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Driven granular media in one dimension: Correlations and equation of state
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We study a one-dimensional granular system in which each particle is excited by white noise, with inelastic
interactions between the particles. When the coefficient of restitutipis one, the particles are uncorrelated.
As 7 decreases, long-range correlations between the particles develop. A computer simulation of the system
shows a steady-state, power-law particle-particle correlation function, which depends stronglyMmngive
simple analytic arguments for the correlations. We also present an “equation of state” for the system of
particles, which relates the noise amplitude to the particle density and the average particle speed.
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With a few notable exceptions, our understanding of systhe two-point correlation function, occurs even in the ab-
tems not in equilibrium is far from complete. Certainly, there sence of any other forces between the particles. There have
is no general framework comparable to equilibrium statisti-been several studies of dissipative systems that are started in
cal mechanics with which to study the behavior of nonequi-a “hot” state and then slowly codl4—8], since there is no
librium systems. Models of driven dissipative systems in-energy input. In one and two dimensions, these can show
cluding granular media have been the subject of considerablénelastic collapse”[6]. The novel feature of the collapse is
recent interest, in part because of insights that such systentisat for coefficients of restitutiory below a critical value
can provide into nonequilibrium behavi¢f,2]. Granular 7., the kinetic energy is dissipated in a finite time. For
materials are also of interest because they demonstrate a staje- 5., the kinetic energy dissipates gradually.
of matter with properties reminiscent of both solids and lig- In our model, we consider a continuous input of energy
uids[3]. Other properties of granular materials such as heaplocally to each particle, as well as dissipative collisions.
ing and the appearance of avalanches, however, are [Mhus, for a coefficient of restitutiom<1, the system even-
marked contrast with the behavior of both macroscopic ligtually settles down to a “steady state.” Fge= 1, this steady
uids and solids. Very recent studies of the effects of inelastistate looks, at least superficially, like an ideal gas, in which
collisions in granular media and dissipative gases havehere are no significant spatial correlations between the par-
shown surprising dynamics, including clusteript-8], in- ticles. However, we show that agis reduced, even in the
elastic collaps¢6,8], and the breakdown of macroscopic hy- absence of any long-range interactions, the system develops
drodynamics[9]. Here, we study a continuously driven or a structure factor that is characteristic of an equilibrium sys-
heated one-dimensional dissipative gas and show that inelagem with long-range interactions. In particular, the dissipa-
tic collisions lead to pronounced, long-range spatial correlative interactions lead to a correlation functig(x) that is no
tions in the absence of any long-range forces between thienger a constant as it would be for an ideal gas, but shows a
particles (Fig. 1). Despite these correlations, we find that peak near the origin. Furthermore, this enhancement of
aspects of this nonequilibrium system can be described by g(x) nearx=0 is of a power-law form. Thus, the system
simple equation of state based on a global energy balancebehaves as if there were long-range attractive interactions

Clustering is often observed when granular media argetween the particles. Only in the limii—1 does the cor-
sheared5,10,11. In general, clustering is driven by inelastic relation function become uniform. As decreasegy(x) be-
collisions. When two particles collide inelastically, they dis- comes more and more sharply peaked abow0.
sipate energy, slow down, and hence remain close to one Qur system has two advantages over the more traditional
another. Here we investigate numerically the effect of suclproblem where energy flows into the system from the bound-
inelastic collisions in a one-dimensional system of indepenaries, either by shedi5,10,11 or by other mean$8,7,9.
dent, pointlike particles that are excited by a thermal reserThe first is that the energy input to each particle is well
voir. We show that clustering, as evidenced for instance byontrolled, which avoids complications due to boundary ef-

fects and spatial gradients across the system. The second is
that since each particle is heated independently there is no

M
OO0 O—0—0 inelastic collapse.

We considemN point particles of unit massn=1, con-
FIG. 1. Snapshot of a system of particles that are uniformly andined to a line of lengthL=1 (Fig. 1). We use periodic
individually heated. Periodic boundary conditions are used, and th@oundary conditions, so that the particles lie on a circle of
particles are pointlike. The system forms cool liquidlike clustersunit circumference. When two particlesndj collide in this
surrounded by hot gaslike regions. As the coefficient of restitutionrone-dimensional system, the fingbrimed velocities are
is reduced, these clusters become more pronounced. given in terms of the initialunprimed velocities by
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3y Providedn<1, this system, started with some initial random
. speeds, eventually reaches a steady-state configuration.
o . _ Qualitatively, the system appears to form liquidlike clus-
) ., ters of high density surrounded by a gaslike “phase” of
B2+ °tt, lower density(Fig. 1). In order to study this effect quantita-
= tively, we introduce the two-particle correlation function
s R g(x). We select a particle and ask what is the density of
particles at distanc& from it. Since our system is transla-
1 L L ! tionally invariant, the choice of origin is arbitrary. This, suit-
6y ;(3 -2 -1 ably normalized, igy(x). For an ideal gas of point particles,
the answer igg(x)= a constant. For a gas that has some
attractive potentialU(x) acting between the particles, the
,answer is more complicated but, in generg(x) will be

N=10 particles. Forp=0.99 (lowest curve the correlation func- peaked a_bo'ut<='0 and V\_’i” decay to a Cons_tam A= ™.
tion is almost a constant. Fay=0.5 (middle curve strong corre-  FOr the dissipative gas discussed here, we §6d shows a

lations have developed, and fge=0.01 (upper curvg the function ~ Peak at the origin, even though we have no potential acting
is clearly a power law with exponent 3. The correlations arise between the particles. This peak is caused by the dissipation

because of the effect of inelasticity, i.e., when two particles collideeffect discussed above and can be thought of as a steady-
they move more slowly and hence stay near each other, thus caustate version of the collapse and clustering seen in dissipative
ing a correlation. The correlation function is independent of thecooling gase$4,8,5—7. As »— 1 the structure becomes less
heating rate). The curve, at smal; is also a power law for other pronounced andj(x) approaches a constant. However, as
values ofN, with a slope of— % Here we have superimposed data 7 becomes small(x) becomes very sharply peaked. Some
from two heating rates that differ by a factor of 180=0.0017 and  characteristic results are shown in Fig. 2. We find that the
0=0.17, and each point represents an average oweI® colli-  correlation function depends only on the density andzon
sions. and is independent of the heating rate. At least for small
where the finite size of the system has little effegtx) can

be approximated by a power lag(x) ~x~ %", Here a(7)

is a monotonically increasing function ef. In the limit of a
perfectly elastic systery—1 anda— 0. However, for per-
The main difference between this and previous studies ofectly inelastic systems wherg—0 we find a— 3. For the
dissipative gases is that each individual particle is “heated”’problem of interactions between twigolated particles, a

at a constant rate. This is done by adding a random amouscaling argument predicts a limiting exponentofThis re-

to the velocity of each particle during a time stap. Thus  Sult can be understood as follows. Wheris small the col-

FIG. 2. A log-log plot of the two-point correlation function ver-

1 1
Ulrzz(l_ﬂ)vl‘f‘z(l‘l‘ 7])UJ (1)

we write the usual Langevin equation lisions between particles are almost perfectly inelastic and
the particles lose almost all of their energy. The particles
vi(t+At)=v;(t)+ Jr JALE(D), (2) only move away from each other because of the random

kicks induced by the heating. Thus we can consider a single
wheref(t) is a random number chosen uniformly betweenParticle moving away from a wall and, subject to its velocity,
—1and!andr is a number proportional to the heating rate. Undergoing a random walk. We thus hafe(t)|?~t and
After the velocities are adjusted the system is transferred to

the center-of-mass frame, so that-v;—v, wherev is the 35 -
average velocity of all the particles in the system. The algo- _ 3oL &
rithm (2) ensures that the velocities undergo a random walk, o a5 | ®C.5ﬂ.3'
while the transfer to the center-of-mass frame ensures that T 20 §>d:"
the particle speeds do not increase indefinitely. It should be . I ¢;d.7
emphasized that this transfer step is for convenience only, o 1or ¢,¢3®
since the properties of collisions do not depend on the abso- M 10+ ®®¢)
lute speeds, only on the relative speeds. Before the heating 5L @@®
step, the kinetic energy of the systemKs= 3= ,v?, and ok
after heating, it is 0 10 20 30 40 50 60
(1-n’
1 N N 1 N
K’ =5 .2‘1 (vi+dvj)?= K+i21 vidvit+ 5 Zl (6v;)?, FIG. 3. A test of they dependence in the equation of stéfg
- N N 3 Here we have plottedK¥”NL~1Q ! versus (+ 7% ~1. As pre-
dicted by theory5), the relation is close to linear. Note that because

where v, = \/F\/Ef(t). The term linear indv; vanishes on the scaling withN in (5) is not precise, the lines for differeit are

N > not exactly superimposed. This effect is more pronounced in Fig. 4.
average, by symmetry, and the te®;_,(6v;)® is, On av-  The data are points from the computer simulation and each point
erage;rtN(f?)=7rtN, hence our identification of with  represents an average over® illisions. The following pairs of
the heating rate. It is convenient to introduce a quantityparticle number and heating ratd () were used®, (10,0.0017;

Q= Zr, which is the energy input per unit time per particle. O, (20,0.0017; +, (40,0.0017.
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FIG. 4. A test of theQ) dependence in the equation of stéfe FIG. 5. A test of theN dependence in the equation of stéfg

Here we have plottedd*?NL~*(1— 7?) versus(). As predicted by ~ Shown is a log-log plot of K32QL 11— %% versus
theory (5), the relation is close to linear. Note that because thel/N.The theory(5) would predict a line of slope unity. The line
scaling withN in (5) is not precise, the lines for differeht are not  of best fit (shown has a slope of 1.07. The circles are points
exactly superimposed. The circles are points from the computefrom the computer simulation and 30 collisions are
simulation and each point represents an average oxerd5 colli- averaged over for each point. The following pairs of heating
sions. The following pairs of the particle number and coefficient ofrate and coefficient of restitution €X,7) were used:
restitution (N,7) were used:®, (10,0.29; O, (10,0.55; +,  (0.0017,0.25,(0.20,0.85,(0.20,0.35,(0.74,0.35).
(20,0.55; A, (30,0.35.
energy with the heating rate and the coefficient of restitution

v~1tY2. The distance traveled from the wall in tirhés then  are exactly as predicted by the thed$y (Figs. 3 and % The
x~ [tu(t')dt’~t32~v3. The density of a particle at any scaling withN is satisfactory(Fig. 5) but at a small number
point is just the inverse of the time it spends in that regionof particles there are significant variations fras). These
i.e., vl thusg(x)~v 1~x"3 and a=3%. The fact that are clear in Fig. 4, where the data for different valuesNof
«(0)=3 is presumably caused by interactions between manpave different slopes.
particles. We can use the equation of state to obtain the force on a

In spite of the nonequilibrium nature of the system, wewall placed at the boundary of a finite system. We assume
can write down an equation of state by a simple energy arthat the particles undergo perfectly elastic collisions with the
gument[12,13. By “equation of state” we mean the rela- wall. The time-averaged forcé exerted by the particles is
tion between the heating rate, the number of particles, théhe “pressure” for a one-dimensional gas. The current of
system size, and the kinetic energy of the particles. One pogarticles hitting the wall isJ=Nv/L. Each particle imparts
sible approximation to the equation of state can be derived asiomentum 2 to the wall. Thus the time-averaged force is
follows. Let us ignore numerical prefactors and correlationsF = pv2, wherep=1/L is the linear density. Thus the rela-
between the particles. The average distance a particle mugbn between the force and the density is
move between collisions is/(2N). Then, for particles that
have some average spaedthe time between a collisiaffior F=0p"(1- 72", (6)
each particlgis approximatelyt=IL/(2N)]v ~*. Since there o o )
are N/2 pairs of particles, the rate of collisions is Due to dissipation, this is very dlff_erent from the result fo_r
~(N/2)t~t=yL~IN2. During each collision, an amount of an ideal gas where the pressure is proportional to the first

energy (1 7?)v? is dissipated. Thus the rate of energy dis-PoOWer of the density.

sipation is approximatelj13] In this paper we have discussed a simple one-dimensional
model of an excited dissipative gas. The system shows
W=0v3(1- %)L N2 (4)  steady-state clustering, or power-law correlations between

particles, and can be described by a simple equation of state.
However, the rate of energy inputN. In the steady state The nontrivial correlation function implies that the particles
these must be equal. Thus we find an equation of state  move as if interacting via a potential. There have been sev-
3 ot eral attempts to describe the average properties of dissipative
K¥(1=77)N=CQL, (5) gaseq12,13. However, their full statistical mechanics, in-
cluding a theory of their correlation functions, analogous to
that for simple liquids, remains a problem for future re-
search.

whereK is the kinetic energy per particle a@lis a numeri-
cal constant. The dependencieskn (), andL are some-
what trivial since they can be derived independently by di-
mensional analysis. However, the dependence upand This work was supported in part by the NSF under Grant
especiallyN are less trivial. We can test how accurately thisNo. DMR-92-57544, and by the Petroleum Research Fund.
equation describes the system by comparing it with the reD.R.M.W was also supported in part by NSF Grant No.
sults of our computer simulation. The scaling of the kineticDMR-91-17249 and by QElII.
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