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Crossover from directed percolation to compact directed percolation

J. F. F. Mende$* R. Dickman®" and H. Herrmani;**
1Center for Polymer Studies and Physics Department, Boston University, Boston, Massachusetts 02215
and Department of Physics, University of Porto, Rua do Campo Alegre 687, 4150 Porto, Portugal
2Department of Physics and Astonomy, Herbert H. Lehman College, City University of New York, Bronx, New York 10468
3P.M.M.H. (U.R.A. 857), E.S.P.C.I. Paris, 10 rue Vauquelin, 73231 Paris, France
#ICA 1, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
(Received 28 May 1996

We study critical spreading in a surface-modified directed percolation model in which the left- and right-
most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an
edge, the critical exponents switch from the compact directed percolation class to ordinary directed percolation.
We conclude that the nonuniversality observed in models with multiple absorbing configurations cannot be
explained as a simple surface effd&1063-651X%96)51609-0

PACS numbegs): 05.70.Jk, 05.50:q, 64.60—i, 02.50~r

Recently, considerable effort has been devoted to undeconnecting the two classes, our study shows that the nonuni-
standing phase transitions in nonequilibrium systems. Manyersality observed in systems with multiple absorbing states
studies of models with a continuous transition taisique  is not simply a surface effect.
absorbing state have established that such transitions belong In bond directed percolation on the square lattice, bonds
generically to the class of directed percolati@®P) [1], as  connect each sitex(t) with (x,t—1) and k—1t—1). Each
predicted by Janssé], Grassbergdi3], and(for multicom- ~ bond is “wet” with probability p; with probability 1-p a
ponent modelsby Grinsteinet al.[4]. DP has been of great bond is “dry.” Suppose the origin is the only wet site in the
interest since its introduction by Broadbent and Hammerslej2yer t=0. One constructs the clust€p connected to the
[5], and is relevant to a vast range of models in biology,0rigin using the rule thatx;t) e C, if it is connected, by a
chemistry and physids,7]. Examples are catalytic reactions Wet bond, to &,t—1) or (x—1t—1)eC,. For p<p. such
on surfaced8,4], epidemics9], transport in porous media Clusters are finite with probability 1; fop>p, there is a
[10], chemical reactiong11,12, self-organized criticality "°N#€r0 probability of a cluster growing indefinitely. Th?
[13,14, electric current in a diluted diode netwofk5], percolatlon thres'holq;C', marks a continuous phage transi-
Reggeon field theoryl6—18, and, more recently, in damage t!on. The model is _readlly generalized by introducing condi-

; i . tional probabilies  P(1]1,00=P(1|0,1)=p; and
spreading[19], and models of growing surfaces with a ! . h .
roughening transitiofi20]. Ef( %)th 1)I)p;rf13r§ Itel(tX,t)l)to[%EE i,]l CE)Et(())_—1 z) grll\;?ll} r;Tle]S_;t_f;l]tg )

Unlike systems with a unique absorbing Configuration'resulyting Domany—KiereI rﬁodel e;<hibits, a line gf critical
understanding of models with multiple absorbing conﬁgura-points in the DP clas§26]. The end point of this line
tions[21-29 is far from complete. In such models the criti- ’

. (p1=1/2,p,=1), describes a transition outside the DP class;
cal exponents that govern spreading from a seed vary cofi ‘corresponds instead t@ompact directed percolation

tinuously with the particle density in the initial configuration, (cpp) [27]. The essential difference between DP and CDP is
and obey a generalized hyperscaling relaf2#l. The expo-  that in the latter, transitions from wet to dry cannot occur
nents assume the USUaI DP Values Only fOI’ |n|t|a| Conﬁgurawithin a String of 1’5; the evolution of a String of 1's is
tions having the “natural” particle density — that of absorb- governed by a pair of random walks at its ends.

ing configurations generated by the system, running at the

critical point. Nonuniversality in these models remains a

puzzle. In searching for an explanation, and remarking that o Space

the exponents depend on the environment into which the
population spreads, one is led to investigate whether nonuni-
versality is also produced by modifying the process at the
surface of the active region. In this work we consider
surface-modified DP in one spatial dimension, and find it
does not show continuously variable exponents, but rather a
crossover between two different universality classes, com-
pact and standard DP. Besides providing a simple example

t=1

t=2
t=3
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*Electronic address:hans@pmmh.espci.fr FIG. 1. Thecentered square latticand a growing cluster.
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1.0 g . . : : TABLE I. Values of the critical exponents and threshold perco-
AW lation for different values op’. The values for DP were taken from
08 | ‘\\ | Refs.[4],[31], [32], and[33]. The numbers in parentheses represent
’ CDP™~_ the uncertainty in the last dig#.
0.6 | \\\ ] p’ Pe 5 7 22 B’
a DP DP 0.15964) 0.3142) 0.63214) 0.27674)
04 | ] CDP 112 0 1 1
0.0 1.0
0.2 VAC 1 0.10 0.90083) 0.4957) 0.01614) 0.5028)
0.25 0.751(4) 0.4965) 0.01513) 0.5057) 0.974)
0.0 . . . . 0.30 0.703%) 0.4988) 0.02215 0.50913)
0o 02 04 06 08 10 0.35 0.6578) 0.4934) 0.01813 0.50511) 0.958)
P 045 0.579%5) 0.4977) 0.01316) 0.5046)

0.50 0.5501) 0.4995) 0.01113) 0.5068)

FIG. 2. Phase diagram ip-p’ plane. The two regime§CDP Pe 0.5387%1) 0.1591) 0.3103) 0.6322) 0.282)
and DB are shown.

In the present work we study directed percolation on theage mean square distance of spreading from the origin,
centered square latticein which (x,t) is connected to R2(t). At criticality, these quantities follow power laws in
(x=1t—=1), (x,t—1), and &+1t—1) by bonds that, as the long-time limit, e.g.,P(t)~t~%, and similarly for the
before, are wet with probabilitp (see Fig. 1 Earlier studies gther quantities. In the subcritical phagp<p.(p')] the
of this model[28,29 yielded a percolation threshold of survival probability decays exponentially, while in the super-
p.=0.5387:0.0003. We now modify the probabilities for critical phase[p>p.(p’)], it approache,.=lim, ...P(t)
introducing wet sites at the surface of the active region. Sup= 0, theultimate survival probability If we allow the expo-
pose kg,t) is the rightmost wet site in laydar We set the  npents to depend on the surface probability, the simplest

probability for (xz+1t+1) to be wet afp’ rather thanp,  generalization of the usual scaling hypothddig] is
and similarly for ¢, —1t+1), if (x_,t) is the leftmost wet

site in layert. In Fig. 1, for example, the probabilities to P(t)~t 2P (AP (1
introduce wet sites a#\;, A,, and A;, arep, p, andp’,
respectively.(Similarly, we have probabilitiep’, p, andp
for introducing wet sites aB,, B,, andB3.)

We usedtime-dependergimulations to study the critical — N Un(p')
behavior. The method involves starting with a single wet site R?(t)~t*PIQ(AtYIPY) )
att=0 and following the spread of wet sites in a large set of ) N
independent realizations. We measured the survival probabiWhereA=[p—pc(p')| measures the distance to the critical
ity P(t) (the probability that there is at least one wet site atP0int andw|(p’) is the critical exponent associated with the
timet), the average number of wet sitet), and the aver- ~correlation length in the time directior~A~"I(")). As-

suming that the scaling functioms, 0, and() are nonsingu-

lar at the critical point, it follows thatP(t), n(t), and
* ] R?(t) follow pure power laws as—o. A log-log plot of
P, n, or R? as a function of time should yield a straight line
atp=p.(p’), permitting one to determing,(p") rather pre-
cisely. The exponentd, », andz are given by the asymp-
] totic slopes of the corresponding plots. In addition, the ex-
ponentB’ controlling the approach to the critical point of the
survival probability, P..(p)~[p—p<(p’) 1% ) [30], may
also depend omp’. Our results(see Fig. 2 show that the
1 percolation thresholg. increases with decreasing’ for
p’<pEP=O.538 75. This decrease pi means that the per-
colating cone becomes narrow, and a larger valug o
needed for the cluster to survive.
15 ‘ ‘ . P ! Table | shows how the exponents vary with The mean

3.0 2.0 -1.0 0.0 number of wet sites in surviving trials N(t)=n(t)/P(t),

log(p-p,) and the fractal dimensiod; of aggregates surviving to time
: t is defined througiN(t) ~R%, yieldingd;=2(8+ 7)/z. For

FIG. 3. The ultimate survival probabilityp.. as a function of DP, d¢=0.752. In the present studg;~1 for p’<pc",
p—p(p') in a log-log plot. The inset is a plot d?,. vs p. These ~ Which means that for this range qi’ the clusters are
results were obtained fop’=0.25 and the slope of the line is no longer fractal butcompact From Fig. 3 we see that
B=1. the exponent controlling the survival probability

n_(t)~t”(p')®(At1’”H<p')) 2

0.0

log Py,

-1.0 |
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FIG. 5. Typical evolutions from a single wet site for
p=p’'=0.45, p=p’'=0.5387, andp=0.9, p’=0.1 respectively.
Time increases downward.
0.47
model exhibits a crossover from directed percolation to com-
pact directed percolation as the surface growth rpte,is
varied (See Fig. 5. We can understand this by examining a
0.05 | surface-modified contact proce$€P) [9]. The CP(in d
' space dimensionss a sequentially updated version of DP
e (in d+1 dimensions In the CP, each lattice site is either
vacant or occupied by a particle. Particles die at unit rate,
0.00 - and give birth at raten. (In a birth event a new particle

appears at one of the sites neighboring the parent, if that site
is vacant The CP exhibits a phase transition in the DP class,
as\ is increased through. .
:8.22 Now consider the one-dimensional CP, wih and x,

' denoting the positions of the rightmost and leftmost particles
at any instant, and modify the rules so that the rate for a

-0.46 ] particle to appear atg+1, or atx, —1, is \'/2. If we let
L=(xg—X.), the mean being taken over all surviving trials
-0.48 | ; at time t, starting from a single particle, then
2 dL/dt=\'—2g, whereg is the mean distance from to the
0.50 ] next occupied sitéand similarly at the right edgelf we set

N =N\, there is a critical point ah., in which case the
interior density approaches zerotas. SinceL ~t?? at the

082 ¢ critical point, dL/dt—0 ast—o as well. (For A<,
dL/dt<0, and vice versa.Hence, forA’=\=\., g must
034 000 0.0040 0.0080 tend to\ /2 at long times. The ultimate survival probability

11 P.. can only be nonzero iflL/dt>0 at any finite time. On

the other handg is a decreasing function of and\’. It
follows that if \'<A=\., the process must die. We can
compensate the reduced surface birth rate by increasing
and should again have survival fg{\,\’)<\'/2. Having
forcedA>\., surviving trials are compact, i.e., have a non-
zero particle density as—. The region between, and

Xr is not simply a string of occupied sites, as it would be in
CDP, but the scaling behavior should nonetheless be charac-

' p— ’ DP : _
(f —hﬁ—0.2767|_k_ 0'3024)' Forpl_ <Pc I’ we fmd/ﬁ/—((s), SO teristic of compact growth. When the surface growth rate
that the generalized hyperscaling relation+Ha/5") 5+ » exceedshe bulk critical value, we expect a continuo@P-

=dz/2[24], becomes>+ 5=d2/2, which describes compact "4 ansition at\=\.. For \’>\., the advance of the

growth [34]. The data are indeed consistent with compact d b h d hort ti but th
hyperscaling(For the point nearegi;, P.. is obtained from edges may be enhanced at short times, but the process cannot

data for t>15000, averaged over iGndependent runs. survive for A<\, because the interior approaches the

Figure 4 shows the local slopes as a function of inverse tim&acuum. The density in surviving clusters is localized at the
for p’=0.25. Similar curves were obtained for the other val-€d9€S, SO the number of particles remal), and the
ues ofp’. (These results reflect averages ove?-1®x 10° process dies with probat_nlllty 1.To summarize, our argument
independent trials, running to a maximum time of 2000 toShOWs why surface-modified DP exhibits compact growth for
6000) We also checked whether the scaling relations, EqsP=Pc(P’) when p’<pZ®, and why there is a DP-like
(1)—(3), are obeyed, by varyingj to optimize the data col- transition atpg" for p’=pc*, As in CDP, the transition is
lapse. Forp’<pS*, we observe scaling for =2, as ex- first orderfor p’<pg".

pected for CDP. Our numerical results indicate that the Clearly, the surface probability’ does not play the same

FIG. 4. The local slopes-6(t) (upped, »(t) (middle), and
z(t)/2 (bottom), for the casg’ =0.25. Each picture has five curves
corresponding from bottom to togp=0.7506, 0.7508, 0.7510,
0.7514, and 0.7516.

(B'=0.97£0.04) is very different from that of DP
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role as the initial density in models with multiple absorbing multiple absorbing configurations involves longemoryef-
configurations. Conversely, the continuously variable expofects[35].

nents observed in the latter class of models cannot be ex- _
plained as a simple surface effect. Finally, it is interesting to  J.F.F.M. gratefully acknowledges support from Furadac
note that while the surface modification explored in theLuso Americana para o Desenvolvimento and PRAXIS XXI/
present work represents a nonlocglatial interaction &z =~ BPD/6084/95. We thank S. Redner and J. A. M. Duarte for
and x, are defined globally the dynamics of models with helpful discussions.

[1] Various articles about directed percolation can be found in[17] R. C. Brower, M. A. Furman, and M. Moshe, Phys. L&6B,

Percolation Structures and Processeslited by G. Deutsher, 313(1978.
R. Zallen, and J. Adler, Annals of the Israel Physical Society,[18] P. Grassberger and K. Sundemeyer, Phys. L&IB, 220
Vol. 5 (Hilger, Bristol, 1983. (1978.
[2] H. K. Janssen, Z. Phys. B2, 151(1981). [19] P. Grassberger, J. Stat. Phy$, 13 (1995.
[3] P. Grassberger, Z. Phys. 4, 365 (1982. [20] U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Report
[4] G. Grinstein, Z-W. Lai, and D. A. Browne, Phys. Rev.48, No. cond mat 9512069.
4820(1989. [21] E. V. Albano, J. Phys. /25, 2557 (1992.

[5] S. R. Broadbent and J. M. Hammersley, Proc. Cambridge phil22] D. ben-Avraham and J. Her, J. Stat. Physs5, 839 (1992.
los. Soc.53, 629 (1957. [23] I. Jensen, Phys. Rev. Left0, 1465(1993; I. Jensen and R.

S . . 3 - . ) Dickman, Phys. Rev. B8, 1710(1993.
[6] G. .’\.“C?"S and . Prlgoglne,Sng Organization i Non [24] J. F. F. Mendes, R. Dickman, M. Henkel, and M. C. Marques,
Equilibrium SysteméWiley-Interscience, New York, 1977 J. Phys. A27. 3019(1994)
[7] H. Haken,Synergetic{Springer-Verlag, New York, 1983 - YS. ' :

: i [25] R. Dickman, Phys. Rev. B3, 2223(1996.
[8] R. M. Ziff, E. Gullari, and Y. Barshad, Phys. Rev. Le&6, [26] E. Domany and W. Kinzel, Phys. Rev. Lei3, 311 (1984.

2553(1986. [27] J. W. Essam, J. Phys. 22, 4927 (1989.

[9] T. E. Harris, Ann. Prob2, 969 (1974. [28] Lei-Han Tanget al, Phys. Rev. A45, R8309(1992.

[10] K. De’Bell and J. W. Essam, J. Phys. ¥6, 3145(1983. [29] J. A. M. Duarteet al,, PhysicaA 189, 43 (1993.

[11] F. Schlogl, Z. Phys252, 147 (1972. [30] We denote this bys’ instead ofg, reserving the latter to

[12] P. Grassberger and A. de La Torre, Ann. PHij&Y.) 122, 373 denote the exponent controlling the density wét sites:
(1979. p~|p—pc|?. Both exponents appear in the generalized hyper-

[13] S. P. Obukov, Phys. Rev. Le#5, 1395(1990. scaling relation.

[14] M. Paczuski, S. Maslov, and P. Bak, Europhys. L&, 97 [31] J. L. Cardy and R. L. Sugar, J. Phys.1&, L423(1980.
(1994. [32] I. Jensen and R. Dickman, J. Stat. Phy%. 89 (1993.

[15] S. Redner and A. Brown, J. Phys. 14, L285 (1981). [33] R. J. Baxter and A. J. Guttmann, J. Phys2A 3193(1988.

[16] V. N. Gribov, Zh. Esp. Teor. Fiz53, 654(1967 [Sov. Phys.  [34] R. Dickman and A. Y. Tretyakov, Phys. Rev. ¥, 3218
JETP 26, 414 (1968]; V. N. Gribov and A. A. Migdal, Zh. (1995.

Eksp. Teor. Fiz.55, 1498 (1968 [Sov. Phys. JETR8, 784  [35] M. A. Munoz, G. Grinstein, R. Dickman, and R. Livi, Phys.
(1969]. Rev. Lett.76, 451(996).



