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A simple model of large-scale biological evolution is presented. This model involves anN-species system
where interactions take place through a given connectivity matrix, which can change with time. True extinc-
tions, with removal of less-fit species, occur followed by episodes of diversification. An order parameter may
be naturally defined in the model. Through the dynamical equations, the system moves towards the critical
threshold, which triggers the extinctions. The frequency distributionN(s) of extinctions of sizes follows a
power lawN(s)'s2a with a'2.3, close to known palaeobiological evidence.@S1063-651X~96!50807-X#

PACS number~s!: 87.10.1e, 05.40.1j

Extinction patterns are a key feature of biological large-
scale evolution@1#. Extinction has been only slightly less
important than diversification and an adequate understanding
of the nature of extinction patterns is as important as an
understanding of how species are originated. The existence
of large~mass! extinctions, well documented from the fossil
record, has generated strong controversy@1#. One of the most
striking properties of the statistical distribution of extinction
sizes ~measured as the number of taxonomic units lost! is
that it displays a highly skewed, decreasing distribution with
a continuous drift from small to large events. This result is
not trivial: if two different processes were operating at two
different scales, a two-peaked distribution should be ex-
pected. At one extreme, the so-called background extinction
events~linked with biological causes! and, at the other, mass
extinctions~linked with external, physical causes!. But the
observed pattern, with a continuous connection between
small, intermediate, and large extinctions, seems to be in
agreement with a common process operating at different
scales.

More specifically, the number of extinction eventsN(s)
of size s has been shown@2,3# to be compatible with a
power-law fit,N(s)'s2a, with a52.0160.12. As is well
known, power laws can be linked with critical phenomena.
In this sense, it has been conjectured that such critical points
could be reached through some kind of self-organization pro-
cess. These types of dynamical patterns are generically
known as self-organized critical phenomena~SOC! @4#. In
recent years, some new models of large-scale evolution are
trying to shed light on this problem@5–7#. The basic pro-
posal is that the observed patterns are the result of a SOC
process.

In the model that we present here, extinctions naturally
appear under the actualization laws that will be described.
Each species is defined through its interaction with itself and
with the remaining species in the ecology. We believe that
the biological interpretation of this model is easier than that
of some other models already proposed~see@8# for a discus-
sion about models of evolution!.

A simple model of macroevolution can be built up involv-
ing true extinctions and further diversification. Let us start
with a setV5$Si%, i51,2, . . . ,N, of N species. Each spe-
cies is defined by means of a binary variable, i.e.,

SiPS5$0,1%. Here 0 stands for extinct and 1 for alive. At
the beginning, all species are alive,Si51; i . For simplicity,
we assume that the system is fully connected~although some
connections may occasionally take a zero value!, i.e., there is
a connectivity matrixL(V)5(Ji j ), where the couplingJi j
among thei th and thej th species is such thatJi jP(21,1)
and follows a probability density P(Ji j ) @i.e.,
*21

11dJi j P(Ji j )51#. Independently of the initial distribution
chosen~for simplicity, it will be taken as a uniform one!, the
stationary distributionP(Ji j ) is reached after a transient pe-
riod.

Now the interaction among species will be described by
means of a dynamical system,

Si~ t11!5QF (
jPCi

Jj i ~ t !Sj~ t !2u i G , ~1!

whereQ(x)51 if x.0 and zero otherwise. HereCi stands
for the set of nonzero input connections to speciesi . In our
paper, we set the internal threshold~which can be a measure
of internal resistance to perturbations! to zero ~i.e., u i50,
; i ). As we can see, this neural-like rule gives a simple cri-
terion for species connectivity. Negative connections make
the i th species less fit and positive values give higher fitness.
There is no implicit symmetry in the way we choose the
connections among species. From the biological point of
view, it should be clear that many different situations can
arise between two species: a predator-prey relationship gives
a positive connection for a predator and a negative connec-
tion for a prey; in the case of cooperation or coevolution,
both connectivities shall be positive; if we are dealing with
competition, both might be negative. This is the reason why
no symmetry restriction should bea priori imposed on the
connections of the system.

The dynamics proceeds in four steps:
~1! For each species, we choose at random one of its

connectionsJjiPC(V), and change it to a new valueJji
randomly chosen in the interval (21,1). Byusing this rule,
we can see thatCi→N as time proceeds~if no extinctions are
involved!. This rule can be modified in order to keep fixed
~at any value belowN) the total number of connections.

~2! We compute thelocal field Fi52( j Jj i (t)Sj (t) for
each species. Then they are updated following Eq.~1!.
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~3! If speciesi has become extinct@i.e., Si(t)50#, the
whole set of connectionsCi5$Ji j ,Jji %, ; j is set to zero.

~4! Let us assume thatM species have become extinct.
ThenN2M alive species are present, and we have to fill the
M vacant spaces. To do so, we choose a given alive species
at random, saySk , andM new species will be created by
using the setCk . The new connections for each new created
species will be obtained from

Ji j5Jk j1h i j , ~2a!

Jji5Jjk1h j i , ~2b!

whereh i j is taken from a uniform distributionp(h) over the
interval (2e,e). In this way, the new species are the result
of small modifications of the setCk , and diversification has
been introduced. OnceN alive species are obtained, step~1!
is repeated.

The random change inJi j prevents the system from fall-
ing in a frozen state. It makes it possible to maintain the
system in a nonequilibrium state. So the first rule works in a
similar way as the grains of sand falling on a sandpile. This
change can be a random mutation~leading to a change in
fitness! or an external modification linked with the physical
environment. As a consequence of this modification, the lo-
cal fields will change over time.

Starting from a random initial condition, we let the system
evolve. AfterT'10 000 transients, the statistical properties
are analyzed. To begin with, let us consider the qualitative
dynamics of our system, as shown in Fig. 1~a!. The size of
extinctionsS(t) is shown in the solid line in a system of
N5100 species. As we can see, punctuated equilibrium can
be observed. Long periods of little change~stasis! are fol-

lowed by bursts of large extinction events~mass extinctions!.
This is consistent with paleontological evidence. The fre-
quency distribution of extinctions of sizes gives a power law
N(s)}s2a, as shown in Fig. 2. The exponent is
a52.360.1, close to Raup’s data@9#. Consider the way in
which we replicate the species in our model. It is clear that
the frequency distribution of extinctions is the same as the
frequency distribution of the number of descendants of a
given species~i.e., of subtaxas within a given taxa!. The
exponenta obtained is also consistent~within the error! with
the one obtained by Burlando@10# in relation to the fractal
geometry of philogenetic trees. In this context, the fractal
structure of taxonomic relations~i.e., of the evolutionary
tree! would be a consequence of criticality.

This power law is a first evidence of SOC dynamics. Ad-
ditional information can be obtained from the study of wait-
ing times. The waiting timets is defined as the number of

FIG. 1. ~a! Number of species that become
extinct through time. Long periods of stasis are
punctuated by mass extinctions~right axis! and
variation of the total fieldf T in the same 2000
time steps~left axis!. After a large event, the sys-
tem goes back slowly to the critical threshold
f * . The dashed line atf T50.1' f * is only meant
as a guide to the eye.~b! Individual field. Al-
though the main features of the total field are re-
flected here, local fluctuations may lead the spe-
cies to extinction whenf i falls below zero
~dashed line!. In all our simulations,e50.01~see
main text!.

FIG. 2. Power-law distribution of extinctions in anN5150 sys-
tem. The tail that does not fit the power law is always very short.
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time units between two consecutive extinctions. If a SOC
process is involved, we should expect another power-law
relation in the frequency distribution of such waiting times,
i.e., N(ts)}ts

2g . As shown in Fig. 3, such a power law is
also obtained in our system. Here we haveg53.060.1. This
power law means that there is no temporal scale that would
control the dynamics, and in this sense our model is clearly
SOC. Some random systems may exhibit fractality, even
1/ f noise, but the distribution of times of statis is found to
follow an exponential distribution@3,11#.

In order to further analyze the critical dynamical proper-
ties of the system, let us define the average individual field as

f i5
Fi
N

~3!

and the average total field as

f T5
1

N(
i
f i . ~4!

Figures 1~a! and 1~b! show the dynamical evolution of both
values. The average individual fieldf i closely resembles the
average total field, although the former is much noisier. Ev-
ery time f i falls below zero, the displayed species becomes
extinct. The valuesf T and f i reflect a well-known process in
the history of extinctions, a background of small ones~indi-
vidual fluctuations that may lead to a single extinction! and a
few big mass extinctions, during which almost every species
becomes extinct. When the system reaches the stationary
state, the value off T fluctuates around a self-organized
thresholdf * . The comparison between Figs. 1~a! and 1~b!
shows clearly how the evolution proceeds. Due to a diffusion
process, the value off T tends to be slowly lowered. While
f T keeps abovef * , almost no extinction is found. But when
f T' f * , large extinctions are triggered. Every time a species
becomes extinct, new species appear through a copying pro-
cess, as described by rule 4. The extinction of a single spe-
cies may trigger a larger extinction event, in the following
sense: this species probably supports others through its out-
put connections, which may keep other local fields above
zero. If those connections disappear, some other species will
become extinct in the following time step. The precise value
of the connections that are removed when a given species
disappears may be viewed as a matter of ‘‘bad luck.’’ We

can say that, in this model, two situations must coincide in
order to have a mass extinction: on one hand, the total field
needs to have a value close to the threshold, and on the other
hand, a ‘‘negative’’ enough fluctuation has to appear. Both
causes are responsible for large events.

Keeping in mind that there is a critical threshold towards
which the system moves but that is not stable, it is possible
to define an order parameter for this system@12,13#. LetP be
our dynamical order parameter, which is defined as the nor-
malized extinction size~number of species that have disap-
peared over total number of species!. Let also f T be the
control parameter~see Fig. 4!. The critical thresholdf * that
the system intends to achieve is the point where the correla-
tion length j would diverge. It is in fact the single point
where extinctions up to system’s size might be found. The
limit j→` is an attracting point for the dynamics, but the
system cannot reach and exactly maintain this value: any
fluctuation would trigger an extinction and the copying pro-
cess that follows would carry the system far fromf * again.
In this sense, we have to talk about a marginally stable fixed
point ~as already stated in@13#!.

This model will be further extended to incorporate the
possibility of a variable number of connections which would
account for a more realistic situation@14#. Many variations
of this first model have been explored. In particular, the
change in the thresholdu i , the introduction of total connec-
tivity ( Ci5N), the nonmutation of the copied species
(h i j50, ; i , j ), and a discrete model with values61 for the
connections have been studied, and none of these modifica-
tions has been found to alter the critical exponents of the
power-law distributions. It is our belief that this model
catches some key features of large-scale evolution that had
not been previously recovered@6,15# and its robustness
against strong modifications with the maintenance of the re-
ported exponents make a claim for it to be in a different
universality class than that of other models, and probably
closer to known field data.

Summing up, we have presented a model of macroevolu-
tion with explicit extinction and diversification. The

FIG. 3. Power-law distribution of lengths of intervals without
activity ~periods of stasis!.

FIG. 4. Order parameter for this model. The normalized extinc-
tion size acts as an order parameter, and the total fieldf T is the
control parameter. The displayed result is an average over ten inde-
pendent runs of 53105 time steps after 23104 transients were
discarded in systems of sizeN5150.
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obtained results can be easily interpreted from the biological
point of view, and we have recovered some of the most
relevant large-scale paleobiological data: power-law distribu-
tions of extinction and diversification, evolutionary bursts,
periods of stasis, and mass extinctions. The model has been
shown to display self-organized criticality in a new univer-
sality class, and an order parameter has been found, allowing

a reinterpretation of the model in the light of classical critical
transitions, a possibility that will be further explored.
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