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Relaxation in interacting arrays of oscillators
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We analyze a system of interacting arrays of globally coupled nonlinear oscillators. The relaxation in the
interacting arrays with different interaction strengths is compared to that in an array not subject to interaction
with others. The relaxation of the latter is found to be an exponential function of time. On the other hand the
relaxation of the interacting arrays is slowed down and departs from an exponential of time. There exists
a crossover time,, before which relaxation of the interacting arrays is still an exponential function. However,
beyond t, relaxation is no longer exponential but well approximated by a stretched exponential
exfd —(t/7)#]. The fractional exponeng decreases further from unity with increasing interaction strength. The
result bears strong similarity to the basic features suggested by the coupling model and seen experimentally by
neutron scattering for relaxation in densely packed interacting molecules in glass-forming liquids.
[S1063-651%96)51109-9

PACS numbd(s): 05.45+b, 82.20.Rp, 31.70.Hq, 05.46}

I. INTRODUCTION fori,j=1,... N<1, which is closely related to the equa-
tions of motion studied by Strogatz, Mirollo, and Matthews
Recent result§1] have shown that studies of nonlinear [9]. The problem was originally motivated by the study of
dynamical systems can enhance the understanding of sortiee biological phenomenon of mutual synchronizat[aih
fundamental problems in physics, such as stability of theWe further simplify the problem to a map by picking appro-
solar system, phase transitions, turbulence, and the ergodiriate time steps and rescaling the time. The system becomes
problems in statistical mechanics. One common characterist map,
tic of such systems is the irreversibility of the dynamics due

to sensitive dependence on initial conditions. Lately in the N
community of research in chaos, there is considerable inter- o=@+ NZ‘ sin(@;— ¢j) . (1)
est in nonlinearity coupled oscillators. Various models of a =1

globally coupled oscillator arrah2—6] have been studied. It
was conjectured and later provéthough with conditions  Like Strogatz, Mirollo, and Matthews we are interested in
that for coupling strength below a certain threshold, suchhe decay of the phase coherencewhich is the absolute
systems would relax to an incoherent stfife8]. Recently, value of the order parametarexp(y), defined by
the relaxation process in such an array is found to be expo-
nentially fast[9]. . 1 '
It would be of interest to study the relaxation of a more r=|re'|= NZ e'?i
complex system, consisting of a number of such arrays !
coupled by nonlinear interactions. Such a study may be ben-
eficial to the understanding of relaxation processes in glas3¥e find that our array of coupled oscillators decays to an
forming viscous liquids, polymers, and ionic conductors, toincoherence state, i.et=0 for K<0. Following the argu-
name a few. These problems in condensed matter physicglent of Strogatz, Mirollo, and Matthew$9)], the relaxation
physical chemistry, and materials science involve irreversis exponentia[11]. Numerical calculation shows that the de-
ible processes in densely packed interacting systgiis  cay ofr is almost exactly an exponential function of time at
The interactions in these systems come from nonlinear pdeast up to the longest time we have carried out so far and
tentials such as that of Lennard-Jones in polymers and d9.9% of the initial value of has decayedsee Fig. 1 This
Coulomb in vitreous fast ionic conductors. What we learnresembles th¢Debye relaxation of an isolated molecule in
from the solution of this problem should be promising to dilute solution which is also exponential.
shed some light on the nonlinearity coupled many-body
problem.

. 2

Ill. SYSTEMS OF INTERACTING ARRAYS

Il. GLOBALLY COUPLED OSCILLATORS Now if we allow a number of these arrays to interact to

) o ) obtain an even more complex system, the interesting prob-
We consider a simplified version of an array of coupledjen is to find out what modification these interactions will

oscillators studied by Strogatz, Mirollo, and Matthegs: have on the relationship offor each array towards incoher-

N ence. The interactions between the arraysl, ... M can
E (P:E 2 Sin( @ — @1 be chosen in several ways. One choice we have made is
dt ™ N1 RS indicated by the new maps,
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FIG. 1. Decay of phase coherencét), calculated numerically
M =3, K=-0.03 and interaction strengt’/K =0 (closed circlg, 1.0
0.6 (square, 0.8 (triangle, 1.0 (open circle, and 1.2(diamond. /," A %6 08 10 12
The calculated (t) for K'/K=0, corresponding to a single array v | N . . K/K .
i i i - -1.5
v_wth dynamics Qescrlbed by E(L), conf_orms_ well to thg exponen 0.0 05 1.0 15 50 25 3.0
tial decay. The inset shows the relaxation timegopen circlesand log ¢
7 (closed circley as functions of interaction strength.
N FIG. 2. Lod—Inr(t)] vs logt, calculated numerically for
, K . K=-0.03, M=3, and interaction strengtk’/K=0, 0.6, 0.8, and
Pig= Piat NJZl SIN(@jo— Pia)

1.0. The dashed lines are the exponential fits and the solid are the
stretched exponential fits. Curves f&'/K=0, 0.6, and 0.8 are
shifted vertically up in multiples of 0.5 to avoid overlapping on the
graph. The crossover ting is indicated by a vertical arrow. The
calculatedr (t) for other interaction strengths conforms well to the

) _ i exp(—t/r) for t<t. and the exp—(t/7*)?] for t>t.. The inset
The strength of the interactions between the arrays is Me&nows the Kohlrausch exponeft as a function of interaction

sured byK'/K. The interacting arrays mimic an assembly of syrength. The exponegtfor K'/K=1.2 case is also included in the
molecules densely packed together.

K MoN
_Wﬁzl 121 SiN(@j = @ia)- 3

inset.

IV. NUMERICAL RESULTS: RELAXATION

lecular systems. Continuity of the two pieces, exp/ )
OF PHASE COHERENCE

and exp— (t/7*)#] at t, guarantees the validity of the rela-
, ) . tion between” and r, given by

We have iterated the maps to obtain the evolutions of the

coupled array system numerically. From the result we calcu- ™ =[t;"7]" (4)
late the decay of the phase coherender each array. Figure

1 shows that the decay ofis slowed down by the interac- \which is the same as

tions between arrays. By inspectigand as shown in the

insed it is clear that the degree of slowing down varies di- *[(1—n)wl7p] M1~ (5)
rectly as the interaction strengkY/K, which has been cho-

sen to have the values of 0.6, 0.8, 1.0, and 1.2. In all theseritten down in the original version of the coupling model,
calculations,M =3 andN is fixed at the value of 32. The provided the identifications

results shown in Fig. 1 are calculated #dr=3. The results

are consistent with an initial exponential decay tc=(1—n)1’”wc’l (6)
exp(—t/7y), and crossover at sontg to a stretched expo-

nential decay, ejp-(t/7*)#], as indicated by the curves andB=1—n are made. The reciprocal of the in Eq.(5) is
drawn in Fig. 2. The Kohlrausch expondi®] 3 is actually the time at which the relaxation rate defined by
the slope of the solid line fits in Fig. 2. Fitting the calculated — (1/C(t))dC(t)/dt are equal for the two pieces of
results this way we find that the relaxation tirfeincreases correlation functions, C(t)=exp(-t/7) for t<t. and
and the exponeng decreases with the interaction strength,exg —(t/7*)1™"] for t<t,; t. is the time at which they are
K'/K, between the arraysee insets of Fig. 1 and.2ZThese  continuous. Figure 2 shows thiatdecreases with increasing
behaviors are in accord with the results of the couplinginterarray interaction strength. Figure 2 also shows that
model[13] for relaxation of densely packed interacting mo- (indicated by arrows decreases with increasing interarray
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tonian systems that bear closer resemblance to polymers,

25 T T T T T p . . . . . .
small molecule glass-forming liquids, and vitreous ionic con-
Interaction strength K'/K = 1 ductors.

V. CONCLUSION AND DISCUSSION

The effect of interactions betweew! arrays of coupled
nonlinear oscillators has been studied. It is found that for
sufficiently larget, r~exp(—t/7) for M =1, indicating that
the coupled array has exponential relaxation. For other
M >1 with nonzero interaction strength, it is found that there
exists a timé, such that is still an exponential function of
time, expEt/7), for t<t, butr~exg—(t/7%)"] for t>t,.
Thus the relaxation of the interacting arrays proceeds with a
stretched exponential time dependencetfat. andt* > 7.
Thus the interaction between the arrays is observed to slow
down the relaxation of single arrays. As expected, the frac-
tional exponeniB decreases further from unity with increas-
ing nonlinearity or larger interaction strengths.

In the study of relaxation in real systems in physics,
chemistry, and materials science, it is found that a system
without interactionge.g., an isolated molecule in dilute so-
lution) usually relaxes exponentially. However, when such

log(-In(r(?))

1\2/| 4 systems are densely packed and interacting with each other,
20 ! . L | . the relaxation proceeds differently and exhibits many fasci-
0.0 0.5 1.0 1.5 2.0 25 3.0 nating properties. A coupling model has been very successful
log ¢ in explaining these propertig4.3]. This model is based on

the hypothesis that an interacting system relaxes initially ex-
ponentially until a temperature-independent microscopic
for M=1, 2, and 3 are shifted similarly to curves in Fig. 2. The time, tc, but relaxes strgtched-exponentlally afterwards with
calculatedr (t) for M =1, actually the same as fé&'/K =0 in Fig. continuity of the correlation function at the time of crossover

2, corresponding to a single array with dynamics described by Eq[,14115_ﬂ- A recent neutron SC{:ltterlng mgasurement ona poly-
(1), conforms well to the exponential decay. The calculaggyifor ~ Mer has shown direct experimental evidence for this hypoth-
other M’s conforms well to the exp-t/7*) for t<t, and the €SiS[16]. In our present work, the addition of interarray in-

exf—(t/7*)P] for t>t.. The inset showss as a function oM. teractions introduces additional nonlinearity which has

similar effects on the relaxation towards equilibrium as

interaction strength. Thus the relaxation of the nonIinearit)/“""lny'blOdy Interactions havhe on rela>'<at:on mldensgly packed
coupled arrays of coupled nonlinear oscillators has verifiednolécular systems. Since the numerical result obtained bears

the basic features of the coupling model. The degree of slowSrong similarity to the basic features suggested by the cou-
ing down in relaxation due to the interarray interaction de-P/iNg model[14] and seen in neutron scattering experiment

pends also orM, increasing withM but leveling off for _[16]' thg interac.ting array mpdel provides a useful first .step
M>4. Figure 3 shows the results for different's. Note I applying nonlinear dynamical models to the study of irre-
thatM =1 is the case without any interaction versible processes of real physical systems in physics, chem-

The good correspondence between relaxation of simplé?’try’ and materials science.
prototype chaotic systems and the key features of the cou-
pling model shows that a theory of the coupling model is in
the making. The encouraging results obtained will provide This work is supported by ONR Contract No.
impetus for future study of more complex chaotic Hamil- NOO01495WX20203.

FIG. 3. Lod—Inr(t)] vs log, calculated numerically for
K=-0.03, interaction strengtk’/K=1, and differenM’s. Curves
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