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Monte Carlo study of excluded volume effects in wormlike micelles and semiflexible polymers
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An off-lattice pseudocontinuous model for semiflexible polymerlike micelles with excluded volume inter-
actions is presented. Expansion factors are determined for the radius of gyration squared and for three different
characteristic point-point distances squared. They are found to scale with an exponent in agreement with
renormalization-group results and with previous lattice simulations. A comparison with the Yamakawa-
Stockmayer-Shimada theory gives a reduced binary cluster intBgr@l30 for the micelles which is similar
to the value for polystyrenéPS in a good solvent. We present an approach for simultaneously analyzing the
point-point distance distribution functions and obtaining the characteristic parameters of these. Scattering
functions are determined and used for analyzing small-angle neutron scattering data from PS in a good solvent.
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PACS numbsdis): 61.25.Hq, 61.20.Ja

Giant wormlike micelles have been found to behave esincluding the excluded volume interactions in a pseudo-
sentially as semiflexible polymers in a good solvgEht3]. continuous version of the model. An extremely efficient
This is most clearly reflected in the results of small-anglesimulation algorithn{6] is used and this allows for the first
neutron (SANS) and static light scatteringSLS) experi- time simulations to be performed on pseudocontinuous KP
ments. The scattering functid(q), whereq is the modulus ~ chains with excluded volume effects over five decades of
of the scattering vector, exhibits all the regions that are charcontour lengthi/b, whereb is the statisticalKuhn) length.
acteristic of the various length scales and properties of sucReterminations oy, the end-to-end distand®e,, the end-
polymers: overall size, flexibility, local stiffness, and finite to-middle distanc®.,, and the distance between two inner
cross-section size. points D;; , situated atL/4 and 3./4 along the contour, as

The scattering data in the literature have generally onlyvell as the distribution functions of the three latter param-
been qualitatively analyzed using various asymptotic expresgters, have been performed. We present an approach, based
sions. The exception is a recent light scattering sfi@gyin ~ on the empirical distribution functions suggested by Mazur
which the results were analyzed using the available theoret{-7] and the relation given by Fishg8] for analyzing simul-
cal expressions for semiflexible polymers in good solventstaneously the distributions in the largetimit. This gives
One of the results of the scattering experiments is the rootvery accurate determinations of the characteristic parameters
mean-square radius of gyratioRy . If Ry can be related to of the distribution functions, which can be compared with
the contour lengtiL of the chain, one has direct access tothe predictions of renormalization-group calculatipgband
studying the growth law and the thermodynamics of the systhe results of simulations on lattidg0—-12 and flexible
tems[3]. However, the dependenceRf onL is not known,  Polymer modelg13-185.
since the expansion factors of the chains due to excluded The Monte Carlo model is based on the discrete represen-
volume effects are not well known. Furthermore, the avail-tation[16] of the continuous KP model. The discrete model
able semiempirical expansion factors of, eRy,, from per-  hasN points separated bly, equal valence angles, and free
turbation calculation$4] cannot be used, since the value of rotation about the bonds. The contour length isNIy and
the binary cluster integral is not known for chains with thethe Kuhn length)b, is related to the valence anglé, by
particular cross-section size and flexibility of the micelles.b=1o(1+ cosf)/(1—cosf). The two parameters that specify a
Moreover, there are currently no expressions available fogertain micelle or chain are/b and the dimensionless cross-
the scattering function of semiflexible chains with excludedsection radiu®/b of the micelle or chain. Typical values of
volume effects, which cover the entitgrange and which b andR for micelles are 300 A and 30 £2], which gives
could be used for analyzing SLS and SANS data from poly-R/b=0.1. This value was used throughout the present work.
merlike micelles. In the model(and the simulationsthe continuous limit is

In this paper, we present a Monte Carlo model for self-approached lettingN— o, |,—0, and #—0 in such a way
avoiding semiflexible micelles based on the Kratky-PorodthatL/b is constant.

[5] (KP) model for semiflexible polymers. Polymerlike mi-  The excluded volume effects are taken into account by
celles are typically composed of thousands of amphiphiligplacing hard spheres of radil® at each point along the
molecules and are thus, for all practical considerations, corchain. A hard-sphere potential has previously been found to
tinuous in nature. It can therefore be expected that the KBive a correct description of intermicellar interactions in
model can provide a good description of the micelles. Herssimilar system$17]. A test for volume overlap of a chain in
we present a realization of the model with an approach fothe simulation can, in principle, be performed by checking
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the overlap between the spheres on the chain. However, for a 10° : : : : :
large number of spheres per unitlofi.e., for a large ratio of

b/ly, one encounters the problem that several consecutive 102k

spheres along the chain overlap irrespective of the chain con-

formation. Therefore, the search for overlap does not start in 10!

the immediate neighborhodd.g., at the third nearest neigh- &

bor as in atomistic model4]), but further along the chain 10°L

depending oo/l ,. On a straight section of the chain, spheres

separated by R along the contour do not overlap. However, 1071

the chain should be allowed to make a 180° bend. The

spheres along the bend will have their centers on a semicircle 1072 L . ; . .
of radius R, which means that the spheres separated by 107M0° 10" 102 10° 10%10°
7R=b/10~0.31% along the contour should not overlap. L/b

Considering this, we have decided to look for overlap for
spheres separated by more th#8 along the contou(inde-
pendent of the values &, |15, andL).

For fixed values otf./b the influence of the finite number
of points on the chainl\, onRy, D¢e, Dep, andDj;, where
X means ensemble root-mean-square valu¥,of/as inves-
tigated by making extrapolations versufN1for the chains
without excluded volume effects, comparisons were in addi- .
tion made with the analytical results f& andD¢.[16,18]. = (b)
For N>1000 the error from finitdN effects was always . . . . . ]
smaller than 0.3%. Fdr/b<<167,N=1000 was used. With 14 0 1 2 3 4 .5
this choice, the valence angtedepends orh./b. For longer 107107 10 be 107 10710
chains (/b>167) the number of spheres per unitvas six,
which resulted in a sphere radius of IQ.6This gives a rea-
sonable approximation to the local cylindrical structure for
the long chains. For these chaifis- 44.42°. For the longest
chains withL/b= 16384 the number of points on the chain is
98305.

In the simulations for the short chains withib<<100, a
simple rejection algorithm was used: chains were grow
from scratch and those with overlap were simply discarded.

This gives completely independent samples but the methog,,ssover region betwearib=1 andL/b= 200, and slowly

is only efficient for short chains, since the number of rejec'approach the asymptotic behavior fofb>200. The expo-
tions growths rapidly witiL./b. For longer chains the pivot nants and the corrections to scaling were determined using
algorithm of Stellman and Gan$,19] was used together [10,14:

with the “zippering method” for looking for overlap20].
We have performed simulations for lengths ranging from a(X) 2~ A X[1+A,/x4] (1)
L/b=0.25 up to 16 384, both with and without excluded
volume effects. For chain lengttyb<100, 16— 10° inde-  with different values ofA; and A, for the different param-
pendent samples were generated by the rejection algorithexers. A simultaneous least-squares fit fgb>10 to the
for each value ofL/b. For L/b>100 the typical ensemble expansion factors of the four parameters with the same value
size was 5 10°. The errors 0Ry, Dee, Dem, @andDj; were  of e gives e=0.1760+0.0035 andA =0.46+0.08. The er-
calculated by standard methods for the rejection algorithmgors were estimated as described2®]. The value ofe is in
whereas a block analys[22] was used for the pivot algo- good agreement with the best renormalization-group calcula-
rithm [21]. Typical standard errors are smaller than 0.3% andion result of e=0.176 [26], as well as withe=0.1754
we note that the influence of finitd, mentioned in the pre- =+0.0016 found for lattice simulatior4.0].
vious paragraph is similar to or smaller than the standard In order to apply the simulation results in the analysis of
errors. A comparison with methods involving more compli- experimental data, an expression &x) in the full range of
cated schemes for the moves was performedLitr=128  the simulated data (08L/b<16384) is required. The em-
[24] The results @reed within the statistical errors. pirical expression a(x)2:[1+(X/n1)2+(xln2)3];/3 was
The results foRy [Fig. 1(a)] with and without excluded  foynd to give good fits in the full range. A simultaneous fit
volume interactions start to differ aroundb=1. The ex- gave€=0.170 andn,=3.12, n,=8.67 for Ry, Ny =2.42,
pansion factors of Ry, D¢e, Dem, andD;; due to excluded n,=6.90 for Dee, N;=3.56, n,=9.95 for D, and
volume effects have been calculated and are shown in Fi911=2.88,n2=6.76 forD;; . ¢ deviates significantly from the
1(b). The expansion factor of, e.gR, is defined as yajue ofe found using Eq(1) due to the different way the
ar, (L/D) =Ry/(Rg)o, where Ry)o is the value without ex-  two expressions approach the asymptotic limit. The two ex-
cluded volume effects. The expansion factors exhibit a larg@ressions fore were found to have a root-mean-square de-

FIG. 1. (a) The dependence (FTQ on L/b with (triangles and
without (circles excluded volume interactiongh) Expansion fac-
tors for Ry, Dee, Dem, andDj; in a log-log representation. For
clarity, the upper curves have been displaced by 0.05, 0.1, and 0.15,
respectively. The curves are the fit obtained by the empirical expan-
sion factors and the results for chains without excluded volume
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FIG. 2. Results fors andt in the Mazur function forD, for FIG. 3. Scattering data for PS in carbon disulfi@3]. The
chains with excluded volume interactions. Inset: fit to the distribu-curve is a fit using the parametrized functions with excluded vol-
tion function forL/b=2048. ume interactions.

viation less than 0.3% for X0L/b=<16384, which is of the
same magnitude as the statistical errors on the simulation '" the present work, the strength of the excluded volume
results. interactions is expressed through the paramBiér. How-
The distribution functions 0Dge, Deny, and D; have ever, in most theoretical studi¢g8] it is more frequently
been analyzed using the function suggested by M&dZlir  done by giving the value of the reduced binary cluster inte-
W(r)=CrSexd —(r/0)!], with C l=(cS"Yt)I[(s+1)/t] gral B. In order to get the value oB corresponding to
and 0?=D,,’T'[(s+1)/t]/T[(s+ 3)/t], where Dyy? is the  R/b=0.1 we have analyzed the results Ry andD by the
mean-square value of one of the distances H(i) is the  yYamakawa-Stockmayer-Shima@®4S$S) theory[4]. A simul-
gamma function. This function gives relatively good fits 10 taneous fit to the simulation results f&, and D, gives
the distributions in the full range df/b both with and with-  5_ 30+ 0.01 forL/b<500. The fits to the simulation data
out etxfclulij/et()j>vi)(l)ume m;_eractu_)rnhs with alm?st perf;::tf agr€€3eviate significantly fot./b>1000 due to the assumed value
genf or lud d(sele 9. % te pba:rqm((ajirs anf_t tor h €=0.200 in the YSS theory. The value fBris quite similar
Dee 10 EXcluded volume efiects oblained from Hits 10 e, o \a1ue determined for polystyren9 in benzene
individual distributions are displayed in Fig. 2. For (B=0.23) [4,29] and PS in tolueng30] (B=0.26), which
L/b—0, s and t—o, which reflects that the distribution ) o . T
means that the simulation results should also be applicable to

function approaches & function atr =L/b due to the local . . .
stiffness of the chain. Fok/b—o, t and's approach con- E?vilgggood solvents. This is further demonstrated in the fol-

stant values of about 2.43 and 2.22, respectively. i i ,
In order to get accurate estimates of the parameters in the 1€ Scattering function§(q) have been determined for

asymptotic limitL/b—oo, the 42 distribution functions of L/b=0.3-640. Forqb>5, S(q) follows the 1f behavior
Dee, Dem, andD;; were analyzed by an approach in which of a straight cylinder and at lower it follows the expected

all the distributions folL/b>200 were fitted simultaneously. d ***€ behavior for chains with excluded volume interac-
The expressioril) was used for the expansion factors with tions. The scattering functions have been parameterized for
e andA fixed at the values determined by fitting the expan-use in least-squares analysis of SLS and SANS [&it:82]

sion factors. Using=2/(1— €) [8], one has only nine fitting and in the following an application to the SANS data from
parametersA,, A,, ands, for each of the parameteb,., atactic PS in the good solvent carbon disulfide is described
Dem, andD;;, for fitting 42 distributiond23]. We obtained [33]. Figure 3 shows the scattering data for PS with a mo-
an excellent fit to the distribution functions, which shows lecular weight of about 16 10° deuterated only at the back-
that the distributions follow the suggested behavior withinbone. With this labeling the chains are effectively infinitely
the statistical errors. The values ferwere 2.224-0.006, thin in the SANS experiment and the scattering function is
2.412+0.006, and 2.71£0.006 forDye, Dem, andD;;, re-  directly observed. The data show the expecied** € and
spectively. These values are very close to those found by ™! behavior; however, a crossover to a constant intensity is
renormalization-group  calculations[9]: 2.273t0.004, not observed at low due to the largR, of the chains. The
2.459+0.003, and 2.710.05, respectively. Monte Carlo full curve in Fig. 3 is the parametrized scattering function
simulations on relatively short flexible chains with calculated foh=25 A and withL determined from the mo-
R/b=0.28 [13] give 2.27-0.01, 2.55-0.06, and lecular weight. The agreement between the curve and the
2.60+0.15, respectively, whereas lattice simulations givedata is excellent.

2.262+0.015 for D¢ [11] and 2.4190.003 for D¢y, In this paper, we have presented a Monte Carlo model for
[12,27. simulating single chain properties of polymerlike micelles
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with excluded volume interactions. The study provides im-polymers and demonstrated that the results are applicable to
portant understanding of the excluded volume effects in sucpolymers in a good solvent. Finally, we have obtained pa-
micelles. The results for, e.g., the expansion factors are esametrized scattering functions, which we have successfully
sential for the correct interpretation, in particular of scatter-applied to PS in a good solvent and which we can use for
ing experiments. A simultaneous analysis of a large amourdnalyzing scattering data from polymerlike micelles in the
of simulation results for different chain lengths has providedfuture.

accurate exponents in scaling laws and very accurate

parameters for the distribution functions, which have been Illuminating discussion with T. Fiig are gratefully ac-
found to be in good agreement with the predictions ofknowledged. This work was financially supported by the
renormalization-group calculations. We have, in addition,Swiss National Science Foundation through Grant Nos. 21-
made connections to the standard models and theories f87274-93 and 20-40339.94.
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