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Extinction and self-organized criticality in a model of large-scale evolution
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A simple model of large-scale biological evolution is presented. This model involvésspecies system
where interactions take place through a given connectivity matrix, which can change with time. True extinc-
tions, with removal of less-fit species, occur followed by episodes of diversification. An order parameter may
be naturally defined in the model. Through the dynamical equations, the system moves towards the critical
threshold, which triggers the extinctions. The frequency distribulgs) of extinctions of sizes follows a
power lawN(s)~s™* with «=~2.3, close to known palaeobiological evident®1063-651X96)50807-X]

PACS numbdss): 87.10+€, 05.40+j

Extinction patterns are a key feature of biological large-S; e % ={0,1}. Here 0 stands for extinct and 1 for alive. At
scale evolution[1]. Extinction has been only slightly less the beginning, all species are ali&=1Vi. For simplicity,
important than diversification and an adequate understandinge assume that the system is fully connedtthough some
of the nature of extinction patterns is as important as argonnections may occasionally take a zero value., there is
understanding of how species are originated. The existenc® connectivity matrixC({2)=(J;;), where the coupling);;
of large (mas$ extinctions, well documented from the fossil among theith and thejth species is such thd; e (—1,1)
record, has generated strong controvg¢idyOne of the most and follows a probability density P(J;;) [i.e.,
striking properties of the statistical distribution of extinction ffidJij P(J;;)=1]. Independently of the initial distribution
sizes(measured as the number of taxonomic units)lést chosen(for simplicity, it will be taken as a uniform ongthe
that it displays a highly skewed, decreasing distribution withstationary distributiorP(J;;) is reached after a transient pe-
a continuous drift from small to large events. This result isriod.
not trivial: if two different processes were operating at two  Now the interaction among species will be described by
different scales, a two-peaked distribution should be exmeans of a dynamical system,
pected. At one extreme, the so-called background extinction
events(linked with biological causgsand, at the other, mass
extinctions (linked with external, physical caugedut the
observed pattern, with a continuous connection between
small, intermediate, and large extinctions, seems to be iwhere®(x)=1 if x>0 and zero otherwise. Hel& stands
agreement with a common process operating at differerfior the set of nonzero input connections to speciels our
scales. paper, we set the internal threshéghich can be a measure

More specifically, the number of extinction evem$s) of internal resistance to perturbatiorn® zero (i.e., §;=0,
of size s has been show2,3] to be compatible with a Vi). As we can see, this neural-like rule gives a simple cri-
power-law fit, N(s)~s~ ¢, with «=2.01+0.12. As is well terion for species connectivity. Negative connections make
known, power laws can be linked with critical phenomena.theith species less fit and positive values give higher fitness.
In this sense, it has been conjectured that such critical pointEhere is no implicit symmetry in the way we choose the
could be reached through some kind of self-organization proeonnections among species. From the biological point of
cess. These types of dynamical patterns are genericaliew, it should be clear that many different situations can
known as self-organized critical phenomef@00C [4]. In  arise between two species: a predator-prey relationship gives
recent years, some new models of large-scale evolution am positive connection for a predator and a negative connec-
trying to shed light on this problerf6—7]. The basic pro- tion for a prey; in the case of cooperation or coevolution,
posal is that the observed patterns are the result of a SOlth connectivities shall be positive; if we are dealing with
process. competition, both might be negative. This is the reason why

In the model that we present here, extinctions naturallyno symmetry restriction should ke priori imposed on the
appear under the actualization laws that will be describedconnections of the system.

Each species is defined through its interaction with itself and The dynamics proceeds in four steps:

with the remaining species in the ecology. We believe that (1) For each species, we choose at random one of its
the biological interpretation of this model is easier than thaconnectionsJ;; e C({}), and change it to a new valug;

of some other models already propogeee[8] for a discus- randomly chosen in the intervat{(1,1). By using this rule,
sion about models of evolutign we can see thaf,— N as time proceed@f no extinctions are

A simple model of macroevolution can be built up involv- involved). This rule can be modified in order to keep fixed
ing true extinctions and further diversification. Let us start(at any value belowN) the total number of connections.
with a setQ={S}, i=1,2,... ,N, of N species. Each spe- (2) We compute thdocal field 7= —2;J;(t)S(t) for
cies is defined by means of a binary variable, i.e.,each species. Then they are updated following (Eg.

S(t+1)=0] 2, Ji(1S(1) -6, &)
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(3) If speciesi has become extindt.e., S;(t)=0], the lowed by bursts of large extinction everiteass extinctions
whole set of connection§; ={J;; ,J;i}, V] is set to zero. This is consistent with paleontological evidence. The fre-
(4) Let us assume thd¥l species have become extinct. quency distribution of extinctions of sizgives a power law
ThenN—M alive species are present, and we have to fill theN(s)xs™ %, as shown in Fig. 2. The exponent is

M vacant spaces. To do so, we choose a given alive species=2.3+0.1, close to Raup’s da{®]. Consider the way in
at random, say5,, and M new species will be created by which we replicate the species in our model. It is clear that
using the se€C, . The new connections for each new createdthe frequency distribution of extinctions is the same as the

species will be obtained from frequency distribution of the number of descendants of a
given speciegi.e., of subtaxas within a given taxaThe
Jij =it mij (28  exponentx obtained is also consiste(within the erroj with
the one obtained by Burlandd0] in relation to the fractal
Jji =it mji » (2b) geometry of philogenetic trees. In this context, the fractal

structure of taxonomic relationé.e., of the evolutionary
where7;; is taken from a uniform distributiop(») over the  tree would be a consequence of criticality.
interval (—€,€). In this way, the new species are the result This power law is a first evidence of SOC dynamics. Ad-
of small modifications of the s&t,, and diversification has ditional information can be obtained from the study of wait-
been introduced. Ondg alive species are obtained, stdp  ing times. The waiting time, is defined as the number of
is repeated.

The random change id;; prevents the system from fall-
ing in a frozen state. It makes it possible to maintain the
system in a nonequilibrium state. So the first rule works in a
similar way as the grains of sand falling on a sandpile. This
change can be a random mutatideading to a change in
fitnesg or an external modification linked with the physical
environment. As a consequence of this modification, the lo-
cal fields will change over time.

Starting from a random initial condition, we let the system
evolve. AfterT~10 000 transients, the statistical properties
are analyzed. To begin with, let us consider the qualitative
dynamics of our system, as shown in Figa)l The size of
extinctions S(t) is shown in the solid line in a system of
N=100 species. As we can see, punctuated equilibrium can FIG. 2. Power-law distribution of extinctions in &= 150 sys-
be observed. Long periods of little chan¢gtasi$ are fol-  tem. The tail that does not fit the power law is always very short.
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FIG. 3. Power-law distribution of lengths of intervals without Average total field
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y (P s FIG. 4. Order parameter for this model. The normalized extinc-

time units between two consecutive extinctions. If a SOCION Sizé acts as an order parameter, and the total fielis the
control parameter. The displayed result is an average over ten inde-

proc.ess.is involved, we S.hOl.'”d .eXpeCt anOthe.r.power_laV\pl)endent runs of 510° time steps after 10* transients were
_relatlon in th_e frequency dl_strlb_utlon of such waiting t'mes'discarded in systems of sié=150.
i.e., N(tg)=t;”. As shown in Fig. 3, such a power law is
also obtained in our system. Here we hawe3.0=0.1. This ) ) o S
power law means that there is no temporal scale that woul§&n Say that, in this model, two situations must coincide in
control the dynamiCS, and in this sense our model is C|ear|§)rder to have a mass extinction: on one hand, the total field
SOC. Some random systems may exhibit fractality, everi€eds to have a value close to the threshold, and on the other
1/f noise, but the distribution of times of statis is found to hand, a “negative” enough fluctuation has to appear. Both
follow an exponential distributiof3,11]. causes are responsible for large events.
In order to further analyze the critical dynamical proper- Keeping in mind that there is a critical threshold towards
ties of the system, let us define the average individual field awhich the system moves but that is not stable, it is possible
to define an order parameter for this sys{d®,13. Let P be
fo2i 3) our dynamical order parameter, which is defined as the nor-
! malized extinction sizénumber of species that have disap-
peared over total number of spedietet alsof; be the
control paramete(see Fig. 4 The critical threshold* that
the system intends to achieve is the point where the correla-
1 . . . : )
_E ;. (4)  tion length & would diverge. It is in fact the single point
N where extinctions up to system’s size might be found. The

) ) ) limit é&—o is an attracting point for the dynamics, but the
Figures 1a) and 1b) show the dynamical evolution of both gy stem cannot reach and exactly maintain this value: any

values. The average individual fiefd closely resembles the fluctuation would trigger an extinction and the copying pro-

average total field, although the former is much noisier. Ev-CeSS that follows would carry the system far frdh again.

3n this sense, we have to talk about a marginally stable fixed

and the average total field as

fT:

extinct. The value$; andf; reflect a well-known process in . !
; o T point (as already stated irL3]).
the history of extinctions, a background of small ofesli- This model will be further extended to incorporate the
vidual fluctuations that may lead to a single extincliand a L . : P
few big mass extinctions, during which almost every specie?ossIbIIIty of a variable qumbgr of _connect|ons Wh'.Ch. would
becomes extinct. When the system reaches the stationafpcoUnt for a more realistic situatigad]. Many variations
state, the value off; fluctuates around a self-organized Of this first model have been explored. In particular, the
thresholdf*. The comparison between Figsialand ib) ghgnge in the thresholé , the |_ntroduct|on of tot_al connec-
shows clearly how the evolution proceeds. Due to a diffusioriVity (Ci=N), the nonmutation of the copied species
process, the value df; tends to be slowly lowered. While (7;=0,Vi,j), and a discrete model with valuesl for the
f; keeps abové*, almost no extinction is found. But when connections have been studied, and none of these modifica-
fr~1f*, large extinctions are triggered. Every time a speciegions has been found to alter the critical exponents of the
becomes extinct, new species appear through a copying preower-law distributions. It is our belief that this model
cess, as described by rule 4. The extinction of a single spesatches some key features of large-scale evolution that had
cies may trigger a larger extinction event, in the following not been previously recoverefb,15 and its robustness
sense: this species probably supports others through its owtgainst strong modifications with the maintenance of the re-
put connections, which may keep other local fields aboveported exponents make a claim for it to be in a different
zero. If those connections disappear, some other species wilhiversality class than that of other models, and probably
become extinct in the following time step. The precise valuecloser to known field data.
of the connections that are removed when a given species Summing up, we have presented a model of macroevolu-
disappears may be viewed as a matter of “bad luck.” Wetion with explicit extinction and diversification. The
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obtained results can be easily interpreted from the biologicah reinterpretation of the model in the light of classical critical
point of view, and we have recovered some of the mostransitions, a possibility that will be further explored.

relevant large-scale paleobiological data: power-law distribu- _ _
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