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We have analyzed the phenomenon of stochastic resonance in a spatially extended system by studying a
simple version of a bistable reaction-diffusion model. Knowledge of the nonequilibrium potential for this
system allows us to determine, using the albedo boundary condition as our~modulated! control parameter, the
bistability region in the nonequilibrium potential, the probability for the decay of the metastable extended
states, and approximate expressions for the correlation function and the signal-to-noise ratio in this case.
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The phenomenon ofstochastic resonanceis characterized
by the enhancement of the signal-to-noise ratio~SNR!
caused by injection of noise into a periodically modulated
nonlinear system. The increase in the noise intensity from
initial small values induces an increase in the SNR ratio until
it reaches a maximum, beyond which there is a decay of
SNR for large noise values@1–4#. Some recent reviews and
conference proceedings clearly shows the wide interest of
this phenomenon and the state of the art@5#.

What is still under study are the features of this phenom-
enon in spatially extended systems. Some early studies were
related to the nucleation of solitons and kinks@6#, globally
coupled nonlinear oscillators@7#, recent numerical simula-
tion of arrays of coupled nonlinear oscillators@8# and excit-
able systems@9#, and even some preliminary results regard-
ing homogeneous solutions within the context of the time
dependent Ginzburg-Landau equation@10#.

In this paper we present an analysis of the stochastic reso-
nance phenomenon in a spatially extended system, exploiting
previous results obtained using the notion of thenonequilib-
rium potential @11# in the context of a simple reaction-
diffusion model. The specific model we shall focus on, with
a known form of the Lyapunov function, corresponds to a
one-dimensional, one-component model@12,13# mimicking
general bistable reaction-diffusion models@12#. Besides the
study of the role of boundary conditions~BC’s! in pattern
selection@14,15#, we were particularly concerned with the
global stabilityof the resulting nonhomogeneous structures
@16#. Such analysis was carried out by exploiting the notion
of nonequilibrium potentialor Lyapunov functionalof the
system@11#.

The particular adimensional form of the model that we
work with is @14–18#

] tf5]yy
2 f2f1fhu~f2fc!. ~1!

We have considered here a class of stationary structures
f(y) in the bounded domainyP(2yL ,yL) with albedo
boundary conditions at both ends,df/dy uy56yL
57kf(6yL), wherek.0 is the albedo parameter. These

are the spatially symmetric solutions to Eq.~1! already stud-
ied in Ref. @14#. The explicit forms of these stationary pat-
terns are given in Eqs.~9! and ~3! of Refs. @14# and @17#,
respectively.

The double-valued coordinateyc , at which f5fc , is
given by
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with g(k,y)5sinh(y)1kcosh(y), and z5122fc /fh (21
,z,1).

When yc
6 exists andyc

6,yL , this solutions represents a
structure with a central ‘‘hot’’ zone (f.fc) and two lateral
‘‘cold’’ regions (f,fc). For each parameter set there are
two stationary solutions, given by the two values ofyc . In
Ref. @14#, it has been shown that the structure with the small-
est ‘‘hot’’ region @with yc5yc

1 denoted byfu(y)] is un-
stable, whereas the other one@with yc5yc

2 denoted by
f1(y)] is linearly stable. The trivial homogeneous solution
f50 ~denoted byf0) exists for any parameter set and is
always linearly stable. These two linearly stable solutions are
the only stable stationary structures under the given albedo
boundary conditions. We will concentrate on the region of
values of the parametersz, yL, andk where both nonhomo-
geneous structures exist.

For our system with the albedo BC that we are consider-
ing here, the Lyapunov functional~LF! reads@16#
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Replacing the explicit forms of the stationary nonhomoge-
neous solutions@see, for instance, Eq.~9! in Ref. @14##, we
obtain the explicit expression@17#
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while for the homogeneous trivial solutionf050, we have
insteadF @f0 ,k#50.

In Fig. 1 we have plotted the Lyapunov functional
F @f# as a function ofk for a fixed system size,yL52, and
a fixed value of the ratiofc /fh ~i.e., fixed value ofz). The
curves correspond to the nonhomogeneous structures,F6,
whereas the horizontal line stands for the Lynpunov func-
tional ~LF! of the trivial solution. We have focused on the
bistable zone, the upper branch being the LF of the unstable
structure, whereF attains a maximum, while in the lower
branch~for f5f0 or f5f1), the LF has local minima.

It is important to note that, since the LF for the unstable
solutionfu is always positive and, for the stable nonhomo-
geneous structuref1, F,0 for k→0, the LF for this struc-
ture vanishes for an intermediate valuek5k* of the albedo
parameter. At that point, the stable nonhomogeneous struc-
turef1(y) and the trivial solutionf0(y) exchange their rela-
tive stability. We will work in the bistable region in the
neighborhood of the pointk5k* .

In order to account for the effect of fluctuations, we need
to include in the time-evolution equation of our model@Eq.
~1!# a fluctuation term, modeled as an additive noise source
@12#, yielding a stochastic partial differential equation for the
random fieldf(y,t):

] tf~y,t !5]yy
2 f2f1fhu~f2fc!1j~y,t !. ~5!

We make the simplest assumptions about the fluctuation
term j(y,t), i.e., that it is a Gaussian white noise with zero
mean value and a correlation function given by
^j(y,t)j(y8,t8)&52gd(t2t8)d(y2y8), where g denotes
the noise strength.

At this point we will use a recently developed scheme that
describes the decay of extended metastable states@19#. Fol-
lowing such a scheme, and in order to obtain the transition
probability between metastable and stable states, it is neces-
sary to find the conditional probability for the random field

f(y,t) to have the valuefstable(y,t) at timet, given that at
the initial time t50 the system was in a statefmeta(y,0).
This probability can be represented by a path integral over
those realizations of the random fieldj(y,t) that satisfy the
initial and final conditions, that is,

P@fstable~y,t !ufmeta~y,0!#;E P@j#d„f~y,t !

2fmeta~y,0!…Dj~y,t !,

~6!

where the statistical weightP@j# for a Gaussian white noise
is of the form
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In the limit of small noise intensity, the main contribution in
Eq.~6! is given by the realizations of the random field close
to the most probable trajectory@11,19#. This fact allows us to
estimate the result of Eq.~6! by the steepest-descent method.
This procedure yields the following Kramers’s like result for
the first-passage-timêt& @20#:

^t&5t0expH DF @f,k#

g J , ~8!

where DF @f,k#5F @funst(y),k#2F @fmeta(y),k#. The
prefactor t0 is usually determined by the curvature of
F @f,k# at its extrema~minima! and is typically several or-
ders of magnitude smaller than the average time^t&. The
behavior of^t& as a function of the albedo parameterk is
shown in Fig. 2, for the same values of the system param-
eters as in Fig. 1.

We assume now that, due to an external harmonic varia-
tion of the reflectivity at the boundaries, the parameterk has
an oscillatory part:k(t)5k*1dkcos(Vt1w). For the space

FIG. 1. Values of the nonequilibrium potentialF as a function
of the albedo parameterk, for fixed value of the length (yL52) and
the ratiofc /fh (fc /fh50.35). The bottom curve corresponds to
the potential of the stable patternf1(y), while the top one indicates
the potential of the unstable patternfu(y). The potential for the
stable homogeneous patternf0(y), coincides with the horizontal
axis. We have indicated the pointk5k*51.5889 . . . , where both
stable structures@f0 andf1(y)] have the same stability.

FIG. 2. Values ofg ln(^t&/t0) as a function of the albedo param-
eterk, for the same parameter values as in Fig. 1. Line~a! indicates
the decay~transition! from the patternf1(y) towardsf0, while line
~b! corresponds to the inverse decay~transition!. The point where
k5k* , is also indicated.
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extended problem, we need to evaluate the space-time corre-
lation function ^f(y,t)f(y8,t8)&, which is given by the
double functional integral

^f~y,t !f8~y8,t8!&5E D@f#E D@f8#f~y,t !

3f8~y8,t8!P@f~y,t !uf8~y8,t8!,w#

3Pas„f~y,t !,w…, ~9!

wherePas„f(y,t),w… indicates the asymptotic form of the
probability distribution off(y,t) ~depending ‘‘parametri-
cally’’ on w), while P@f(y,t)uf8(y8,t8),w# is the condi-
tional probability @analogous to Eq.~6!#. For t85t1T, t
large and T→`, we can assume the asymptotic result
P@f(y,t)uf8(y8,t8),w#;Pas(f8(y8,t8),w) @3#. Hence

^f~y,t !f8~y8,t8!&T→`;^f~y,t !,w&aŝ f8~y8,t8!,w&as ,
~10!

with

^f~y,t !,w&as5E D@f#f~y,t !Pas„f~y,t !,w…. ~11!

In the present case, it is necessary to make a double Fourier
transform of the correlation function in order to obtain, in-
stead of the power spectrum, thegeneralized susceptibility
S(k,v) @12# as

S~k,v!5E dyE dt ei [ky2vt]^f~y,t !,w&as
2 . ~12!

To evaluate it we will use a simplified point of view, based
on the ideas of Ref.@2#. In particular, due to the bistable
character of our problem potential, we can almost straight-
forwardly apply the results of their Sec. V. To proceed with
the calculation of the correlation function we need to evalu-
ate the transition probabilities

W65t0
21expH 2

DF @f,k#

g J ~13!

where

DF@f,k#5DF@f,k* #1dkS ]DF@f,k#

]k D
k5k*

cos~Vt1w!.

~14!

This yields for the transition probabilities

W6.
1

2 S a07a1

dk

g
cos~Vt1w! D , ~15!

where a0'exp(2DF @f,k* #) and a1'a0 (dDF/dkuk* ).
With this identification, and using the fact that
f0
as(y)5f050, in the equation analogous to Eq.~3.10! ~in

Ref. @2#!, only one term is left. Hence, after averaging over
the random phasew, we end with an expression similar to
Eq. ~3.12! ~also in Ref. @2#! but where we shall replace
c25f1(y)

2.
To complete the calculation we need to perform the Fou-

rier transform of the correlation function in time as well as in

space in order to obtain the generalized susceptibility
S(k,v). Due to the decoupling of the correlation function
shown in Eq.~10!, the generalized susceptibility also de-
couples adopting the form

S~k,v!5F~k!S~v!, ~16!

where F(k);*dy exp(iky)f1(y)
2, and S(v) is the usual

power spectrum function, as given in Eq.~5.7! of Ref. @2#.
The result for the SNR,R, that now becomes a function of
k is

R~k!;F~k!~Llg21!2exp~22DF@f,k* #/g!, ~17!

wherel is the previously indicated linear eigenvalue, and
L; dDF/dkuk*dk.

This configures the main result of the present work. Equa-
tion ~17! is analogous to what has been obtained in zero-
dimensional systems, but now including a prefactor with a
dependence on the wavelengthk. In Fig. 3 we show the
dependence of the present SNR onk, for typical values of
the parameters~same as in Figs. 1 and 2!. In fact, as we are
considering a bounded system, we have a discrete Fourier
spectra.

From Eq. ~1!, it is clear that we have scaled the length
with the diffusion constant. This diffusion constant is a mea-
sure of the coupling between different spatial units, hence, a
variation in our system length will imply an inverse variation
of the coupling constant. In the present case, a numerical
analysis indicates that such a variation does not show a sig-
nificant variation in the SNR of the system. The present re-
sult does not agree with other recent results, based on nu-
merical simulations, indicating an enhancement of the
response of a stochastic resonator by its coupling into a chain
of identical resonators@8#. However, this is not a surprise as
the situation described here differs from the one discussed in
Ref. @8#. Here we have that the coupling to the external
modulated field is present, effectively, only at the bound-
aries, while the situation described in Ref.@8# corresponds to
the modulation of every one of the coupled nonlinear oscil-

FIG. 3. Curves ofR~k! as a function of the noise parameterg
@see Eq.~17!#, for different values ofk(5np/2yL). We have nor-
malized with the component ofF(k) corresponding tok50. We
adoptedk5k* and the same parameter values as in Fig. 1.~a!
k50 (n50), ~b! k50.785 (n51), ~c! k51.57 (n52).
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lators. In this regard, a preliminary analysis of a situation
similar to the one described in Ref.@8# within the present
model@that is, keepingk constant and introducing the modu-
lation directly into Eqs.~1! or ~5!, for instance, by modula-
tion of the threshold parameterfc# shows evidence of an
enhancement of the SNR due to coupling@21#. However this
is not conclusive as we need to make a more careful analysis
of the problem, in order to reach a more complete picture of
the space dependent phenomena. As indicated by the present
rough calculation~see Fig. 3!, we expect different strengths
in the stochastic resonance phenomena for different wave-
lengths, as the dependence of the generalized susceptibility
S(k,v) on k andv—that will not necessarily factorize—
will also imply thatR;R~k,v!.

An important conclusion to be drawn from the identifica-
tion of the Lyapunov functional with a ‘‘thermodynamical-
like potential’’ is that near the pointk* at which two states
have the same stability, the problem seems to admit a one-
dimensional analog@17,18#. This feature is in contrast with

the infinite-dimensional character of the whole function
space, and has been used to strongly simplify the analysis of
our system.

We expect that the present form of analysis could be ex-
tended to activator-inhibitor or multicomponent systems
such as those studied in Ref.@22#. The possible applications
in chemical @23# and biological systems@5,24,25#, and its
relation with spatiotemporal synchronization problems
@26,8#, are very well known. It is worth remembering that
activator-inhibitor systems have a tight connection with
Bonhoffer–van der Pol–like nonlinear spatially coupled os-
cillators. All these points will be the subject of further work.
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