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The formation of zonal flows and vortices in the generalized Charney-Hasegawa-Mima equation is studied.
We focus on the regime when the size of structures is comparable to or larger than the deformation~Rossby!
radius. Numerical simulations show the formation of anticyclonic vortices in unstable shear flows and ringlike
vortices with quiescent cores and vorticity concentrated in a ring. Physical mechanisms that lead to these
phenomena and their relevance to turbulence in planetary atmospheres are discussed.
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Fluid motion subject to strong rotation, stratification, or
action of a magnetic field can often be considered as quasi-
two-dimensional. One of the major features of two-
dimensional ~2D! flows is their tendency to self-
organization, which reveals itself by spontaneous generation
of coherent structures~e.g., vortices and jets! that dominate
the large-scale motion. The dynamics of these structures be-
comes more complicated when the inverse energy cascade
interferes with the characteristic spatial scale determined by
the external field. The presence of the Coriolis force due to
rotation~b effect! leads to a limitation on vortex sizes in the
meridional direction by the Rhines length@1#, while in the
strong turbulence regime when waves are neglected, the in-
fluence of the finite deformation~Rossby! radius results in
the emergence of ‘‘shielded’’ vortices, which can form a
quasicrystalline structure@2#.

In this paper we extend previous studies to include both
wave and finite deformation radius effects, so that the model
becomes more relevant to geophysics and plasma physics
applications and reveals new physical effects. It is known
from observations that, in planetary atmospheres, there exist
global-scale circulations in the form of longitudinal zonal
flows with embedded long-lived vortices. Indeed, this effect
is significant in the atmospheres of giant planets and in the
Earth’s oceans. The mechanism of the formation of zonal
flows on the surface of giant planets is a separate question
that is not well understood. Two distinct approaches to this
problem are based respectively on 3D thermal convection@3#
and on the inverse energy cascade in 2D turbulence. Very
recent data obtained by the Galileo probe during the unique
first-ever in situmeasurements in the atmosphere of Jupiter
@4# seem to be more in favor of the 3D convection concept:
the observations showed stronger than previously assumed
winds ~up to 200 m/s! and turbulence in the upper layer of
the Jovian atmosphere. This indicates that the origin of Jupi-
ter’s winds and circulation patterns is probably heat escaping
from Jupiter’s deep interior. However, the eddies we are in-
terested in here are believed to be quasi-2D structures origi-
nating from the instability of zonal flows and confined to a
shallow atmospheric layer.

There have been several studies devoted to the combined
impact of finite deformation radius and theb effect @5,6#.
However, it is difficult to detect any particular new physical
effects, since the scales overlap thus making the whole pic-
ture vague. If the rotation is strong enough, zonal flows de-
stroy coherent vortices. In the opposite case, when the defor-
mation radius is smaller than the Rhines length, the
formation of shielded weakly interacting vortices signifi-
cantly reduces the inverse cascade, so that zonal flows do not
form. We will show how this difficulty can be partly over-
come if the simplistic model is modified to take into account
additional effects that take place when scales of the order or
larger than the deformation radius are considered.

We consider the generalized geostrophic~or Charney-
Hasegawa-Mima! equation for Rossby-wave turbulence in
theb-plane approximation:

] t~¹2h2l2h!1@h,¹2h#1b]xh~11h!5D1F, ~1!

wherel is the ratio of a spatial scale used for normalization
to the Rossby radiusLR5(gH0)

1/2/ f 0, g is the gravitational
acceleration,h5(H2H0)/H0 is the perturbation of the at-
mosphere of average depthH0 , f5 f 01by is the Coriolis
parameter [a,b]5axby2aybx , D andF are the dissipation
and forcing respectively, and the following dimensionless
variables are used:x,y→lLRx,lLRy; t→l2t/ f 0 ; and
b→ f 0b/l

3LR . Equation~1! is isomorphic to the equation
for drift waves in a magnetized plasma where the inhomoge-
neity of the Coriolis parameter is replaced by the gradient of
the electron density~see, e.g.,@7# for details!. Consequently,
all results can be transferred to the plasma case. The equation
containing the scalar nonlinearitybh]xh was derived for the
first time in @8# and has been studied since then for various
applications@9#. The presence of the scalar nonlinearity is
known to introduce cyclone-anticyclone asymmetry in Eq.
~1! ~in a cyclone the direction of rotation coincides with that
of the system!. This term appears due to the perturbation of
the fluid depth under the influence of the Rossby wave, so
that the full depthH5H01h should be retained rather than
the mean depthH0 .

Studies of shear flows formed due to the strong rotation in
b-plane 2D models indicate that these flows are stable as
described by the Rayleigh-Kuo instability criterion@10,11#.
This result obviously contradicts the observed coexistence of*Electronic address: nnk@cfd.princeton.edu
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coherent long-lived vortices and zonal jets in the Jovian at-
mosphere. Following@9#, we show that this contradiction can
be resolved when the finite deformation radius is taken into
account. The Rayleigh-Kuo criterion for shear flow instabil-
ity in the approximation of a constant depth of the atmo-
sphere~H05const! is given by]2U/]y22b050, whereU is
the average horizontal flow velocity,y is the meridional co-
ordinate, andb05] f /]y. However, if there is a free surface,
the average depth of the atmosphereH0 can change in the
meridional direction:]H0 /]yÞ0. This gradient is balanced
by the Coriolis forceg]H0 /]y52fU andb is given by
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Consequently, the modified instability criterion is@9#
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or in our dimensionless units
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It is now clear that zonal flows that otherwise would be
stable can become unstable when the finite deformation ra-
dius is taken into account. At the same time, the scalar non-
linearity in Eq.~1!, as in the case of the Korteweg–de Vries

~KdV! equation, can lead to the gradual steepening of the
initial perturbation in the longitudinal direction, which is
compensated by negative dispersion only for anticyclones.
One can thus expect that vortices emerging due to the insta-
bility of zonal flows will be mostly anticyclones.

We used the following setup for the numerical experiment
to check this prediction. In 2D turbulence it has been con-
vincingly demonstrated that the case in which long-term dy-
namics does not depend on initial conditions is best achieved
with small-scale random forcing. In this case zonal flows are
known to be a robust feature of the flow evolution on theb
plane. We solve Eq.~1! numerically using a pseudospectral
method in a square domain 2p32p with doubly periodic
boundary conditions and resolution 5123512. To confine the
dissipation to the smallest scales we use hyperviscosity
D5~21!p11np¹

2p(¹2h), p58. We start with zero initial
conditions, random forcing at 100,kf,105, andb5100,
l50. One can expect the formation of zonal flows to begin
when the inverse energy cascade reaches the Rhines scale
Lb.kb

21, kb5(b2/e)1/5, wheree is the energy injection rate
and in the case consideredkb.60. The flow is dominated by
well-developed zonal flows byt515t0 , wheret0k.p/v rms
is the large eddy turnover time. At this moment the force is
turned off to let the viscosity smooth out the irregularities in
the smallest scales. At timet517t0 one can observe quite
regular shear flows. The horizontal velocity has a profile re-
sembling the one on Jupiter with smooth westward and
peaked eastward flows@Fig. 1~a!#. These flows are stable
sinceUyy2b0,0 for all y @Fig. 1~b!#. After that we ‘‘turn
on’’ the deformation radius~or, equivalently, remove the
‘‘rigid lid’’ and allow the fluid to have a free surface! by
takingl510. The choice ofl is made such that the param-
eters would be close to the ones for Jupiter’s great red spot
~JGRS!. For Jupiter R/LR.73104 km/63103 km;10,
fGRS.1.431024 s21, and sinceb;f /R, this givesb.100
in our dimensionless units. The valueUyy2b02l2U now
changes sign for somey and the westward anticyclonic (U
,0) zonal flow become unstable. This almost immediately
(Dt;t0! leads to the formation of vortices. They presum-
ably appear as cyclone-anticyclone pairs with cyclones de-
caying faster, so that only anticyclones survive~Fig. 2!. To
illustrate the asymmetry of the solution, in Fig. 3 we plot the

FIG. 1. Averaged zonal velocityU ~a! and Uyy2b ~b! as
functions of latitudey.

FIG. 2. Finite deformation radius makes zonal flows unstable with respect to the generation of anticyclones. The vorticity field~a! before
and ~b! after introducing a finite deformation radiusLR @whose scale is shown in~b!#. Darker colors correspond to the anticyclones.
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vorticity skewnessSv(t)5^v3&/^v2&3/2, wherev5¹2h and
^ & denotes an area average~v,0 corresponding to anti-
clones!.

Another important feature to verify is the form of the
vortices. As was discussed in@8,12#, the scalar nonlinearity
in Eq. ~1! allows solitary wavelike solutions. An analytically
obtained solution@8# under the assumptionh!H0 predicts
the structure of such a soliton with a characteristic radiusa
to be given by

h/h05cosh23/4S 3r4aD , a.LRh0
21/2. ~5!

Consequently, the vorticity profile

v5¹2h5
1

r

]

]r S r ]h

]r D
is smooth, gradually decreasing~increasing! from the center
of a vortex. Observations show, however, that, for example,
the JGRS and intrathermoclinic vortices~lenses! in the
Earth’s ocean do not rotate as solid bodies and their vorticity

has a circumferential profile with a rotating perimeter and
relatively quiet core. Also in experiments in rotating tanks
@13# with h.O(1), vortices appear to be more localized than
predicted by the pure wave solution~5! and to have other
nonwave characteristics such as trapped fluid. When the so-
lution ~5! is modified to combine features of both waves and
vortices it describes ‘‘solitary Rossby vortices.’’ Sutyrin
noted@14# that much better agreement with experiments can
be obtained if one used the assumption that there is a uni-
form profile of the potential vorticityj5¹2h2l2h5const
inside the vortex, while Marcus@15# showed that this as-
sumption leads to a ringlike profile of vorticity consistent
with observations in the Jovian atmosphere.

We show here that the model Eq.~1! produces ring vor-
tices when the spatial scale of the initial perturbations is
larger thanLR . We present the evidence that it is the scalar
nonlinearity that plays a decisive role in this case. It is im-
portant to emphasize that these vortices spontaneously arise
from random initial conditions; they are not in any sense
‘‘trial’’ vortices introduced into the flow.

In our numerical experiment without forcing we start with
the initial perturbation

hk5HC exp~ ifk! if 4,k,5

0 otherwise,

with random phasesfkP@0,2p). C is chosen such that total
initial energyE5 1

2(k(k
21l2)uhku2 is equal to 0.5, andl5

LR
21510, b520. The characteristic size of the initial eddies

is L.~6–7!LR . During the evolution of the system for over
50t0 we observe the formation of elongated vorticity sheets,
which deform into loops. These loops could close into ring
vortices, all of them being anticyclones~Fig. 4!. If the scalar
nonlinearity is dropped from the equation, closed loops and
ring vortices~in this case they could equally be cyclones and
anticyclones! do not form @Fig. 5~a!#. In the caseb50 the
cubic nonlinearityJ„h,h¹2h1 1

2(¹h)
2
… should be retained in

Eq. ~1! @5#. The cyclone-anticyclone asymmetry is then pre-
served, but no signs of ring vortices are found@Fig. 5~b!#.

We do not have a theoretical explanation of the formation
of ring vortices, but necessary physical conditions can be

FIG. 3. Vorticity skewnessSv(t). l50 before t515t0 and
l510 afterward.

FIG. 4. Instantaneous vorticity field att540t0 showing~a! the ring anticyclonic vortices, skewnessSv522.8 and~b! the cross section
of a typical vortex.
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identified. First of all, because of the finite deformation ra-
diusLR vortices are shielded, i.e., their interaction decreases
exponentially. This means that a ring vortex should be of the
size of severalLR in order to be stable. Simultaneously, the
Rhines lengthLb and the Rossby radiusLR should be com-
parable; in the opposite case either zonal flows or ‘‘frozen,’’
not mobile, vortices dominate the flow. Mutual action of
negative dispersion and KdV-like scalar nonlinearity can
lead to the formation of loops. Connection of the opposite
sides of a loop leads to the formation of a ring vortex. Thus
both finite deformation radius and the scalar nonlinearity are
crucial for the emergence and stability of ring vortices.

In conclusion, we have studied the question determining
the combined influence of theb effect ~both Rossby waves
and KdV nonlinearity! and deformation radius on coherent
structures. It is shown that for a certain set of parameters

~close to those of giant planets! large-scale zonal flows cre-
ated by small-scale forcing tend to preferentially form anti-
cyclonic vortices. Their emergence can be explained by the
modified Rayleigh-Kuo instability criterion, which takes into
account the deformation of free surface. We have provided
numerical evidence that for scales larger than the Rossby
radius, the scalar nonlinearity is responsible for the forma-
tion of ring anticyclonic vortices, a feature known from ob-
servations. We have demonstrated how gradual complication
of the simple model allows one to clearly reveal new physi-
cal effects. The complete and accurate study of these effects
will need simulations of more complicated equations on the
sphere~in the spirit of @16,17##!.
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FIG. 5. Vorticity fields at the same time as in Fig. 4 when~a! the scalar nonlinearity is dropped, skewnessSv50 and~b! b50, but the
term J(h,h¹2h1

1
2(¹h)

2 is added,Sv520.3.
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