PHYSICAL REVIEW E VOLUME 54, NUMBER 5 NOVEMBER 1996

Products of random matrices and investment strategies
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A simple stochastic model of investment based on communication theory is introduced and analyzed in
detail. We solve it exactly in a simple case and we use a weak disorder expansion to deal with the small
fluctuations of the capital between two consecutive trading periods. Some possible generalizations are also
discussed[S1063-651X96)52011-9

PACS numbes): 02.50.Le, 05.20-y

Let us consider an investor, whose aim is to increase &low is it possible to decide the best strategy once we know
given capital Z by investing it in several stockd p(a), and with fixedM? We find that a special case of this
(i=1,... M) with a given strategy. The total amount of problem can be mapped to a classical one in communication
capital is the sumz=3M, Z(i)+ 2(0) where Z(i) is the theory. Indeed in the 1950s Kelly considered this type opti-
fraction of the capital invested in the stocland Z(0) is the ~ mization, albeit using information theofyl]. His model is
capital left at the bank. The capitd(i) is multiplied, at each based on the concept of the so-caltate of transmissiorin
trading period, by a factoa, a being a stochastic variable @ communication channel, as introduced by Shanfin
whose distribution is, in general, unknown. For our simpleSuppose one considers a channel and uses it to transmit a set
model we assume uncorrelated distributions; however, in reof data between two distant units, e.g., the results of a change
ality, it is well known that such data can be correlated insituation before they become common knowledge. A given
time. We believe the following analysis can be readily gen-gambler would like to use this source of information to put

eralized to the correlated case as well. bets in order to increase his money. The question is: how
The investment strategy is the following: at each “time” much should he bet each time in order to maximize his gain?
n(n=1,...N), one takes a fraction €[0,1] of the capital The answer, of course, relies on the “quality” of the signal

2(i) and transfers it to the cash bank; at the same time, e receives. If the channel is noiseless, i.e., if the gambler
fractiono/M of the bank capital is taken from the bank itself has exact information, then the best strategy is obviously to

and then added t€(|) We can then write our System as bet the whole amount of money he has. For example, if one
is supposed to gain a fractidh of the capital after each good

bet, then, afteiN steps he will havekN times the original
Zn+1(0)=(1—0)3n(0)+2 7 2,(1), bankroll. The situation is more complicated if one considers
i=1 . . . . . .
a noisy channel, that is the situation in which the gambler
o has a given probability to get the correct information through
Zoo(h)=a,—Z,(0)+a(1—7)Z(i), (1)  the channe(as aresult of noise and disturbances in the trans-
M mission. In that case if the gambler would bet at each time
n his entire capitalZ,, in order to maximize the expected
value( Z,), then the result would be that is very large he

M

where, as above defined, we suppose #hare independent

frahndom tvanqbles W|t|htc|ommon'f('j|3trt|)bulglon f';er:vlbﬁ' will lose the whole capital. In fact ifil] it is shown that the
e system is completely specified by M ¢1)X( - ) correct strategy consists of maximizing tegponential rate

randoﬁm transfer matrixA,, since we can writeZ,,, of growth of the gambler capitatiefined as
=A,Z,. Note that the system is normalizedaif=1 for all
i, i.e., if there is no gain or loss at each time step, then the A€} = lim i< In@> @

total capital is conserved,, ;= Z,,. The first equation im- N\ Z,/°

plies that after a trading period the amount deposited at the

bank is the sum of two contributions: the part which has notThis quantity has a great importance: in the mathematical
been transferred and the part coming fragifi). On the other  theory of communication it represents tbapacityof a dis-
hand, for each stock we have thatZ(i) is incremented or crete chann€l2], while in theoretical physics corresponds to
diminished depending on the value of the stochastic variabléne Lyapunov characteristic exponetit has important appli-

a; . Note that the choice afl) is not the only one possible: cations in chaotic dynamical systems, statistical mechanics
one may defineZ,,, ((i)=a/M Z,(0)+a;(1— 1) Z,(i), e.g., of disordered systems, localization problems and turbulence.
we may decide not to bet the fraction of the capital transWithout entering into any mathematical definiticthe inter-
ferred from the bank. This choice, however, has the disadested reader may s¢8]) we point out that the problem of
vantage of rendering calculations much harder and leavinghaximizing (2), instead of the usual mean, comes from the

N—s o0

the qualitative behavior unchanged. need of thequenchedaverage in disordered systems. In
The goal is to optimize the capital gain by varying thefact, as is well known, if one considers the product
set {¢(={o,71,...,7»} [that is to have the largest Py=X;x,---Xy Of N independent stochastic variables, then

z=3M Z(i) after N trading periods, in the limitN—o].  the typical value will be given by expInx)) and not by the
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annealedaverage(x)N, since only the fluctuations around nontrivial model is defined by a>22 transfer matrix; this
the first quantity vanish foN—cc. In our model the product implies investment in only one stock and a cash bank:
Py is obviously given byPNZHiN:OZHl/Zi. Physically it
means that if one tries to increase his capital by maximizing 1
the annealed averadey) he could finally be broke, since “1ts
the fluctuations around that quantity increase wth

The noisy channel corresponds to the stochastic quctuawith s=ol(1+0), t=r/(1+7), and K=(1+8)/(1+1).

tions of stock prices and a bet of the gambler to the invest;l_h h ol introduced for fut
ment in a given stock in one trading period. ese new parameters are simply introduced for future con-

Using our present notation, instead (@, Kelly's model venience. We finally find that the rate of growth is given by

is specified by the following stochastic evolution equations
(in his paper Kelly considered only the cage=1):

1 Kt
sa Ka

1

= mA , 5

1 .

A(s,t)=—In(1+s)+ lim Nln Tr nH1 ALl (6)
N—o =

Zh+1(0)=(1-0) Z,(0) + (1= 0) Z4(1),

It is easy to show that our systeth), for M=1, is deeply

related to the one-dimensiondllD) random field Ising

. _ . model (RFIM) sinceA’ is mathematically equivalent to the
The physical meaning is that at each time step, after colleClyansfer matrix of that system. For a general distribution

Ing t.he whole amount of money, one decides to preserve ;Si(a) no analytical solutions are available even for this sim-
fraction 1— o and to bet a fractiorr. In other words, this

. X plified model[5]. Derrida and Hilhorst showed that a naive
can be considered as a “nonlocal” version of our model

. ) i '"Taylor expansion around the low-temperature phase
since in(1) we have the freedom to decide how much of the(t ZHO) d(fes not converge {fa)>1. P P
capital Z(i) to bet, independently from others(j). In In one nontrivial case, however, the full solution can be
Kelly’s model the random transfer matrix defined 3y has

found, and it corresponds to the situation in which at each

vanishing determinant. This means that the two equations a'i?ading period, with probabilityp the fraction of capital

not independent, and in fact it is simple to write the aboveZ(i) is increased by a factor>1, and with probability

system by means of a single stochastic equation for the gloy " ¢ . . :
bal capitalZ(0)+ Z(1). Therefore the problem reduces to aol p it is completely lost. In other words, we define a

) . roduct of Bernoulli random matrices with densit
product of random numbers, rather than matrices, and it preP y

) ; B p(a)=pd(a—a)+(1—p)s(a). We outline the main steps
isne?;?sn:a?eatsr:f;?gﬁ?:rlvsgﬁjg]le'sfr?(lan(r:neaitsepg?ri?ga;ur?aﬁsrlr?;- of the calculation. Due to fact th&(0)/Z(1) has upper and

lower bounds not depending &h the response function can

trice_s do not commute in general: Kelly’s model was farbe expressed @, = 2., 1(0)/2.(0)= Z.,(1)/Z,(1) and
easier to solve since numbers allow one to use a special Ordﬁrsatisfies the following nonlinear difference equation:
and then large number law applies. '

Let us now turn back to the model defined(i): in order
to calculate the e_xponentigl rate of growthwe should con- R,.;=1+aK+aK
sider the quantity(sometimes calledresponse functign Rn
Ry=|Zn41|/| Z,|, where| Z,| is, as usual, the norm of,, . o N _ _
The Oseledec theorefd] ensures that the Lyapunov char- with initial conditions given byRo=R;=1. The solution of
acteristic exponent is a self-averaging quantity, that i&ljn  this equation is given by
we can disregard the average and calculatex from a

Znri(l)=acZ,(0) taoz,(1). )

st—1

=F(Ry), )

single disorder realization. Equivalently, we can calcuate FTCREES PYe {1—aK
from R P Y s D Tl
1
A({gh = lim S|Py, ) 1+akK
NN fm =y~ t[(1+aK)?+4aK(st- D] (®)

wherePy=II\_,A,. Usually the norm| | that appears in

the above formula is the maximum of the eigenvalues of thdn 9eneral, the Lyapunov characteristic exponkntan be
spectrum ofPy. Our problem is then reduced to the Ca|Cu_calcu_lated once the stat|opary dlstrlbut!on of the response
lation of the Lyapunov characteristic exponent of a producfUnction Z(R) is known, since, supposing the system er-
of independent random matrices with a given distribution. Ind2dic; A=JP(R)In(R)dR As we know the evolution of the
general, there is no hope to accomplish this goal analytically'€SPonse function, given b7) and (8), one is tempted to
apart from very special situations, for example the case if'fite down an integral equation f@(R) by using the trans-
which all A, commute with each other and one can Simp|yformat|on laws between two stochastic variabRs, ; and
apply the large numbers law to get the result thatRn'
A =max(In|u )} wherey, are the eigenvalues @f [3]. This
is, for instance, the case of Kelly’s model.

At this point we are then forced to introduce some sim- P(R““):f dap(a)f dRyP(Rn) 8(Rn+1 = F(Rp)).
plifications or rely on numerical simulations. The simplest 9)
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FIG. 1. The Lyapunov exponent plotted versuberes=t) for t
the case discussed in the tept=0.7, = 2. Solid line: exact solu- o .
tion [Eq. (10) of the texi. Circles: numerical simulation. The maxi- FIG. 2. The same as in Fig. 1 for the weak disorder case. We
mum of the capital gain is dt=0.9356. have chosenvr=1, ¢=0.05, p=0.51. Solid line: analytical result

from the perturbation expansion truncatedQite®). Circles: nu-
The stationary distribution is the fixed point of the abovemerical simulation. The maximum is found @¢0.564.
integral equation(if it exists). Unfortunately, once the full . ] ]
expression forF(R,) is introduced, and thed function is ~ Percent. This means, for example, that one can imagine de-
expressed in terms of the integration variable, the resultin§ning & random matrix with distributiop(a)=pé(a—(1
integral equation is too difficult to be solved, in general. T @)+ (1—p)d@—(1-ae)) with e<1. In the RFIM,
With our assumption op(a), however, it is simple to show that corresponds to a system to which a small external ran-
that the solution must have the form dom field with opposite signs is applied. In our economic
context this assumption means that at each step we are al-
* lowed to gain or lose only a small fraction of the total
P(R)=(1—p)2 p"8(R-R,), amount of money we have invested in a given stock. From
n=0 the mathematical point of view we can use a weak disorder
expansion ire, that is, we consider our matr’ as the sum
of a diagonalizable matriB and a random matri times a
small expansion parameteA’=B+&C. Here the funda-
mental hypothesis is the nondegeneration of the eigenvalues
=In(f141+,45)1—In(1+s), (100 of B [6], since in the very general situation it is not possible
to get a correct perturbation expansiafy. If, however, the

with a= « in the preceding expression. In Fig. 1 we compareabove hypothesis is fully satisfied, we haigee alsd6])
the exact solutio(10) with the numerical calculation of

[

x<s,t>=<1—p>n§0 PUIN(F1 L3+ 1,057

for the particular cass=t, @=2, p=0.7. We see that, as oy e2(Cly &3(CP) 4
one may expect, there is a maximum of the exponential rate )\_lnl-}-t T Vi 3 72 +0(e%), (12)

indicating which is the optimizing fraction of capital one has
to invest to get the best profit. Due to the infinite sum ap-where nowy; is the maximum of the eigenvalues Bf and
pearing in(10) it is impossible to exactly calculate the maxi- C,, is the diagonal element & (corresponding ta;) in the
mum of A. By taking into account the first 40 terms only base in whichB is diagonal. The average) is made with
[equivalent to an expansion of ord@(p*®)] we can numeri- the densityp(a). Note that there are no first order correc-
cally find the maximum. We obtain that,~0.9356, or tions to the purgnonrandom case. In our X2 case, from

Top=0.4834, that is, the better strategy for that given set of5), and after some algebra, we dgér simplicity we have
parameters consists in transferring, at each step, a bit leg$gre considered the symmetric caset)
than 50% of the capital.

For s#t the situation is more interesting, but calculations _1+utu 2\ ) utv+2t2—1\2
become much more complicated, since now one has to find?71= " (Cly=4p(1-p)a 20 '
the maximum of a very complicated function of two vari- (12)

ables. With the same truncated expression and the same set
of parameters we finally obtained that,,~=0.652 and With u=1+(2p—1)a andv =+/(u—1)%+4ut?. The result
Top=0.528 in perfect agreement with the numerical solution.(up to third order ine) is then compared in Fig. 2 with the
Despite the complexity of this calculation, we need anumerical calculation, in the case=1, £=0.05, and
more realistic situation since the hypothesisgga) is stil  p=0.51. From Eqs(11) and (12) it is a simple matter to
too strong. What actually happens in a given trading periodanalytically find the value of at which\ attains its maxi-
(if it is short enough is that the stock prices change by a mum: for the above case we find thag,~0.564 or
small amount with respect to the step before, e.g., a few,,=~0.353.
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The most interesting aspect of this approximation is that it
can be employed, under certain hypotheses, for the general )
case in which one invests his capital in more than one stock 0.307 8
(M>1). Due to the symmetry of the matrix, we can still

perform the calculations, as we will show in a longer paper 0.257 -
[8].

Another interesting situation is represented by the limit in 0.207 I
which we takeM very large. We could then introduce < 0.154 |
a trial mean-field approximation by considering=1/ ‘

M=M | Z(i)=(Z2), and by defining, fron{1), a new problem 0.104 L
for the averaged capitélZ) by means of the mean-field ma- |
trix 0.05 L
1 /1 t 0.00 : , | | -
Ave=T71l i3 3l (13 0.0 02 04 06 0.8

T

wherea=1/M EiM=1ai and we have considered the symmetric  FIG. 3. Comparison between the mean-field solution Sert
case with all r; equal. If the a; are, by hypothesis, (A) andtwo numerical solutions in the lartyé limit. In particular,
independent stochastic variables with densify(a) M=10° (O) andM=10* (O). Solid lines are guides for the eyes.
=pd(a—a)+gd(a—pB) (p+g=1), one should expect, if Note the failure of the mean-field approximation in the “low-
M is large enough, that the distribution@is Gaussian with  temperature” phase at-0.

mean equal to u=pa+qp and variance

[(p—p2) o+ (q—q%) B2 2pqeB)/M. Unfortunately, even upper bound of the Lyapunov expongrine can prove that

in the M—co limit, this is not a good approximation as one in general this is not the ca$8], since the fluctuations due

can easily see, for instance, by considering what happens ff T'® TIEGRIEEIE PCe € e METERS STF Nel
the limit ——0 in which all matrices commute and we can 9. 9

. ) but with more that one constraiftO]. In fact, this method
easily find the Lyapunov exponent. We have that . o o
= : ; seems to give very good approximations for the statistical
A=max0,p Ine+qlng} in the true case, while from the . ; . .
mean-field approximation we obtain=In(pa+q8) (in the mechanics of disordered magnetic systems. We will show
limit M—=2). This discrepancy is due to the fact that for our results based on the so-callemhstrained annealingp

L . proximation in our longer work.
Siuation corresponds to the low temperature phase of the 1py I 1S Paper we have analyzed a simpie investment
: P per P o Rmdel. In traditional portfolio theory one is only interested in
RFIM [5], in which the pure system attains a phase transitior),

. T . single time period optimization. We show that for a very
and then quctpatlons are so strong that the mean-field p'Cturﬁmple 2x2 matrix model the long time limit result can be
completely fails(see Fig. 3.

Some approximation methods for calculating Lyapunovataine.d' In fact, the capital growth rate per u_nit t_ime step

can be interpreted as a Lyapunov exponent, which is a famil-
iar concept in theoretical physics. For more general modes
3(M>1), we show, although exact calculations are hard to

bad results. This is the case of the so-calieidrocanonical . L A .
U perform, meaningful approximations can yield interesting re-
approximation introduced by Deutsch and PaladiS], sults. With the availability of more realistic data and distri-

which consists in replacing th? quenphed averaqe)[rwnh butions, doubtlessly the present study can be extended.
an annealed average and by imposing the constraint that the

average is takeonly on those configurations that satisfy the  S.G. would like to thank Matteo Marsili for useful com-
large number law. Even though it is usually believed that thisments. This work has been supported by the Swiss National
approximation is a very satisfactory ofiegives a rigorous Foundation for Scientific Research.
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