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A strong heat flux, localized on the upper surface of a fluid, sets up strong convection motions through
thermocapillary forces, which limits the temperature elevation in the pool, therefore limiting the efficiency in
fusion welding processes. We propose a theoretical estimate of the temperature elevation when the fluid motion
is laminar or turbulent, the weld pool surface remaining flat. Our treatment follows the theoretical work of
Shraiman and Siggia@Phys. Rev. A42, 3650~1990!# in Rayleigh-Bénard convection. In the laminar case, the
temperature elevation is proportional to the incident power to the3

4 power, in agreement with earlier estimates,
and in the turbulent case, to the incident power to the2

3 power.@S1063-651X~96!51311-5#

PACS number~s!: 47.27.Te

Heat transport by convection is a ubiquitous phenomenon
in nature@1# or in industrial processes@2,3#. The paradigm of
Rayleigh-Benard convection, whereby fluid is heated from
below in a closed container, has been studied in great detail,
both in regimes close to the convection threshold@4#, and far
from threshold. In the latter case, fluid motion becomes
highly disorganized~turbulent! @5#. Well controlled experi-
ments have shown that the Nusselt number, Nu, measuring
the dimensionless heat flux behaves as a function of the Ray-
leigh number, Ra~the dimensionless temperature across the
cell!

Nu}Ra2/7 ~1!

over more than five decades of Rayleigh number@6,7#. This
result is at odds with earlier predictions@8#. The flow exhib-
its thin turbulent boundary layers along the walls, with a
superimposed large scale coherent motion over the entire
cell. Theoretical work, properly taking into account these
features of the flow, provides an explanation of the Nusselt-
Rayleigh relation, Eq.~1!, as well as the other scaling rela-
tions found experimentally@5,9#.

In welding or metal evaporation processes@2,3#, an in-
tense localized source of heat is applied at the free surface of
a metal, thereby melting the metal and setting up convective
motions in the liquid. Surface forces~Marangoni effect! are
known to be more important in this configuration than bulk
forces~buoyancy! @2,10#. The relation between the tempera-
ture elevation in the melt and the injected power in the sys-
tem ~the equivalent of the Nusselt-Rayleigh relation! is im-
portant in a number of practical applications. The purpose of
this Rapid Communication is to provide theoretical estimates
of this relation. Our approach follows the theoretical work
reviewed in Ref.@5#. The laminar problem is considered first,
and the results agree well with a numerical solution of the
equations of motion, and with the theoretical predictions of
Chan, Chen and Mazumder@11#. In the turbulent regime, a
few reasonable assumptions on the flow are then necessary to
obtain a prediction for the temperature elevation as a func-
tion of the heating power.

We assume throughout this work that the motion in the
fluid is described by the Boussinesq equations@12#:

r@] tu1~u•“ !u#52“p1ragT1rn“2u, ~2!

“•u50, ~3!

] tT1~u•“ !T5k“2T, ~4!

whereu and T are the velocity and the temperature fields,r
the mean density,n the viscosity,k the thermal diffusivity,
anda the coefficient of expansion of the fluid, which are all
assumed to be constant. The upper surface is assumed to be
flat, even right under the incident heating beam. This as-
sumption is in our view the most serious limitation of the
approach presented here. The melt is assumed to fill a rect-
angular@two-dimensional~2D!# or cylindrical ~3D! box, of
depthH and of radiusR ~in 3D!. The incident heating flux is
confined to a limited region, resulting in the boundary con-
dition on the upper interface (z50),

k]zT5Q0q~r !, ~5!

whereq(r ) is a function of order 1, which vanishes forr
>r 0, the beam radius, andQ0 is the injected power in the
system, divided by the heat capacity in the system, assumed
constant. We taker 0 , R, andH to be of the same order of
magnitude. Because of the horizontal temperature gradient
on the fluid interface, the Marangoni effect induces a shear
stress described by

rn]zui2S ds

dTD“ iT50, ~6!

where (ds/dT) is the derivative of the surface tension with
respect to temperature. In the applications we have in mind,
(ds/dT) is negative, so the Marangoni effect tends to gen-
erate a flow from the hot to the cold regions. As a conse-
quence, in the geometry considered here, flow is pushed
away from the center along the free surface.

It is convenient to use dimensionless variables defined by
x̄[x/H ~space!, t̄[kt/H2 ~time!, ū[uH/k ~velocity!, p̄
[pH2/rk2 ~pressure!, and ū[(T2TM)k/(HQ0) ~tempera-
ture!. The equations of motion read
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Pr
~] tū1~ ū•“ !ū1“ p̄!5“

2ū1Rau ẑ, ~7!

“•ū50, ~8!

] t̄ū1~ ū•“ !ū5“

2ū, ~9!

where Pr[n/k is the Prandtl number and Ra
[gaQ0H

4/nk2 is the Rayleigh number. In addition, the
boundary condition Eq.~6! becomes

]zūi1Ma“ iū50, ~10!

where Ma[2ds/dT(Q0H
2/k2m) is the Marangoni number

~here, Ma.0!. The temperature in dimensional units,u, is
equal to the dimensionless temperatureū, multiplied byQ0
~the heat power injected in the system!. In the following, we
work with dimensionless variables only and for simplicity,
we drop the overbars.

In a statistically steady state, the following equalities re-
sult from the equations of motion and the boundary condi-
tions in the problem:

E
vol

~“u!2d3x5E
surface

uqd2x ~11!

and

(
i , j

E
vol

~] iuj !
2d3x1MaE

surface
~ui•“ i!ud2x

52RaS E
surface

z“u•dS2E udSD . ~12!

Equation~11! expresses the balance between thermal dis-
sipation~“u!2 and production, whereas Eq.~12! relates the
dissipation of kinetic energy (] iuj )

2 to the source of motion,
through the Marangoni effect~Ma term! and buoyancy~Ra
term!. As pointed out already, the effect of buoyancy hap-
pens to be negligible compared to the Maragoni effect. This
was explicitly checked numerically, for a realistic set of nu-
merical values. We will restrict ourselves to the purely Ma-
rangoni case~Ra50!.

We begin by considering the laminar regime. Our numeri-
cal results, obtained withTRIO @13#, show the existence of a
large recirculation zone, extending over the half cell, the
streamlines being concentrated right underneath the inter-
face. The temperature is almost constant everywhere, except
in a narrow region under the incident energy flux.

To estimate the temperature elevation as a function of the
heating power, we will assume that the dissipation and pro-
duction terms are localized in a narrow boundary layer of
sizeDu ~thermal boundary layer!, andDU ~viscous boundary
layer! near the upper surface. The magnitudes of the maxi-
mum velocity and temperature in these boundary layers are
denoted byU andQ, respectively. The thermal dissipation
term comes essentially from the boundary layers, and is es-
timated to be

E
vol

~“u!2d3x'
Q2

Du
2 3Du3~surface!'

Q2

Du
, ~13!

so Eq.~11! yields

Q;Du . ~14!

Similarly, the dissipation of mechanical energy can be esti-
mated by

(
i , j

E
vol

~] iuj !
2d3x;

U2

DU
. ~15!

As a result, Eq.~12! leads to

U;MaQDU . ~16!

Equations~13! and~16! provide two relations between the
quantities characterizing the flow in the boundary layers. No
assumption has been made yet about their relative sizes. To
proceed one needs to treat separately the low and high
Prandtl number cases. The low Prandtl number, appropriate
in the case of liquid metals~Pr;1022! leads to a viscous
boundary layer much thinner than the thermal one:DU
!Du . As a consequence, the temperature does not vary
across the viscous boundary layer. The width of the viscous
boundary layer can be simply estimated by equilibrating the
viscous and the nonlinear term in Eq.~7!, which leads to

UDU
2;Pr. ~17!

Similarly, the width of the thermal boundary layer is ob-
tained by balancing the diffusive term with the advection
term in Eq. ~10!. The diffusion term is estimated to be of
order;Q/Du

2. The thermal boundary layer is sensitive to the
upward jets of fluids underneath the incident beam, but not to
the ~small scale! details of the flow in the viscous boundary
layers. The order of magnitude of the flow in the vertical jet
in the center of the cell,Uv , is estimated by incompressibil-
ity considerations. The flux of fluid underneath the beam is
of orderUv3~surface of the beam!. This flux must be equal
to the flux generated by the Marangoni effect at the free
surface, which is estimated to beU3DU . Comparing these
two fluxes leads toUv;UDU . The order of magnitude of
the (u•“)u term in Eq. ~10! is therefore;UvQ/Du , and
balancing with the diffusive term leads to

Du;U21DV
21. ~18!

Equations~13,16–18! yield in turn

Q;Pr21/2Ma21/4, ~19a!

U;Ma1/2, ~19b!

DU;Pr1/2Ma21/4, ~19c!

Du;Pr21/2Ma21/4. ~19d!

As a consequence of Eq.~19a!, the temperature elevation
under the beam scales as the heat power injected, to the
power 3

4. This in turn implies that the Nusselt number, the
ratio between the heat flux injected and the heat flux neces-
sary to maintain the system at the same temperature in a
diffusive regime, behaves like

Nu;Ma1/4Pr1/2. ~20!
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In the large Prandtl number case the viscous boundary
layer is much thicker than the thermal boundary layer:DU
@Du . Equation~17!, expressing the balance between inertial
and dissipative terms in the viscous boundary layers, still
holds in this case. The thin thermal boundary layer is sensi-
tive to a stagnation point flow very close to the upper sur-
face:ur;Ur , uz;2Uz. As a result, the balance between
advection and diffusion in the thermal boundary layer leads
to

UDu
2;1. ~21!

From Eqs.~13,16–18,21!, one obtains

Q;Pr21/8Ma21/4, ~22a!

U;Pr1/4Ma1/2, ~22b!

DU;Pr3/8Ma21/4, ~22c!

Du;Pr21/8Ma21/4. ~22d!

As was the case in the low Prandtl number case, the tem-
perature elevation under the beam scales with the3

4 power,
and the Nusselt number behaves like

Nu;Ma1/4Pr1/8. ~23!

These relations agree with the results of Chan, Chen, and
Mazumder@11#, who explicitly solved the equations of mo-
tion under the beam. As is clear from our approach, these
solutions cannot faithfully represent the dissipation in the
entire system, although they do provide the right scaling be-
havior, and the correct order of magnitude of the numerical
prefactor in Eqs.~20,23!, which happens to be of order 1.
Our numerical solutions in the stationary regime confirmed
the scaling laws~19! and ~20!. This gives us confidence in
our approach.

We now consider the problem of determining the Nusselt
number when the fluid is turbulent. Precise experimental and
numerical results on this problem are not yet available, so
one has to make assumptions about the structure of the flow
@14#. First, we assume that the large scale flow consists of
rolls extending over the entire system, as was the case in the
laminar problem. We also assume that the Marangoni effect
generates jets of fluid that carry fluid away from the center,
and run along the walls, and then concentrate to make a
vertical upward moving jet under the heating beam. Contrary
to the laminar problem, these jets do not reduce to thin
boundary layers under the free surface, since turbulent jets
tend to open up with a finite angle as they propagate down-
stream. As a consequence, the geometry of the jets is inde-
pendent of the heating~the Marangoni number!, and depends
only on the aspect ratios of the container. LetUt be the order
of magnitude of the fluid velocity inside these jets. Under the
heating beam, the upward moving jet splits to run along the
interface, leaving a turbulent stagnation point region. This
will confine the heated region right under the beam, in a
narrow region of widthD t . We expect that this region be-

comes narrower upon increasing the heating~Marangoni
number!. We denote byQ t the ~dimensionless! temperature
elevation in the fluid.

The temperature elevation,Q t , as well as the velocity in
the jets,Ut , and the width of the heated region,D t , are now
predicted with the help of these assumptions, and with the
method used in the laminar case. We begin by recalling the
estimation of the kinetic energy dissipation per unit mass,
e;U3/L, whereU andL are the~large! velocity and length
scales. In our problem, the dissipation of kinetic energy is
located in the jets, and it can be estimated as

Pr(
i , j

E
vol

~] iuj !
2d3x'Ut

3. ~24!

Balancing the energy dissipation, Eq.~24!, with the produc-
tion term, Eq.~12!, leads to

Ut
2;Pr MaQ. ~25!

The estimation of the thermal dissipation is identical to
the laminar case, so Eq.~11! leads to

Q t;D t . ~26!

Finally, a last relation can be obtained by equating the ad-
vection term in the thermal boundary layer,u•“u
;UtQ/D t and the diffusion term,Q t /D t

2, leading to

D tUt;1. ~27!

Combining Eqs.~25–26! together, one obtains

Q t;D t;~Pr Ma!21/3 ~28a!

Ut;~Pr Ma!1/3. ~28b!

In dimensional units, the temperature elevation is there-
fore proportional to the23 power of the heating power, or
equivalently, the Nusselt number in this case behaves as

Nu;Ma1/3Pr1/3, ~29!

Estimating the order of magnitude of the numerical pref-
actor in Eq.~29! would require a more precise knowledge of
the geometry of the flow.

We have estimated the temperature elevation in a weld
pool heated by a strong, localized heat flux. In the laminar
case, and under the assumption that the flow is in a steady
state, we have found that the highest value of the temperature
in the fluid scales as the intensity of the heating flux to the
power 34, in agreement with the theoretical work of Ref.@11#.
With some simple assumptions about the structure of the
flow in the turbulent case, we predict that the temperature
elevation in the fluid is proportional to the intensity of the
heating, to the23 power. The latter prediction rests on a num-
ber of assumptions, which call for more experimental or nu-
merical work. We also emphasize that the assumption of a
flat interface quite possibly limits the relevance of this work
to practical situations.

It is a pleasure to thank E. Siggia, Soubbaramayer, and F.
Daviaud for many discussions related to this work.
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