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It is shown that synchronization in unidirectionally coupled chaotic systems develops in two stages as the
coupling strength is increased. The first stage is characterized by a weak synchronization, i.e., a response
system subjected to a driving system undergoes a transition and exhibits a behavior completely insensitive to
initial conditions. Further increase of the coupling strength causes the dimension decrease of the overall
dynamics and leads finally to a strong synchronization. In this stage, the dimension of the strange attractor in
the full phase space of the two systems saturates to the dimension of the driving attractor.
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PACS number~s!: 05.45.1b

A generic feature of nonlinear systems exhibiting chaotic
motions is the extreme sensitivity to initial conditions. This
feature, known as the ‘‘butterfly effect,’’ would seem to defy
synchronization among dynamical variables in coupled cha-
otic systems. Nonetheless, coupled systems with certain
properties of symmetry may exhibit synchronized chaotic
motions. Most frequently a situation is studied where the
complete system consists ofcoupled identical subsystems.
Many different examples of such a type have been intro-
duced@1,2#. In these examples, the synchronization is easy to
detect. It appears as an actual equality of the corresponding
variables of the coupled systems as they evolve in time. Geo-
metrically, this implies a collapse of the overall evolution
onto the identity hyperplane in the full phase space. We refer
to this type of synchronization as aconventional synchroni-
zation ~CS!.

A more complicated situation arises whencoupled non-
identical chaotic systemsare investigated. For essentially
different chaotic systems, the phase space does not contain
any trivial invariant objects to which one can expect a col-
lapse of the overall evolution. The central questions in this
case are how to generalize a mathematical definition of cha-
otic synchronization for such systems and how to detect it in
a real experimental situation.

Recently Rulkovet al. @3# considered this problem for the
case of forced synchronization. This implies that the full sys-
tem consists of anautonomous drivingsubsystem unidirec-
tionally linked to a responsesubsystem.Generalized syn-
chronization~GS! was taken to occur if there is a mapF
from the trajectoriesX(t) of the attractor in the driving space
D to the trajectoriesY(t) in the response spaceR;
Y(t)5F„X(t)…. For nonidentical driving and response sys-
tems, this map differs from identity and this complicates the
detection of the GS. To recognize the GS at a real experi-
mental situation, Rulkovet al. @3# suggested a practical al-
gorithm based on the assumption thatF is asmooth~differ-
entiable! map. The algorithm was tested on artificially
constructed examples witha priori known mapF.

In this paper, we consider both identical and essentially
different coupled chaotic systems and show that in both
cases the onset of synchronization is characterized by anun-
smoothmap F that becomes smooth only at sufficiently
large coupling strength. We call the synchronization charac-
terized by asmoothand anunsmooth mapF a strong~SS!
andweak ~WS! synchronization, respectively. The CS is a
particular case of the SS.

Next, unidirectionally coupled chaotic systems are con-
sidered which are of the following principal form:

Ẋ5F~X!, ~1a!

Ẏ5G~Y!1kP~X,Y!. ~1b!

Here X[$x1 ,x2 , . . . ,xd% and Y[$y1 ,y2 , . . . ,yr% denote
state vectors ind-dimensional spaceD and r -dimensional
spaceR, respectively.F andG define the vector fields of the
driving and response systems.P denotes a coupling term and
k is a scalar parameter defining the coupling strength.

One can show that there exists some mapF ~not neces-
sarily smooth! betweenX andY if under the action of driv-
ing perturbations the response system ‘‘forgets’’ its initial
conditions, i.e., when the response system becomes a
‘‘stable’’ system @4#. This suggests the following physical
criterion to detect the GS in an experiment. Suppose that we
can construct an auxiliary response systemY8PR8 identical
with Y and link it to the driving systemX in the same way as
Y is linked toX @5#:

Ẏ85G~Y8!1kP~X,Y8!. ~2!

The GS betweenX and Y occurs if there is the CS be-
tweenY andY8. To show that CS betweenY andY8 results
in relationship Y5F(X), let us denote the solution of
Eqs. ~1! by X(t)5Cx(X0 ,t) and Y(t)5Cy(X(t),Y0 ,t),
whereX5X0 andY5Y0 are the initial conditions att50.
The CS betweenY and Y8 implies limt→`iY2Y8i
5 limt→`iCy„X(t),Y0 ,t…2Cy„X(t),Y08 ,t…i50 for arbitrary
initial conditionsY0 andY08 . From this follows thatCy is
asymptotically independent ofY0. At t→`, Cy is also inde-
pendent directly on timet. Indeed, letỸ085Cy(X( t̃),Y08 , t̃)*Electronic address: pyragas@kes0.pfi.lt
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be the state of the systemY8 at an intermediate timet̃,t.
Then the state of the systemY8 at timet can be expressed as
Y8(t)5Cy„X(t),Ỹ08 ,t2 t̃… and the synchronization condition
becomes limt→`iCy„X(t),Y0 ,t…2Cy„X(t),Ỹ08 ,t2 t̃…i50
for any t̃,t. It follows that att→`, Cy is independent of
both Y0 and explicit timet. Thus, in the limit t→`, we
obtain a relationship betweenX andY in the following form:
Y5 limt→`Cy„X(t),Y0 ,t…[F„X(t)….

Note that CS betweenY andY8 does not guarantee the
smoothness ofF. Ding et al. @6# have shown that unsmooth
maps do not preserve the dimension of strange attractors. A
simple example of this type is the Weierstrass function
u5Fw(v)[(n51

` cos(nbv)/na, specifying a continuous but
not differentiable map of points on thev axis ~with the di-
mension equal to 1! to points on the Weierstrass curve
v→@v,u5Fw(v)# with a fractal dimension between 1 and 2
for typicala andb satisfying 1,a,b. Thus, for unsmooth
mapF, we can expect that the dimension of a strange attrac-
tor in the whole phase spaceD%R is larger than the dimen-
sion of driving attractor inD space. For smoothF, we can
expect that these two dimensions are equal in magnitude.

Due to the identity of the original@Eq. ~1b!# and the aux-
iliary @Eq. ~2!# response systems, an extended phase space
D%R%R8 contains an invariant manifoldY85Y. The stabil-
ity of this defines the condition of synchronization between
Y andY8. The limit dY5Y82Y→0 leads to the variational
equation of the response system

ddY

dt
5dY

]

]Y
$G~Y!1kP~X,Y!% ~3!

defining r conditional Lyapunov exponents l j
R

j51,2, . . . ,r @1#. A necessary condition for synchronization
is l j

R,0, j51,2, . . . ,r @7#.
In the following, we illustrate some properties of GS with

specific examples. As usual in such problems, we start with a
discrete time system. As a first simple example, two coupled
identical one-dimensional maps are considered,

x~ i11!5 f „x~ i !…, ~4a!

y~ i11!5 f „y~ i !…1k$ f „x~ i !…2 f „y~ i !…%, ~4b!

with the following auxiliary response map:

y8~ i11!5 f „y8~ i !…1k$ f „x~ i !…2 f „y8~ i !…%. ~5!

At any coupling strengthk, Eqs.~4! have an invariant mani-
fold y5x and hence admit the CS, which in this case is
equivalent to the SS. Figure 1 shows the phase portraits of
the system for the logistic mapf (x)54ax(12x) in x-y and
y-y8 coordinates ata51 and various values of parameter
k. With the increase ofk, the synchronization occurs first
betweeny and y8 and later on betweenx and y. Thus, the
WS is observed even for identical systems and it precedes
the SS. The thresholds of WS and SS are determined by two
different Lyapunov exponents, namely, the conditional
Lyapunov exponent,

lR5 ln~12k!1 lim
n→`

1

n (
i51

n

lnu f 8„y~ i !…u ~6!

defining the stability of the invariant manifoldy85y, and the
transverse Lyapunov exponent of the invariant manifold
y5x,

l05 ln~12k!1 lim
n→`

1

n (
i51

n

lnu f 8„x~ i !…u. ~7!

The dependence of these exponents onk is shown in Fig.
2~a!. lR(k) becomes zero at two characteristic values of the
coupling strengthkw andks , corresponding to the thresholds
of WS and SS, respectively. Above the last threshold
k.ks , these two exponents coincide,l0(k)5lR(k). For the
logistic map, Eq.~7! transforms tol0(k)5 ln(12k)1lD,
wherelD5 ln2 is the Lyapunov exponent of the driving sys-
tem and the threshold of SS is equalks512exp(2lD)
50.5.

In a real experiment, the CS between systemsY andY8
will be partially disturbed by noise and a small mismatch
between parameters of these systems. These factors will re-
sult in a finite amplitude of the deviationY82Y. The rms of
this deviations5A^(Y82Y)2& depends on the amplitude of
noise an as s}an

g . In the case of Eqs.~4!, and ~5!,
g'0.12 for the WS andg51 for the SS@the inset in Fig.
2~a!#. The same scaling laws are observed fors vsDa where
Da is the deviation between parameters of systemsy and
y8 @a51 for Eqs.~4! anda512Da for Eq. ~5!#. Thus the
WS is much more sensitive (g,1) to noise and parameter
deviation than the SS (g51).

FIG. 1. x-y and y-y8 phase portraits of coupled logistic maps
described by Eqs.~4! and ~5! with f (x)54ax(12x) at a51 and
various values of the coupling strengthk: ~a! k50.1, unsynchro-
nized state;~b! k50.4, WS;~c! k50.6, SS.
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The WS observed with the help of an auxiliary response
systemy8 may show no evidence inx-y coordinates. At
kw,k,ks there exists a relationshipy5F(x); however, this
map is unsmooth and has a fractal structure@Fig. 1~b!, left#.
The correlation dimension@8# dc of an attractor lying in the
x-y plane does not exhibit any characteristic changes at the
thresholdkw @Fig. 2~b!#. An abrupt dimension decrease is
observed only at the thresholdks , whereF is turned to iden-
tity. At the threshold of WS, there are no characteristic
changes in cross correlatorKxy betweenx andy @Fig. 2~c!#,
although here this correlation is rather large,Kxy(kw)
'0.71. To estimate the smoothness of the mapF, we calcu-
lated its mean local ‘‘thickness’’s defining the deviation of
points lying on the map from its local linear interpolation@9#
@Fig 2~c!#. The WS also shows no evidence of this charac-
teristic. The thicknesss decreases abruptly only atk5ks
like the dimensiondc . At k.ks , F becomes a smooth map;
the thicknesss turns to zero and the global dimensiondc
becomes equal to the dimensiondc

D of the strange attractor of
the driving system,dc5dc

D51.
Although this example is based on an uninvertable logis-

tic map, the same effects are observed in coupled invertable
Henon maps.

As a second example, we present the GS in essentially
different time-continuous systems:

ẋ152a$x21x3%, ~8a!

ẋ25a$x110.2x2%, ~8b!

ẋ35a$0.21x3~x125.7!%, ~8c!

ẏ1510~2y11y2!, ~9a!

ẏ25by12y22y1y31kx2 , ~9b!

ẏ35y1y228/3y3 . ~9c!

These equations describe the coupling of the Ro¨ssler @10#
@Eqs. ~8!, driving# and the Lorenz@11# @Eqs. ~9!, response#
systems. The multipliera is introduced to control the char-
acteristic time scale of the driving system. The perturbation
kx2 is applied only to the second equation of the Lorenz
system and does not contain any feedback term. In addition
to Eqs.~8! and~9!, we consider an auxiliary response system
that is equivalent to the system of Eqs.~9! except that the
variablesyi are replaced withyi8

Despite the lack of any symmetry in Eqs.~8! and ~9!
admitting the CS, the GS in the form of WS and SS can be
still observed in this system. As in the first example, the GS
can be easily detected with the help of the auxiliary response
system as the CS betwenY andY8. The threshold of WS is
determined byl1

R(k)50 and is equal tokw'6.66@Fig. 3~a!#.

FIG. 3. ~a! Maximal conditional Lyapunov exponentl1
R ; ~b!

correlationdc and Lyapunovdl dimension of attractor inD%R
space;~c! thicknesss, and~d! deviations for coupled Ro¨ssler and
Lorenz systems as functions of coupling strengthk. dc ands are
calculated from N550 000 data points @X( iDt),
Y( iDt),i51, . . . ,N# with Dt50.5. s is calculated similarly as in
the first example, except that a local linear interpolation ofF is
performed in a high-dimensional space. Heree50.01 defines a lo-
cal parallelepipeduxj2xj ( iDt)u/L j,e, j51,2,3 around a reference
point X( iDt), where L j is the size of the attractor along thej
coordinate.s is averaged overN155000 reference points,b528,
a56. The inset in~c! showss vs deviation of the parameterDb: ~1!
unsynchronized state atk55; ~2! WS atk510; ~3! WS atk520;
~4! SS atk550.

FIG. 2. ~a! Lyapunov exponentslR andl0 ; ~b! correlation di-
mensiondc of attractor in thex-y plane, and~c! thicknesss and
cross correlatorKxy for coupled logistic maps as functions of cou-
pling strengthk. lR andl0 are calculated from Eqs.~6! and ~7!,
respectively. dc is determined fromN550 000 data points
@x( i ),y( i ),i51, . . . ,N#. The thicknesss is calculated as follows.
In an e50.001 proximity of a given pointx5x( i ), a local linear
interpolation of the mapy5F(x) is applied using a least squares
fit. The local mean square deviations are averaged overN155000
arbitrarily chosen reference points on the strange attractor and the
root of this value is chosen as the thicknesss. The whole number
of the data points isN550 000. The inset in~a! shows the deviation
s vs amplitude of noisean : ~1! unsynchronized state atk50.3; ~2!
WS atk50.4; ~3! SS atk50.6. At every iterate, random numbers
uniformly distributed in the interval@2an/2,an/2# have been added
to the variables of Eqs.~4! and ~5!.
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In this model, the onset of WS is characterized by consider-
able decrease of both the dimension@Fig. 3~b!# and the thick-
ness of the map@Fig. 3~c!#. At large k*40, the global di-
mension of the strange attractor saturates to the dimension of
the driving attractor, and the thickness saturates to zero.
These features indicate the smoothness ofF and hence the
onset of SS.

Generally the threshold of SS can be estimated from
the Kaplan-Yorke conjecture@12# similarly as Badiiet al.
determined the condition at which a linear low-pass filter
does not influence the dimension of filtered chaotic signals
@13#. If we indicate withl1>l2>•••>ld1r the whole spec-
trum of Lyapunov exponents of the original system
Eqs. ~1!, the global Lyapunov dimensiondl is given by
dl5 l1( j51

l l j /ul l11u, where l is the largest integer for
which the sum overj is non-negative. This spectrum consists
of d Lyapunov exponentsl1

D>l2
D>•••>ld

D of the driving
system that are independent ofk andr conditional Lyapunov
exponentsl1

R(k)>l2
R(k)>•••>l r

R(k) that depend onk.
The SS occurs if the response system has no effect on the
global Lyapunov dimension. This leads to the condition
l1
R(k),lm

D where m is the minimal integer for which
( j51
m l j

D,0. This condition provides that the global
Lyapunov dimensiondl is equal to the Lyapunov dimension
dl
D of the driving system,dl5dl

D

If the driving system is presented by a three-dimensional
flow, this condition becomesl1

R,l3
D . For the system of

Eqs. ~8!, we havel1
D50.408, l2

D50, and l3
D5237.656.

Because of the large negative value ofl3
D the condition

l1
R(k),l3

D is not achieved even for very largek.1000.
However, the global dimensiondl(k) goes close to the di-
mensiondl

D521l1
D/ul3

Du'2.01 of the driving attractor at a
smaller value ofk when l1

R(k)!2l1
D , and the thickness

s(k) determining the smoothness of the mapF becomes
small before the above threshold of SS is reached.

Figure 3~d! shows the influence of a small mismatch be-
tween parameters of systemsY andY8 in the case of Eqs.~8!
and ~9!. The parameterb of the systemY8 is replaced by
b1Db. For finiteDb, the two pronounced thresholds in the
dependences5A^(Y82Y)2& vs k related to the onset of WS
and SS are observed. The last threshold is conditioned by
different sensitivities of WS and SS to the parameter devia-
tion; s}Dbg with g'0.2 for the WS andg51 for the SS.
These different scaling laws (g,1 for the WS andg51 for
the SS! can serve as practical critera to distinguish between
the WS and SS in experiment.

In conclusion, the two stages of GS, namely, the WS and
SS, can be distinguished in unidirectionally coupled chaotic
systems. They are related to the existence of a smooth~SS!
and an unsmooth~WS! mapF between variables of the re-
sponseX and drivingY systems@Y5F(X)# and can be de-
tected with the help of an auxiliary response system.
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discussions. This research was partially supported by the
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