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Critical dynamics of the contact process with quenched disorder
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We study critical spreading in Monte Carlo simulations of the two-dimensional contact pri@®@swith
guenched disorder in the form of random dilution. In the pure model, spreading from a single particle at the
critical point\ follows power laws with the critical exponents of directed percolation. With disorder, critical
spreading is logarithmic not power law. Below there is a Griffiths phase in which the time dependence is
governed by nonuniversal power laws. The effects of disorder are also apparentabavehe active phase,
where the relaxation of the survival probability is algebraic, rather than exponential, as in the pure model. Our
results support the conjecture by Bramson, Durrett, and Schonpdamm Prob.19, 960(1991)], that in two
or more dimensions the disordered CP has only a single phase transid63-651X%96)51010-X]

PACS numbegps): 05.50+q, 02.50-r, 05.70.Ln

Phase transitions between an absorbing state, thatis, of the square latticé’? is either vacant or occupied by a
admitting no further evolutionand an active regime occur in particle. Particles are created at vacant sites at axaté,
models of autocatalytic chemical reactions, epidemics, andheren is the number of occupied nearest neighbors, and are
transport in disordered media. Critical phenomena attendingnnihilated at the unit rate, independent of the surrounding
absorbing-state transitions show a high degree of universatonfiguration. The order parameter is the particle density
ity, characterized rather precisely in studies of the contacit vanishes in the vacuum state, which is absorbing\As
process(CP) and of directed percolatio(DP) [1-3]. Since  increased beyond\.=1.648§1), there is a continuous
many-particle systems often incorporate frozen-in randomphase transition from the vacuum to an active steady state;
ness, it is natural to investigate the effect of quenched disoffor \>\., p~(A—\.)?. We introduce disorder by ran-
der on an absorbing-state transition. Some time ago, Noeslomly removing a fractiorx of the sites. That is, for each
studied the critical behavior of disordered D). In this (i j) e7? there is an independent random variabjé ,j)
work we reexamine time-dependent critical phenomena at afaking values 0 and 1 with probability and 1—x, respec-
absorbing-state transition in a disordered system. We focugyely. The DCP is simply the contact process restricted to
on the two-dimensional CP, a simple lattice model of ansjtes with 5(i,j)=1; those havingy(i,j)=0 are never oc-
epidemic[5]. Our primary interest is the effect of disorder on cupied.[Thus if exactlym neighbors of a given site have
the spread of the critical process from a seed. 7(i,j)=1, the creation rate at that site is at mosk/4.]

At a critical creation rate)., the pure CP exhibits a Naturally, 1- x must exceed the square lattice site percola-
second-order phase transition with the same critical expotgn thresholdp,= 0.5927 for there to be any possibility of
nents as DR1]. The well-known Harris criteriofi6, 7] states  an active state, since on finite sets the CP is doomed to
that disorder changes the critical exponentsdif, <2, extinction.
where d is the dimensionality and’, is the correlation- Following Grassberger and de la TofrE], we study a
length exponent of the pure model. Singe=0.73 for DPin  |arge ensemble of trials, all starting from a configuration
2+1 dimensions, we expect quenched disorder to be relevaikry close to the absorbing state: a single particle at the
in the CP. Indeed, Noest's simulations of one- and two-origin. For\>\(x) there is a nonzero probability that the
dimensional stochastic cellular automdteelonging to the process survives as—; for A<\(x) the process dies
DP clasg yielded critical exponents quite distinct from those with probability 1. Of primary interest af(t), the survival
of DP when the models were modified to incorporatepropability at timet, n(t), the mean number of particles
quenched randomnes§4]. A field-theoretic study by (averaged over all trials, including those that die before time
Obukhov [8] yielded qualitatively consistent results. {) andR2(t), the mean-square distance of particles from the

Marques studied the effects of dilution on the phase diagrangrigin. At the critical point of the pure CP, these quantities
of the CP and related models in a mean-field renormalizatiofy|jow asymptotic power laws,

group study[9]. Despite these efforts, the critical exponents

for disordered DP are not known to good precision, due in P(t)oct™?, (1)
part to the slow relaxation attending disordi&6].

In this paper we report extensive simulations of n(t)oct?, (2)
time-dependent critical behavior in the two-dimensional di-
luted contact proceg®CP). In the contact process, each site R?(t) o t2. 3)

The exponents satisfy the hyperscaling relation
*Electronic address: dri@fisica.ufmg.br 45+27n=dz, ind<4 dimensiongl]. ForA<A., P(t) and
"Electronic address: dickman@lcvax.lehman.cuny.edu n(t) decay exponentially, while fox >\,
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lim P(t)EPwN()\_)\C)ﬁI, (4) TABLE. I. Critical pargmgters from simqlations of the DCP.
t oo Numbers in parentheses indicate uncertainties.
andn(t) ~td. X Ae B’ a c
While it is tempting to suppose that the critical point of 1.64881) 0.58614)
the DCP is also distinguished by asymptotic power laws, one g 5, 1.68508) 0.5667)
should, in fact, expect power-law relaxationfft) over the 0.05 1.74081) 0.9710) 8.63)

rangeX(0) <A<\, (x) [10,1]. In this Griffiths phase the

. . . . .01 1.8464(6) 0.894) 4.6(1) 8.1(1)
long-time dynamics are governed by atypical regions in
. : ) A ; 0.2 2.10805) 0.994) 3.6414) 6.32)
which the fraction of diluted sites is low, rendering the pro-
cess locally supercritical12]. Briefly, the argument for 0.3 2.4703) 1.073) 3.0515) 5.306)
' ’ 0.35 2.71%2) 1.015) 2.725) 4.795)

power-law relaxation may be given as follows. The probabil-
ity of the seed landing in a favored region, of linear dize
in which the local density of diluted sites is such that

A= Neerr=A, is ~exp(-ALY). (Ncert IS the critical creation ) oqrimatep .] Also evident in Fig. 1 is the power-law
rate for a system with the site density prevailing in this_ "®hehavior in tﬁe subcritical, Griffiths phase. Figurdi2se)
gion) Tt}e lifetime of the process in such a region showsP,, versus\ for x=0.1; the data for other dilutions
~expBL’). _(I-_|ere the precise forms 045‘ an_d B are un- 50k similar. Least-squares linear fits to plots oPlnvs
k_nown, but it is clear that they are posmve,_lncreasmg func-ln()\_}\cx as in Fig. 2, yield the estimates fg listed in
tions of A for A>0.) It follows that at long times Table I. Forx=0.05 theB’ estimates cluster near unity; the
od N N mean is 0.9@), not far from Noest's resuli3=1.10(5)[4].
P(t)~maxexd — (ALY+te BY)]~maxt AB~t=¢, (5 (Our preliminary results on the stationary density yield
At A B=1 for x=0.35)
Having located the critical poink.(x), we turn to the
spreading behavior. Log-log plots d¥(t), and R%(t) at
N\¢, as shown in Fig. 3, present substantial curvature at late
éimes, prompting us to ask whether spreading is power law
or slower.(The local slopes of these graphs, commonly em-
ployed to extract estimates for spreading exponé¢mfs,
here show all three exponents decreasing sharply at long
times) By contrast, the same data approach linear asymp-
totes when plotted, as in Fig. 4, versus ItIfLogarithmic
decay of the survival probability has been observed in pre-
vious, less extensive simulations of the DCP1].) For
x=0.1 expressions of the formP(t)~(Int)™® and
FEz(t)~(lnt)C fit the data over a larger range of times than do
power laws. Fot= 75(x), P(t) is well described by a loga-
rithmic time dependencer decreases from about 3500, for

where the last step defines(@onuniversal decay exponent
¢.
Thus the criterion of power-law evolution, so useful in
locating absorbing-state transitions in nondisordered model
is not applicable to the DCPL3]. Our method for finding

A :(X) rests instead on an analysis Bf andn(t). We first
determine the ultimate survival probability for a series\of
values. PlottingP,, versus\ yields a preliminary estimate
for N.. To refine this estimate, we observe that foe A,
n(t) must grow monotonically at long times; far<i. it
must decay. In the pure CP, for exampigt) grows for
A=\, SO A\, is the smallestn supporting asymptotic
growth. In the present case we wish to stay clear of assum
tions regarding the sign adn(t)/dt at critical; we simply
note that growth(decay rules out a particulah as being x=0.1, to about 60 fox=0.35. The approach cR? to a

subcritical(supercritical. Using these conditions to winnow logarithmic arowth law tvpically occurs earlier. at around
the set of possible critical values, we eventually find a nar- 9 9 ypically '

row range ofA for which n(t) appearssteadyat long times.

We studied dilutionsx= 0.02, 0.05, 0.1, 0.2, 0.3, and 15 . :
0.35, on square lattices of 2200 sites to a side, using samples
of from 10* to 2X 10° trials for each\ value of interest, each
trial extending to a maximum time df,,,<2x 1. (As is
usual in this sort of simulation, the time increment associated
with an elementary event — creation or annihilation — is
At=1/N, whereN is the number of particles. The largest
samples and longest runs were used at or near crjtidal.
independent realization of disordghe variablesy(i,j)], is
generated for each trial. The procedure outlined above yields
the estimates fom.(x) given in Table I. For smallx,
Ae(X)=N(0)/(1—x), as predicted by mean-field theory
[9,14].

Examples ofP(t), n(t), andR?(t) are shown in Fig. 1. Int

Of note is the slow approach &f(t) to its limiting value,
P.., in the supercritical regime, where we find that at long  FiG. 1. Survival probability P, mean populationn, and
timesP(t)~P..+consXt™Y, with y ranging from 1/2quite  mean-square distance of particles from the origf in the di-
near critical to 1 (at larger\). [In cases for whictP(t) has  |uted contact proces@ilution x=0.3). X: A=2.50; O: A=2.47;
yet to attain its limit at,,,,, we use expressions of this form +: x=2.40.
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FIG. 2. Logarithmic plot of the ultimate survival probability vs FIG. 4. The same data as in Fig. 3, but plotted versdstn
D=\ —\¢(x) for dilutionsx=0.05(+), 0.2(X), and 0.35 ¢ ). The

straight lines are least-squares fits to the 6 points, 5 points, and . . .
points nearesh., for x=0.05, 0.2, and 0.35, respectively. The ]'ilable ). While we are confident that the critical exponent

inset showsP.. vs.  for x=0.1. 7n=0, it is_possible than_(t)~(|nt)'° with some smallb|.
More precise determinations of, and/or ofn(t) at long

. . times are required to resolve this question. The only previous
7p/3. For the weake;t d|sorder studlexi:(Q.OZ), we ob- determination of a spreading exponent we are awatéooh
serve only(pure DP-like spreading on the time scale of our model in this class is Noest's result for the spreading di-

simulations. The somewhat larger dilution »£0.05 pre- LA ) . . )
sents an intermediate case, in which the mean-square spre?ﬁns'on’d_ 1.61(5) for disordered DP in-21 dimensions

follows R2~t118for t<400, andR?~ (Int)® for t>1600, but L In our notation,d=1+ »+ 8, so our simulations yield
the survival probability is better described by a power law,d=1 (logarithmic spreading [We obtain the same value if
P~t"%%3 for t<t,,,=4x10°. (Note that the exponent es- We extract Fhe exponent directly from the data for
timates are fairly close to those of the pure CPor these  N(t)/P(1).] It is worth noting that our studies extend about
small dilutions we expect a crossover to the logarithmiclO to 100 times longer in timgo at least 5< 10", compared
forms at larget, but have been unable to verify this, due to With 4x10% in Ref.[4]), and employ samples two to three
computational limitations. The rapid decreaserjnwith in-  orders of magnitude larger. The latter is of particular signifi-
creasing dilution can be understood by noting that for weal€ance, since rare events appear to dominate the critical be-
disorder, the process must spread over a rather large ar8avior in disordered systems.
before randomness becomes manifest; for smalsizable As noted above, the decay Bft) should be governed by
regions of the lattice look nearly regular. a power law in the range (0)<A<\(X); examples of
Since our results for critical spreading are best charactef®, N, andR? in this regime are shown in Fig. 5. This plot
ized by logarithmic time dependences, they are formally conconfirms power-law decay, and shows that the exponénts
sistent withd, », andz all being zero. The powera and and ¢ governingP and n (~t¢) are nonuniversal in this
¢ in the logarithmic fits forP and R? vary systematically, regime, as expectdd0,11. Whenx=0.35, for example, we
and over a substantial range, as the dilution is vafssk
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FIG. 5. Survival probability®, mean populatiom, and mean-

FIG. 3. Survival probabilityP?, mean populatiom, and mean-  square distance of particles from the orid®, in the subcritical

square distance of particles from the ori@tf, in the critical DCP.  DCP (Griffiths phas@ +: x=0.45,A=3.0; ¢: x=0.35, \=2.65;
X: x=0.35,A=2.72; &: x=0.2,\=2.108; +: x=0.05,\=1.7408. [d: x=0.3,\=2.40.
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find ¢~2.2 forA=2.4, and¢~0.6 for A=2.65; the corre- very narrow range of creation rates. While our model incor-
sponding values of are—2.0 and—0.4. In all cases studied, porates dilution rather than a random death rate, one would
however, the asymptotic growtif any) of R? seems slower expect such an intermediate phase to be a rather general fea-
than power law.(Prior to reaching a platealR? exhibits  ture of disordered contact processes, so that its apparent ab-
logarithmic growth) Figure 5 includes data for=0.45, i.e., sence here argues for the validity of the conjecture.
a site concentration below the percolation threshold. In this |n summary, we find that quenched disorder induces a
regime power-law relaxation oP(t) is expected forany  radical change in the critical spreading of the contact pro-
A>N(0). cess. In contrast to the well-known power laws in the pure
Bramson, Durrett, and Schonmann studied a onecp, we observe logarithmic time dependence. Although our
dimensional CP with disorder in the form of a death rateregyjts are restricted to dilutions 0:0%<0.35, we expect a
randomly taking one of two valugéndependently at each crossover to logarithmic behavior for alkix<1—p,, al-
site [16]. They demonstrated that this model possesses ¥eit at very long times for smald. While we are inclicn,ed to

intermediate phase in which survivedtarting, e.g., from a suppose that the DCP is but one member of a universality

single particlg is possible, but the active region grows more . . : .
: ) . class encompassing all disordered models with a continuous
slowly than linearly; sublinear growth has also been ob-

served in simulationgl7]. (In the pure CP the radius of the transitign to a “”‘q“‘?. absqrbing configuration, studies of
active region grows<t for any A>\,.) In two or more absorbmg-stat_e transitions in other dlsor_dered models are
dimensions, Bramsoet al. conjectured, there is no interme- needed to verify the universality hypothesis.

diate phase. Our results for various dilutions support this We are very grateful to Peter Grassberger for comments
conjecture. For example, simulationsxat 0.1, with\ close  that helped us to identify a misconception in an earlier ver-
to, but slightly above\, [to be precisen=1.86 and 1.87, sion of this paper. We thank Dani Ben-Avraham for exten-
corresponding to X—\;)/A.=0.007 and 0.013, respec- sive discussions and Geoff Grinstein for helpful suggestions.
tively], showedn(t)~t?[(and similarly forR?(t)], consis- A.G.M. was supported by CNP(Brazil). She thanks the
tent with the radius of the active region growing. Thus a  staff of Lehman College, City University of New York, for
sublinear-growth phase, if it exists at all, is confined to atheir hospitality during her visit.
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