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Weak and strong synchronization of chaos
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It is shown that synchronization in unidirectionally coupled chaotic systems develops in two stages as the
coupling strength is increased. The first stage is characterized by a weak synchronization, i.e., a response
system subjected to a driving system undergoes a transition and exhibits a behavior completely insensitive to
initial conditions. Further increase of the coupling strength causes the dimension decrease of the overall
dynamics and leads finally to a strong synchronization. In this stage, the dimension of the strange attractor in
the full phase space of the two systems saturates to the dimension of the driving attractor.
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A generic feature of nonlinear systems exhibiting chaotic In this paper, we consider both identical and essentially
motions is the extreme sensitivity to initial conditions. This different coupled chaotic systems and show that in both
feature, known as the “butterfly effect,” would seem to defy cases the onset of synchronization is characterized nan
synchronization among dynamical variables in coupled chasmoothmap ® that becomes smooth only at sufficiently
otic systems. Nonetheless, coupled systems with certailarge coupling strength. We call the synchronization charac-
properties of symmetry may exhibit synchronized chaoticterized by asmoothand anunsmooth mag a strong(SS
motions. Most frequently a situation is studied where theBnd weak (WS) synchronization, respectively. The CS is a
complete system consists abupled identical subsystems Particular case of the SS. _

Many different examples of such a type have been intro- Next, un_|d|rect|0nally couple_d chgon_c systems are con-
duced[1,2]. In these examples, the synchronization is easy t¢'d€red which are of the following principal form:
detect. It appears as an actual equality of the corresponding

variables of the coupled systems as they evolve in time. Geo- X=F(X), (13
metrically, this implies a collapse of the overall evolution o

onto the identity hyperplane in the full phase space. We refer Y=G(Y)+kP(X,Y). (10)
to this type of synchronization asanventional synchroni- 416 X=1{X;, Xy, . .. Xa} and Y={y1,y, y,} denote
zation (CS). state vectors ird-dimensional spac® and r-dimensional

_ A more complicated situation arises wheaupled non-  spaceR, respectivelyF andG define the vector fields of the
|o!ent|cal chao'qc systemare investigated. For essentially driving and response systenisdenotes a coupling term and
different chaotic systems, the phase space does not contains a scalar parameter defining the coupling strength.
any trivial invariant objects to which one can expect a col-  One can show that there exists some mdagnot neces-
lapse of the overall evolution. The central questions in thissarily smooth betweenX andY if under the action of driv-
case are how to generalize a mathematical definition of Chang perturbations the response system “forgets” its initial
otic synchronization for such systems and how to detect it irconditions, i.e., when the response system becomes a
a real experimental situation. “stable” system[4]. This suggests the following physical
Recently Rulkowet al.[3] considered this problem for the criterion to detect the GS in an experiment. Suppose that we
case of forced synchronization. This implies that the full sys-can construct an auxiliary response systéfre R’ identical
tem consists of amutonomous drivingubsystem unidirec- with Y and link it to the driving systenX in the same way as
tionally linked to aresponsesubsystemGeneralized syn- Y is linked toX [5]:
chronization(GS) was taken to occur if there is a map }
from the trajectorie¥(t) of the attractor in the driving space Y'=G(Y")+KP(X,Y"). ()
D to the trajectoriesY(t) in the response spac®, ) .
Y(t)=®(X(t)). For nonidentical driving and response sys- 1n¢ GS betw,eerX and Y occurs if there is th? CS be-
tems, this map differs from identity and this complicates the™&enY andY’. To show that CS betweeviandY" results
detection of the GS. To recognize the GS at a real experil relationship Y=®(X), let us denote the solution of
mental situation, Rulkowt al. [3] suggested a practical al- Egs. (1) by X(t)=W(Xo,t) a”d ,Y(t):q’y,(_x(t)'YO't)'
gorithm based on the assumption tdais asmooth(differ- ~ WhereX=Xo and Y=Y, are the initial conditions at=0.
entiable map. The algorithm was tested on artificially The CS betweenY and Y’ implies lim_.[Y—Y’|
constructed examples with priori known map®. =lim_.[ ¥ (X(1),Yo,1) = W (X(t),Yq,1)[|=0 for arbitrary
initial conditionsY, andY;. From this follows that¥, is
asymptotically independent &f,. At t—o, W is also inde-
*Electronic address: pyragas@kes0.pfi.lt pendent directly on time. Indeed, IetY{):\Ify(X(T),Y{) )
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be the state of the systely at an intermediate timée<t.
Then the state of the systexii at timet can be expressed as
Y'(t) =\Ify(X(t),Y(’,,t—T) and the synchronization condition
becomes  lim_..[ W, (X(1),Yq,t)— ¥ (X(t),Y,t=1)] =0
for anyt<t. It follows that att—oo, W, is independent of
both Y, and explicit timet. Thus, in the limitt—o, we
obtain a relationship betweefiandY in the following form:
Y=Ilim_ W, (X(1),Yq,0)=D(X(1)).

Note that CS betweel andY' does not guarantee the
smoothness of. Ding et al. [6] have shown that unsmooth
maps do not preserve the dimension of strange attractors. A
simple example of this type is the Weierstrass function
u=F,(v)=2,_,cos(Pv)/in® specifying a continuous but
not differentiable map of points on the axis (with the di-
mension equal to )lto points on the Weierstrass curve
v—[v,u=F,(v)] with a fractal dimension between 1 and 2
for typical @ and 8 satisfying 1< a<<B. Thus, for unsmooth
map®, we can expect that the dimension of a strange attrac-
tor in the whole phase spa&esR is larger than the dimen-
sion of driving attractor irD space. For smootfb, we can
expect that these two dimensions are equal in magnitude.

Due to the identity of the origindEq. (1b)] and the aux-
iliary [Eq. (2)] response systems, an extended phase space FIG. 1. x-y andy-y’ phase portraits of coupled logistic maps
De&Ra&R’ contains an invariant manifold’ =Y. The stabil- ~ described by Eqsi4) and (5) with f(x)=4ax(1-x) ata=1 and
ity of this defines the condition of synchronization betweenVarious values of the coupling strengkh () k=0.1, unsynchro-
Y andY’. The limit Y=Y’ —Y—0 leads to the variational Mized state(b) k=0.4, WS;(c) k=0.6, SS.
equation of the response system

dsy d

1 n
m — 2 In|f(y(i))] ©®)
i=1

I
0

AR=In(1—K)+ |
n

defining the stability of the invariant manifold =y, and the
defining r conditional Lyapunov exponents )\J—R transverse Lyapunov exponent of the invariant manifold

j=1,2,....r [1]. A necessary condition for synchronization ¥ =%
is\F<0,j=1.2,....r[7]. 1o

In the following, we illustrate some properties of GS with Ao=In(1—Kk)+ lim — E In|f"(x(i))]. @
specific examples. As usual in such problems, we start with a noe Mi=1

discrete time system. As a first simple example, two couple

identical one-dimensional maps are considered, dI'he dependence of these exponentskois shown in Fig.

2(a). AR(k) becomes zero at two characteristic values of the
x(i+1)=f(x(i)), (43 coupling strengttk,, andks,_corresponding to the thresholds
of WS and SS, respectively. Above theR last threshold
i — i i) — i k>kg, these two exponents coincidey(k) =A"(k). For the
YA+ =TI+ =T D), 4 logistic map, EQ.(7) transforms toXy(k)=In(1—K)+AP,
with the following auxiliary response map: wherexP=In2 is the Lyapunov exponent of the driving sys-
tem and the threshold of SS is equal=1—exp(—AP)
y'(i+1)="Fy" (i) +k{fx()—fly' (i)} 5 =05.
] . ] ] In a real experiment, the CS between systéfnand Y’
At any coupling strengt, Egs.(4) have an invariant mani- il be partially disturbed by noise and a small mismatch
fold y=x and hence admit the CS, which in this case ispetween parameters of these systems. These factors will re-
equivalent to the SS. Figure 1 shows the phase portraits &fult in a finite amplitude of the deviatio’ — Y. The rms of
the system for the logistic maf{x) =4ax(1—x) in x-y and  this deviations= \{(Y’—Y)?) depends on the amplitude of
y-y’ coordinates aa=1 and various values of parameter noise «, as sxa!. In the case of Egs(4), and (5),
k. With the increase ok, the synchronization occurs first y~0.12 for the WS andy=1 for the SS[the inset in Fig.
betweeny andy’ and later on betweer andy. Thus, the 2(a)]. The same scaling laws are observeddaes Aa where
WS is observed even for identical systems and it precedesa is the deviation between parameters of systgmend
the SS. The thresholds of WS and SS are determined by twyp' [a=1 for Egs.(4) anda=1—Aa for Eq. (5)]. Thus the
different Lyapunov exponents, namely, the conditionalWS is much more sensitivey<1) to noise and parameter
Lyapunov exponent, deviation than the SSy=1).
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FIG. 2. (a) Lyapunov exponenta® and\y; (b) correlation di- T ig:g::n
mensiond, of attractor in thex-y plane, and(c) thicknessc and | = . Ab=0
cross correlatoK,, for coupled logistic maps as functions of cou- O i ul L
pling strengthk. AR and \, are calculated from Eqg6) and (7), 0.1 1 10 100
respectively. d. is determined fromN=50000 data points k
[x(i),y(i),i=1,... N]. The thicknessr is calculated as follows.
In an e=0.001 proximity of a given poink=x(i), a local linear FIG. 3. (a) Maximal conditional Lyapunov exponent;; (b)

interpolation of the majy=®(x) is applied using a least squares correlationd. and Lyapunovd, dimension of attractor iIrD®R
fit. The local mean square deviations are averaged biyer5000  Space;(c) thicknesso, and(d) deviations for coupled Rssler and
arbitrarily chosen reference points on the strange attractor and tHeorenz systems as functions of coupling strenigtl, and o are
root of this value is chosen as the thicknessThe whole number ~calculated ~ from N=50000 data points [X(iAt),
of the data points i8l=50 000. The inset iia) shows the deviation ~Y(iAt),i=1,... N] with At=0.5. ¢ is calculated similarly as in
s vs amplitude of noisex, : (1) unsynchronized state kt=0.3;(2) the first example, except that a local linear interpolation®ois
WS atk=0.4; (3) SS atk=0.6. At every iterate, random numbers performed in a high-dimensional space. Here0.01 defines a lo-
uniformly distributed in the intervdl— a,,/2,e,/2] have been added cal parallelepipedx; —x;(iAt)|/L;<e, j=1,2,3 around a reference
to the variables of Eqg4) and (5). point X(iAt), wherel; is the size of the attractor along the
coordinate.o is averaged oveN,;=5000 reference pointgy=28,

. - a=6. The inset inc) showss vs deviation of the parametérb: (1)
The WS observed with the help of an auxiliary reSPONSE, sy nchronized state &=5; (2) WS atk=10; (3) WS atk=20;
systemy’ may show no evidence im-y coordinates. At (4) SS atk=>50.

ky<k<ks there exists a relationship=®(x); however, this

map is unsmooth and has a fractal struc{ufg. 1(b), left]. oo

The correlation dimensiof8] d of an attractor lying in the Xo=a{x1+0.26}, (80)
x-y plane does not exhibit any characteristic changes at the X3=a{0.24 X3(x,— 5.7}, (80)
thresholdk,, [Fig. 2(b)]. An abrupt dimension decrease is

observed only at the threshdld, where® is turned to iden- v1=10(—y1+Y5), (93
tity. At the threshold of WS, there are no characteristic

changes in cross correlatt,, betweenx andy [Fig. 2(©)], Yo=by;—Y,—Y1Y3+ KXo, (9b)
although here this correlation is rather larg,(k,,) _

~0.71. To estimate the smoothness of the nbgpve calcu- Y3=VY1Y>—8/3y;3. (90

lated its mean local “thicknessé defining the deviation of .

points lying on the map from its local linear interpolati®@] =~ These equations describe the coupling of thesdkar[10]

[Fig 2(c)]. The WS also shows no evidence of this charac{Egs.(8), driving] and the Loren11] [Egs.(9), responsg

teristic. The thicknessr decreases abruptly only &=k,  Systems. The multiplietr is introduced to control the char-

like the dimensiord, . At k>kg, ® becomes a smooth map; acteristic time scale of the driving system. The perturbation

the thicknesss turns to zero and the global dimensidp kX is applied only to the second equation of the Lorenz

becomes equal to the dimensidf of the strange attractor of SYystem and does not contain any feedback term. In addition

the driving systemgd,=d®=1. to Eqs.(8) gnd(g), we consider an auxiliary response system
Although this example is based on an uninvertable logisthat i equivalent to the system of EqS) except that the

tic map, the same effects are observed in coupled invertabiériablesy; are replaced witly;

Henon maps. Despite the lack of any symmetry in Eg&8) and (9)
As a second example, we present the GS in essential§dmitting the CS, the GS in the form of WS and SS can be
different time-continuous systems: still observed in this system. As in the first example, the GS

can be easily detected with the help of the auxiliary response
system as the CS betwé&handY’. The threshold of WS is
X1=— a{Xy+ X3}, (8a) determined byx?(k) =0 and is equal t&,~6.66[Fig. 3a)].
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In this model, the onset of WS is characterized by considerBecause of the large negative value ) the condition
able decrease of both the dimensféig. 3(b)] and the thick-  \T(k)<Aj is not achieved even for very large=1000.

ness of the mapFig. 3(c)]. At large k=40, the global di-  However, the global dimensiod, (k) goes close to the di-
mension of the strange attractor saturates to the dimension gf.ciondP = 2+\2/|\2|~2.01 of the driving attractor at a
the driving attractor, and the thickness saturates to zerq, A 1iins '

o smaller value ofk when \§(k)<—\?, and the thickness
These features indicate the smoothnesaiind hence the (k) determining the smoothness of the ma@ipbecomes

onset of SS. _
Generally the threshold of SS can be estimated fron?ma_II before the above threshold of SS'is reached.
the Kaplan-Yorke conjecturfl2] similarly as Badiiet al. Figure 3d) shows the influence of a small mismatch be-

determined the condition at which a linear low-pass filterWeen parameters of systedsandY" in the case of Eqs8)
does not influence the dimension of filtered chaotic signal@nd (9). The parameteb of the systemY’ is replaced by
[13]. If we indicate with\ ;=\,=---=\4,, the whole spec- b+ Ab. For finite Ab, the two pronounced thresholds in the
trum of Lyapunov exponents of the original systemdependence=\{(Y'—Y)?) vsk related to the onset of WS
Egs. (1), the global Lyapunov dimensiod, is given by and SS are observed. The last threshold is conditioned by
dA=I+E}:1)\j/|)\|+1|, where | is the largest integer for different sensitivities of WS and SS to the parameter devia-
which the sum ovey is non-negative. This spectrum consiststion; s<Ab?” with y~0.2 for the WS andy=1 for the SS.

of d Lyapunov exponenta ?=\2=---=\_ of the driving  These different scaling lawsy( 1 for the WS andy=1 for
system that are independentloindr conditional Lyapunov the S$ can serve as practical critera to distinguish between
exponentsA }(k)=A%(k)=---=\R(k) that depend ork. the WS and SS in experiment.

The SS occurs if the response system has no effect on the In conclusion, the two stages of GS, namely, the WS and
global Lyapunov dimension. This leads to the conditionSS, can be distinguished in unidirectionally coupled chaotic
AF(k)<\D where m is the minimal integer for which Systems. They are related to the existence of a sm@&Sh

3 1)\J,D<0_ This condition provides that the global @nd an unsmootfWS) map® between variables of the re-

Lyapunov dimension, is equal to the Lyapunov dimension SPOnseX and drivingY systemg Y=®(X)] and can be de-
de of the driving systemdxzdf tected with the help of an auxiliary response system.

If the driving system is presented by a three-dimensional The author thanks M. Ding and E. Kostelich for useful
flow, this condition becomeaR<\7. For the system of discussions. This research was partially supported by the
Egs. (8), we havex?=0.408,\2=0, and\J=—37.656. EEC under Contract No. CIPDCT94-0011.
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