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Learning algorithm that gives the Bayes generalization limit for perceptrons
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A variational approach to the study of learning a linearly separable rule by a single-layer perceptron leads to
a gradient descent learning algorithm with exactly the same generalization ability as the Bayes limit calculated
by Opper and HaussldPhys. Rev. Lett66, 2677 (1991)]. This is done by finding, through the Gardner-
Derrida replica method, the student-teacher ovefaps a functional of the algorithm cost function and
maximizing this functional. The resulting cost function is closely related to the optimal cost function derived
for on-line learning[S1063-651X96)51507-2
PACS numbdps): 02.70—c, 87.10+e, 02.50--r, 05.90+m.

We consider the problem of generalization by a single—gz{yigg}ﬂzl_.? be the training set composed by input
layer perceptron undergoing supervised !earning from eXyectorsS* and output datarf= sgn@B-S*). We take the
amples generated by a teacher network with the same archjyy t data to be independent random vectors uniformly dis-
tecture. There is vast literature on this subjéfor reviews, i ted on theN-dimensional sphere. This particular situa-
see[1]), which ranges from the numerical simulation andyjo, js considered only for the purpose of illustrating the
analypcal calculation of the 'gen'erallzatlon error of d'ﬁer?”tvariational approach, being easily generalized to other distri-
algorithms to the determination of the best possibley tions. In terms ofR=J- B/|B|[J]|, the teacher-student
(“Bayes”) performance by Opper and Haussler. overlap, which is a self-averaging quantity in the thermody-

The proof that there is a perceptron which actually givesyamic imit, the average generalization error is a monotonic
the Bayes performance was given by Watkim [1]). This ¢ nction e,= (1/m)arcco [1].

optimal perceptron corresponds to the center of mass in stu- The process of learning is that of iterative determination
dent space calculated from the posterior distribution proyf the coupling vectorJ such that the student is able to
duced by the Gibbs algorithm. Watkin SuggeStS determinin%pproximate the map defined by the teacher. This can be
the optimal perceptron by sampling this distribution by inde-achjeved by a stochastic minimization of a cost function or

pendently trainind — students. . o training energy which leads in a natural way to the intro-
_In this paper we show that there exists a training energyjuction of the ideas of statistical mechanics in the space of
with a nondegenerate minimum that givesactlythe opti-  jnteractiong 1].

mal perceptron. The main idea in obtaining optimal generali- e write the training energy as a sum over the training
zation algorithms is to treat the learning problem as a Var'aSetE(J)=EP V(\,), wherex EN—l/z\].S,LU;BL is the ex-

. . . n= wuls "

tional one. This has been previously dond2-{6] for on-  mpje stability. The quenched average over the training data
line learning, where the examples are used only once and a[g g4one by the replica method. As usual, the free energy will
thereafter discarded. Here we extend the use of the Varigtepend, under the assumption of replica symmetry, on the
tlo_nal_ appro_qch to the off-line _Iearnmg scenario. The generyrder parameters), the typical overlap between different
al_lzat|0n ability is calculated, in genera_ll, for any algorithm students, and, the typical overlap between a student and
with a nondegenerate ground state, using the standard Gargs teacher.

ner replica analysis of the space of interactions. The optimi- e fact that the best possible student is unique permits us
zation of such ability determines the algorithm, and the opyg se the streamlined formalism of BYB], which was
timized ability is exactly the Bayes curve. In performing, yeyeloped to treat the case of nondegenerate ground states.
such a general calculation we rely heavily on the streamlineg4t s as B—o then g—1 in such a manner that

method of Bouten, Schietse, and Van den Bro@®B) [7].  ,_ 51 _q) is finite. The free energy can be written as
By numerical optimization inside a limited class of func-

tions, BSB have found a remarkably simple algorithm with a
learning behavior very close to the Bayes cuvg Optimi- 1-R2 "
zation of the so called relaxation algorithm also approxi- f=—¢, R[ _zaf Dtlf Dt,min,| V(\)
mates the Bayes |lim{t8]. However, all these are somewhat ' 2X 0
ad hocapproaches and only work in the absence of noise. (A—1)2
The question of the existence of a gradient descent algorithm + ] , (1)
that leadsexactlyto the optimal performance for every 2X
remains and we now deal with it.
Let B andJe RN be, respectively, the coupling vector of
the teacher perceptron and that of the student. Lewhere¢ is the extremum function anteRt,+ 1—R?t;.
The procedure for obtaining the overl&ois very simple
[7]. We must look for the function y(t,x) that minimizes
*Electronic address: osame@curie.if.usp.br EMN)=V(\)+ [(A—t)%2x]. The extremum conditions for
TElectronic address: nestor@if.usp.br R andx lead to
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o 9 (solid), on-line energyE,,(t*)/I" (dot-dashey off-line modulation

function W, (A*)/T¥2 " (long-dashel and off-line potential

whereF is F in the transformed variable = y1—R" and Vopt(N)/T" (dashedl for learning(a) without noise,(b) with noise

g=e R**2/H(—R1). Equations(5) and (6) lead to level y=0.05.
R? a (Gg)t2 viewed as a factor dependent of the length of the training set
1-R2 T (G?g),’ () [T=TI"(«a)] for stationary rules or as performance dependent
[['=tan(wey) ] for nonstationary environments. Note that as
WhereG=E/g and(( ))=JDt(). it is, the off-line variational calculation does not determine

The solution of Eq(7) determines the performance of any the value ofx because it plays the role of a simple multipli-
gradient descent algorithm, defined at this poinGaywith a cative constant to t_he optimal energy, being irrelevant for the
nondegenerate ground state. We have managed to reduce ffliorium properties. _ _
problem to a point where the application of the variational TN€ potentialVep()\) can be obtained, up to irrelevant
ideas is now trivial. From a Schwartz-like inequality, the additive and multiplicative constants, by integrating E4).
right-hand side of Eq(7) is found to be maximized when Note thatF(t) +t=0, thush=0, which, by the way, shows
G does not depend oh The performance of the resulting this to be aconsistenalgorithm. This means thaf,, () is
algorithm is then given by the solution of the transcendentalnfinite for negative arguments. For positive values\aiise
equation: Eq. (4) to obtain

t(\)

2 - (1/2) R? ) _—
: EJ' e (8) Vopt(M)=Vopi(A1) =X lf Fopt<1+ Q|t0/p dt’.

i =) PYHCRY )

Equation (8) is exactly the Opper and Hausslgl] Bayes
result. Thus the variational method constitutes not only al
alternative and more dwept procedure for obt_amlng .the Eopi(t)=—TInH(—t/ JD), (10)
Bayes curve but will also give the form of the optimal train-

ing energy(see below This enables us to study the proper- so the integrand is just a total derivative. Then, the optimal
ties of the optimal perceptrofstability distribution, classifi-  energy functionVp(\) is

cation error, etg.by the standard Gardner meth].

But F,p¢ is the derivative, with respect tg of the on-line
noptimal energy

By referring to Egs(5) and(6) again, it can be found that —x1 _1p2
G=\T72m, with T=(1—R%/R?. Then, the optimalF Vopd M) =X A Eopl tV]= 2 Pt (1)
function is where the value of(\) is obtained from Eq(4).
/22T Thus, the optimal off-line potential,,(\) is not identi-
. /T e (112) © cal to the optimal on-line energi,(t), but is closely re-
opt 2T H(—t/\T) lated to it. From the cavity method perspectj\7@, the term

F2/2x=(\ —t)?/2x appears as an additional energy contribu-
The functionF, [Fig. 1(a)] is the difference between the tion, due to the other examples, to the poter¥igl(\). Itis
prelearning and postlearning stabilitigg]. It has precisely this combined cost energ§=V,,, +(\—t)%2x which is
the form of the modulation function of the optimal algorithm nicely related to the optimal on-line energy,(t). We call
for on-line learning and it depends on the prelearning stabilW,,=— 3V, /dN the modulation function for the optimal
ity t of the example[2]. The modulation depends on the off-line case. The relevant variables in the modulation func-
order parameteF. As it has been shown if8] this can be tions are the ratios*=t/\T and \*=\/\T. We also can
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rescale these function by the factQi in order to make a weighted sum of signals, appearing in different contexts

them independent dR. The rescaled modulation functions from information processing by protein networks2] to

and learning potentials are shown in Figa)l classification tasks in animals including humgnRescola-
Concerning the practical implementation of an optimal\Wagner models[13] are single-layer perceptronsand

algorithm, we note that the dependence on the order parar¥€ighted voting in committees. _ _
eter R, far from being disturbing, turns out to be of high ~ AS our results indicate, for each environment there is an

theoretical importance, as we discuss below anf]n optimal way of doing t.h_is associative learning t_hat corre-

We stress that this work only illustrates, within a simple SPOnds to a very specifimodulatedHebb mechanism that
but paradigmatic situation, a general method for obtainingZVeIves along the learning process. The modulation function
optimal learning curves and optimal cost functions. For eaclflepends on a balance of confidence and surprise, that is, the
machine and learning environmefgxample distribution, ratio t*=t/\T": confidence of how well the student expects
noise distribution, etg.there exists a corresponding optimal to perform in the new example, given its average perfor-
algorithm, which can be found by the method introducedmance as measured by the factor tan(we,); surprise as
here. It is currently being used for determining optimal algo-indicated by the actual student performance on that example,
rithms for noisy environment®] and unsupervised learning given by the value of the prelearning stabilitylt also de-
situationg 10]. We only give the resultgsee[9]) for learning  Pends on the type and level of the noise in the examples; see
in the presence of output noise. Lebe the flip probability; ~ Fig. 1(b) [6,14].

then the modulation function is changed to The optimal algorithm for each learning situation also
suggests how practical algorithms can be constructed—they
[ e l2¢m must mimic the properties of the optimal one—and gives a
Fop=(1=2X) \ o7 7=, (12 benchmark curve for their evaluation. For optimality to be
opt 277H(—t/ \/F) p y

achieved, the cost function must be time depenfi2if], or
performance dependent if the rule changes with tiBle

The fact that the optimal algorithms depend on various
internal and external quantities may appear to be distressing,

where H(—t/\T)=y+(1-2x)H(—t/\T). The corre-
sponding Bayes curve is given by

R2 w —1/2R%?2 since those may not be readily available variables. We do not
= _(1_2X)2f Dt —, (13)  see this as a problem but as an inevitable theoretical result
Vi-R? 7 H(—RY that provides important insights for a learning theory. It in-

i . dicates that, in order to optimize learning algorithms, there
which agrees with the results of Opper and HausBler  eyists 4 “selection pressure” for the development of “mod-
Wopi @nd Vo, are shown in Fig. (b). , ules” which are needed to estimate the unknown but impor-

The difference between on-line and off-line can be sumyan quantities(type and level of noise, performance level,
marized as follows. Off-line learning is described by ag,iprise level, ety. These on-line estimators have already
Langevin equation, i.e., an energy gradient descent procegi.an developed for the perceptri@)14,16.
plus noise, where the energy==,V(\,,) is defined over To conclude, the variational approach for determining op-
the whole set of examples. On-line learning, on the othefjna) jearning curves has been extended to off-line learning.
hand, while also being a gradient process, has a cost functiqfinimization of Vopi(\) produces the optimal perceptron.
E(t,) that depends only on the latest example. This training energy is found to be closely related to the

For' optimal learning, we have shown that the two types quptimal on-line energyE,n(t). The optimal algorithms
energies, although related, are not the same. The main qualitesent complex and rich mechanisms for modulating the
tative difference lies in that they depend on different vari-yjeppian term. It is important to stress that our variational
ables\ andt, the postlearning and prelearning stabilities, repjica calculation for the optimization of cost functions is
this d|ffer_ence being clarified by the cawty_mterpretatlon Ofgeneral and can be extended to other distributions of ex-
the learning procesp7,9]. The optimal on-line energy has ;mples, machines and perhaps even other optimization prob-
been deduced for several different architectufesolean |gms The variational approach leads to a scenario where
perceptror{2,3], linear perceptro5,9], tree committee Ma-  |gaming algorithms are not hard wired, but are the object of
chine [6], parity machine[11], and unsupervised leaming , (second-ordérlearning process; a scenario where students

[10)). ) i ) learn to learn in an optimal way.
The optimal algorithms have a rich structure and present

some properties that turn out to be very interesting when

examined from a biological perspective. Remember that the Discussions with Chris Van den Broeck and Mauro
perceptron is not only a formal neuron model. It is a generaCopelli are gratefully acknowledged. This research was par-
model for associative learning and causal inference based drally supported by CNPq and FAPESP.
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