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Stochastic resonance in a spatially extended system

Horacio S. Wio
Centro Afanico Bariloche, Comisio Nacional de Energi Atamica
and Instituto Balseiro, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Argentina
(Received 15 May 1996

We have analyzed the phenomenon of stochastic resonance in a spatially extended system by studying a
simple version of a bistable reaction-diffusion model. Knowledge of the nonequilibrium potential for this
system allows us to determine, using the albedo boundary condition @asodulated control parameter, the
bistability region in the nonequilibrium potential, the probability for the decay of the metastable extended
states, and approximate expressions for the correlation function and the signal-to-noise ratio in this case.
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The phenomenon aftochastic resonands characterized are the spatially symmetric solutions to Efj) already stud-
by the enhancement of the signal-to-noise rat®NR) ied in Ref.[14]. The explicit forms of these stationary pat-
caused by injection of noise into a periodically modulatedterns are given in Eq99) and (3) of Refs.[14] and[17],
nonlinear system. The increase in the noise intensity frommespectively.
initial small values induces an increase in the SNR ratio untii  The double-valued coordinatg., at which ¢=¢,, is
it reaches a maximum, beyond which there is a decay ofjiven by
SNR for large noise valug4.—4]. Some recent reviews and
conference proceedings clearly shows the wide interest of L1 1 [ zy(k,y) =N y(ky )%+ 1—K?
this phenomenon and the state of the[&ft Ye =535 1Tk , (2

What is still under study are the features of this phenom-
enon in spatially extended systems. Some early studies were .
related to the nucleation of solitons and kirlg, globally ~ With ¥(k.y)=sinh{)+kcoshf), and z=1-2¢c/¢n (-1
coupled nonlinear oscillators7], recent numerical simula- <z<l). . - . .
tion of arrays of coupled nonlinear oscillatd&] and excit- Wheny, exists andy; <y, , this solutions represents a

able system$9], and even some preliminary results regard-Structure with a central “hot” zone¢> ¢) and two lateral
ing homogeneous solutions within the context of the time cold” regions (¢<dc). For each parameter set there are

dependent Ginzburg-Landau equat[dg]. two statio_nary solutions, given by the two valu_esny. In

In this paper we present an analysis of the stochastic res&€f:[14], it has been shown that the structure with the small-
nance phenomenon in a spatially extended system, exploitin@st “hot” region [with y.=y: denoted bya,(y)] is un-
previous results obtained using the notion of tomequilib- ~ stable, whereas the other ofwith y.=y. denoted by
rium potential [11] in the context of a simple reaction- ¢1(y)] is linearly stable. The trivial homogeneous solution
diffusion model. The specific model we shall focus on, with =0 (denoted byd,) exists for any parameter set and is
a known form of the Lyapunov function, corresponds to aalways linearly stable. These two linearly stable solutions are
one-dimensional, one-component mo@&2,13 mimicking  the only stable stationary structures under the given albedo
general bistable reaction-diffusion mod¢l®?]. Besides the boundary conditions. We will concentrate on the region of
study of the role of boundary conditiof8C’s) in pattern values of the parameters y,, andk where both nonhomo-
selection[14,15, we were particularly concerned with the geneous structures exist.
global stability of the resulting nonhomogeneous structures For our system with the albedo BC that we are consider-
[16]. Such analysis was carried out by exploiting the notioning here, the Lyapunov functionélLF) reads[16]
of nonequilibrium potentialor Lyapunov functionabf the

system[11]. v S0 , , ,
The particular adimensional form of the model that we ]-‘[d),k]:L _fo [~ &' +dnb(d' —dc)]dd
work with is[14-19 L

1 k
dub= b b+ oy~ bo). ® * z[ﬁvd’(yv”]z]dy* 2PV ey @

We have considered here a class of stationary structures , . i
#(y) in the bounded domaitye(—y, ,y,) with albedo Replacing the explicit forms of the stationary nonhomoge-

boundary ~conditions at both endsda/dyl,_., ~ NEOUS solutiongsee, for instance, Eq9) in Ref. [14]], we
—xy, . 2> ;
=Fke(xy,), wherek>0 is the albedo parameter. These obtain the explicit expressiori7]

L vkyL—ye)

__ g2t 2o +
F DRy 2+ dpsinh(y; ) Yky) 4
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FIG. 1. Values of the nonequilibrium potentil as a function FIG. 2. Values ofyIn({7)/7) as a function of the albedo param-
of the albedo parameté for fixed value of the lengthy( =2) and  eterk, for the same parameter values as in Fig. 1. (@endicates
the ratio ¢/ ¢, (/! dpp=0.35). The bottom curve corresponds to the decaytransitior) from the patternp,(y) towardse,, while line
the potential of the stable pattegn (y), while the top one indicates (b) corresponds to the inverse decdsansition). The point where
the potential of the unstable pattet®),(y). The potential for the k=Kk*, is also indicated.
stable homogeneous pattedip(y), coincides with the horizontal
axis. We have indicated the poikt=k* =1.588 . . . , where both
stable structureg¢, and ¢,(y)] have the same stability.

¢(y,t) to have the valuebg . V,t) at timet, given that at
the initial timet=0 the system was in a stat®,«;{Y.0).
This probability can be represented by a path integral over
those realizations of the random fieddy,t) that satisfy the
initial and final conditions, that is,

while for the homogeneous trivial solutiofi,=0, we have
insteadF[ ¢q,k]=0.

In Fig. 1 we have plotted the Lyapunov functional
F[ ¢] as a function ok for a fixed system sizgy =2, and
a fixed value of the rati@./ ¢y, (i.e., fixed value ofz). The
curves correspond to the nonhomogeneous structiés,
whereas the horizontal line stands for the Lynpunov func-
tional (LF) of the trivial solution. We have focused on the
bistable zone, the upper branch being the LF of the unstable
structure, whereF attains a maximum, while in the lower
branch(for ¢= ¢ or ¢= ¢,), the LF has local minima.

It is important to note that, since the LF for the unstable
solution ¢,, is always positive and, for the stable nonhomo-
geneous structurey,, F<0 for k— 0, the LF for this struc-
ture vanishes for an intermediate valke k* of the albedo
parameter. At that point, the stable nonhomogeneous struc-
ture ¢1(y) and the trivial solutionpy(y) exchange their rela- In the limit of small noise intensity, the main contribution in
tive stability. We will work in the bistable region in the Eq(6) is given by the realizations of the random field close
neighborhood of the poirk=k*. to the most probable trajectof1,19. This fact allows us to

In order to account for the effect of fluctuations, we needestimate the result of E¢6) by the steepest-descent method.
to include in the time-evolution equation of our mofEQ.  This procedure yields the following Kramers's like result for
(1] a fluctuation term, modeled as an additive noise sourcehe first-passage-timer) [20]:

[12], yielding a stochastic partial differential equation for the
(=roong 124}, ®

P[¢stable(y’t)| ¢meta(Yu0)]~ f P[f] 5(¢(th)

_‘i’meta(yro))pf(yvt)y
(6)

where the statistical weighf[ £] for a Gaussian white noise
is of the form

. (7)

PL£]~ex —iftdt " aye(yn)
27 0 —y yg yv

random field¢(y,t):
hp(y, ) =05+ pb(d— o) +E(Y.D).  (5) 4

We make the simplest assumptions about the fluctuatiowhere AF[ ¢, K]=F[dynsdy) Kl—F[dmeidy).K]. The
term &(y,t), i.e., that it is a Gaussian white noise with zero prefactor 7, is usually determined by the curvature of
mean value and a correlation function given by F[¢,k] at its extremaminima) and is typically several or-
(E(y, D&Y’ t))y=2y8(t—t")8(y—y'), where y denotes ders of magnitude smaller than the average time The
the noise strength. behavior of(7) as a function of the albedo parameteis

At this point we will use a recently developed scheme thatshown in Fig. 2, for the same values of the system param-
describes the decay of extended metastable sta®8sFol-  eters as in Fig. 1.
lowing such a scheme, and in order to obtain the transition We assume now that, due to an external harmonic varia-
probability between metastable and stable states, it is necetion of the reflectivity at the boundaries, the paramé&téas
sary to find the conditional probability for the random field an oscillatory partk(t) =k* + skcost+¢). For the space
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extended problem, we need to evaluate the space-time corre- 00 01 02 03 04 05 06
lation function {¢(y,t)#(y’,t')), which is given by the £ I A A T '
double functional integral r

Gty 09ty )= [ 2191 [ PLo 1600

X¢'(y' . t)PLo(y.)]d"(y'.t'),¢]
X Pas(¢(th):¢)a (9)

where P, J(é(y,t),¢) indicates the asymptotic form of the
probability distribution of ¢(y,t) (depending ‘“parametri-
cally” on ¢), while P[¢(y,t)|¢’(y',t"),¢] is the condi- . ‘ . . .
tional probability [analogous to Eq(6)]. For t'=t+T, t 00 0.1 02 03 04 05 06
large and T—«, we can assume the asymptotic result y(au)

PLo(y.t)[¢'(y'.t'),0]~Pas(¢'(y',t").¢) [3]. Hence
FIG. 3. Curves ofR(x) as a function of the noise parameter

(DY, )" (Y U ) 1oe~(P(Y 1), P)ald (Y1), @) as, [see Eq(17)], for different values of«(=nm/2y ). We have nor-

(100 malized with the component d¥(k) corresponding toc=0. We

. adoptedk=k* and the same parameter values as in Fig(al.
with k=0 (n=0), (b) k=0.785 (1=1), (¢) k=157 (1=2).

((ﬁ(y,t),@)aS:f D[ p]d(y,1)PL(b(y,t),0). (11) space in order to obtain the generalized susceptibility
S(«,w). Due to the decoupling of the correlation function
In the present case, it is necessary to make a double Fouri8?oWn in Eq.(10), the generalized susceptibility also de-
transform of the correlation function in order to obtain, in- COUPles adopting the form
stead of the power spectrum, tigeneralized susceptibilit
e Clia) e e P be pibility S(k,0)=F(1)S(w), (16)

_ where F(k)~ [dy expixy)¢,(y)?, and S(w) is the usual
S(K,(U)ZJ dyj dtelv—el(g(y,t),0)2. (120  power spectrum function, as given in E&.7) of Ref. [2].
The result for the SNRR, that now becomes a function of

To evaluate it we will use a simplified point of view, based ¥ 'S
on the ideas of Ref[2]. In particular, due to the bistable )
character of our problem potential, we can almost straight- R(k)~F()(ANy™ ) exp( =247 K 1), (17)
forwardly apply the results of their Sec. V. To proceed with
the calculation of the correlation function we need to evalu
ate the transition probabilities

where \ is the previously indicated linear eigenvalue, and
A~ dA FIdk| 5K.
This configures the main result of the present work. Equa-
» AF[$,K] tion (17) is analogous to what has been obtained in zero-
W.=1,4 p{— —] (13 dimensional systems, but now including a prefactor with a
Y dependence on the wavelength In Fig. 3 we show the
where dependence of the present SNR onfor typical values of
the parameteréssame as in Figs. 1 and.2n fact, as we are

IAF ¢,K] considering a bounded system, we have a discrete Fourier
AH¢,k]:AH¢'k*]+5k(T) cogQt+ o). spectra.

k=k* (14) From Eq.(1), it is clear that we have scaled the length
with the diffusion constant. This diffusion constant is a mea-

This yields for the transition probabilities sure of the coupling between different spatial units, hence, a
. variation in our system length will imply an inverse variation

1 _ 0 of the coupling constant. In the present case, a numerical

W= E( Fo+d@ 7cos{Qt+ )], (15 analysis indicates that such a variation does not show a sig-

nificant variation in the SNR of the system. The present re-

where ap~exp(~AF[¢,k*]) and a;~aq(dAF/dk|).  sult does not agree with other recent results, based on nu-
With this identification, and using the fact that merical simulations, indicating an enhancement of the

&%(y) = ¢p=0, in the equation analogous to Eg.10 (in response of a stochastic resonator by its coupling into a chain
Ref.[2]), only one term is left. Hence, after averaging overof identical resonatorg3]. However, this is not a surprise as
the random phase, we end with an expression similar to the situation described here differs from the one discussed in
Eq. (3.12 (also in Ref.[2]) but where we shall replace Ref. [8]. Here we have that the coupling to the external
c?= gy (y)>. modulated field is present, effectively, only at the bound-

To complete the calculation we need to perform the Fouaries, while the situation described in Rig§] corresponds to
rier transform of the correlation function in time as well as in the modulation of every one of the coupled nonlinear oscil-
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lators. In this regard, a preliminary analysis of a situationthe infinite-dimensional character of the whole function
similar to the one described in Rd8] within the present space, and has been used to strongly simplify the analysis of
model[that is, keeping constant and introducing the modu- our system.

lation directly into Egs(1) or (5), for instance, by modula-  We expect that the present form of analysis could be ex-
tion of the threshold parametes.] shows evidence of an tended to activator-inhibitor or multicomponent systems
enhancement of the SNR due to couplj@d]. However this  such as those studied in Rg22]. The possible applications

is not conclusive as we need to make a more careful analysia chemical[23] and biological system§5,24,25, and its

of the problem, in order to reach a more complete picture ofelation with spatiotemporal synchronization problems
the space dependent phenomena. As indicated by the pres¢ps,g|, are very well known. It is worth remembering that
rough calculatior(see Fig. 3 we expect different strengths activator-inhibitor systems have a tight connection with
in the stochastic resonance phenomena for different waveBonhoffer—van der Pol-like nonlinear spatially coupled os-
lengths, as the dependence of the generalized susceptibilityllators. All these points will be the subject of further work.
S(k,w) on k and w—that will not necessarily factorize—

will also imply thatR ~R(k,w).

An important conclusion to be drawn from the identifica- The author thanks D. H. Zanette, F. Castelpoggi, R. Deza,
tion of the Lyapunov functional with a “thermodynamical- and G. Iz for useful discussions and V. Grunfeld for a
like potential” is that near the poirlt* at which two states critical reading of the manuscript. Partial support from
have the same stability, the problem seems to admit a on€&SONICET, Argentina, through Grant No. PID 3366/92 is
dimensional analo§17,18. This feature is in contrast with also acknowledged.
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