics where a particle may

sion factorsa,=a,=1. roll down the potential well from one side of the singularity
Having expressedPs3 and E as functions ofp, we are  to the other.
now in a position to solve fod¢/dz as a function of¢ Although it may seem that this singularity is rather weak,

algebraically. This can be carried out because we have foun that p, V,, and ¢ are all continuous across the sonic
unknowns @¢/dz, ¢, p, and V,) and three equations point anddp/dz anddV,/dz diverge at the sonic point as
[Egs. (A1), (A2), and (A3)]. Alternatively, one may also |z—z] 2 in fact, a careful analysis shows théi/dz is
solve fordp/dz as a function ofp after some algebraic ma- discontinuous and there must be a negative density spike

nipulations. This alternative yields a familiar form located at the singularity. It is this negative density spike that
makes this solution unphysical, as pointed out by Adams,
( p\? Fatuzzo, and Watkins in a similar problem for the molecular
2\ ligz) TU=0, (A5) clouds[21].
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