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We analyze a system of interacting arrays of globally coupled nonlinear oscillators. The relaxation in the
interacting arrays with different interaction strengths is compared to that in an array not subject to interaction
with others. The relaxation of the latter is found to be an exponential function of time. On the other hand the
relaxation of the interacting arrays is slowed down and departs from an exponential of time. There exists
a crossover time,tc , before which relaxation of the interacting arrays is still an exponential function. However,
beyond tc relaxation is no longer exponential but well approximated by a stretched exponential
exp@2(t/t)b]. The fractional exponentb decreases further from unity with increasing interaction strength. The
result bears strong similarity to the basic features suggested by the coupling model and seen experimentally by
neutron scattering for relaxation in densely packed interacting molecules in glass-forming liquids.
@S1063-651X~96!51109-8#
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I. INTRODUCTION

Recent results@1# have shown that studies of nonlinear
dynamical systems can enhance the understanding of some
fundamental problems in physics, such as stability of the
solar system, phase transitions, turbulence, and the ergodic
problems in statistical mechanics. One common characteris-
tic of such systems is the irreversibility of the dynamics due
to sensitive dependence on initial conditions. Lately in the
community of research in chaos, there is considerable inter-
est in nonlinearity coupled oscillators. Various models of a
globally coupled oscillator array@2–6# have been studied. It
was conjectured and later proved~though with conditions!
that for coupling strength below a certain threshold, such
systems would relax to an incoherent state@7,8#. Recently,
the relaxation process in such an array is found to be expo-
nentially fast@9#.

It would be of interest to study the relaxation of a more
complex system, consisting of a number of such arrays
coupled by nonlinear interactions. Such a study may be ben-
eficial to the understanding of relaxation processes in glass-
forming viscous liquids, polymers, and ionic conductors, to
name a few. These problems in condensed matter physics,
physical chemistry, and materials science involve irrevers-
ible processes in densely packed interacting systems@10#.
The interactions in these systems come from nonlinear po-
tentials such as that of Lennard-Jones in polymers and of
Coulomb in vitreous fast ionic conductors. What we learn
from the solution of this problem should be promising to
shed some light on the nonlinearity coupled many-body
problem.

II. GLOBALLY COUPLED OSCILLATORS

We consider a simplified version of an array of coupled
oscillators studied by Strogatz, Mirollo, and Matthews@9#:
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for i , j51, . . . ,N!1, which is closely related to the equa-
tions of motion studied by Strogatz, Mirollo, and Matthews
@9#. The problem was originally motivated by the study of
the biological phenomenon of mutual synchronization@7#.
We further simplify the problem to a map by picking appro-
priate time steps and rescaling the time. The system becomes
a map,
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Like Strogatz, Mirollo, and Matthews we are interested in
the decay of the phase coherence,r , which is the absolute
value of the order parameter,r exp(ic), defined by
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We find that our array of coupled oscillators decays to an
incoherence state, i.e.,r50 for K,0. Following the argu-
ment of Strogatz, Mirollo, and Matthews@9#, the relaxation
is exponential@11#. Numerical calculation shows that the de-
cay of r is almost exactly an exponential function of time at
least up to the longest time we have carried out so far and
99.9% of the initial value ofr has decayed~see Fig. 1!. This
resembles the~Debye! relaxation of an isolated molecule in
dilute solution which is also exponential.

III. SYSTEMS OF INTERACTING ARRAYS

Now if we allow a number of these arrays to interact to
obtain an even more complex system, the interesting prob-
lem is to find out what modification these interactions will
have on the relationship ofr for each array towards incoher-
ence. The interactions between the arraysa51, . . . ,M can
be chosen in several ways. One choice we have made is
indicated by the new maps,
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The strength of the interactions between the arrays is mea-
sured byK8/K. The interacting arrays mimic an assembly of
molecules densely packed together.

IV. NUMERICAL RESULTS: RELAXATION
OF PHASE COHERENCE

We have iterated the maps to obtain the evolutions of the
coupled array system numerically. From the result we calcu-
late the decay of the phase coherencer for each array. Figure
1 shows that the decay ofr is slowed down by the interac-
tions between arrays. By inspection~and as shown in the
inset! it is clear that the degree of slowing down varies di-
rectly as the interaction strengthK8/K, which has been cho-
sen to have the values of 0.6, 0.8, 1.0, and 1.2. In all these
calculations,M53 andN is fixed at the value of 32. The
results shown in Fig. 1 are calculated forM53. The results
are consistent with an initial exponential decay
exp(2t/t0), and crossover at sometc to a stretched expo-
nential decay, exp@2(t/t* )b], as indicated by the curves
drawn in Fig. 2. The Kohlrausch exponent@12# b is actually
the slope of the solid line fits in Fig. 2. Fitting the calculated
results this way we find that the relaxation timet* increases
and the exponentb decreases with the interaction strength,
K8/K, between the arrays~see insets of Fig. 1 and 2!. These
behaviors are in accord with the results of the coupling
model @13# for relaxation of densely packed interacting mo-

lecular systems. Continuity of the two pieces, exp~2t/t0)
and exp@2(t/t* )b] at tc guarantees the validity of the rela-
tion betweent* andt0 given by

t*5@ tc
2nt0#

b ~4!

which is the same as

t* @~12n!vc
nt0#

1/~12n! ~5!

written down in the original version of the coupling model,
provided the identifications

tc5~12n!1/nvc
21 ~6!

andb512n are made. The reciprocal of thevc in Eq. ~5! is
the time at which the relaxation rate defined by
2„1/C(t)…dC(t)/dt are equal for the two pieces of
correlation functions, C(t)5exp(2t/t0) for t,tc and
exp@2(t/t* )12n# for t,tc ; tc is the time at which they are
continuous. Figure 2 shows thattc decreases with increasing
interarray interaction strength. Figure 2 also shows thattc
~indicated by arrows! decreases with increasing interarray

FIG. 1. Decay of phase coherence,r (t), calculated numerically
M53, K520.03 and interaction strengthK8/K50 ~closed circle!,
0.6 ~square!, 0.8 ~triangle!, 1.0 ~open circle!, and 1.2~diamond!.
The calculatedr (t) for K8/K50, corresponding to a single array
with dynamics described by Eq.~1!, conforms well to the exponen-
tial decay. The inset shows the relaxation timet0 ~open circles! and
t* ~closed circles!, as functions of interaction strength.

FIG. 2. Log@2lnr (t)] vs logt, calculated numerically for
K520.03,M53, and interaction strengthK8/K50, 0.6, 0.8, and
1.0. The dashed lines are the exponential fits and the solid are the
stretched exponential fits. Curves forK8/K50, 0.6, and 0.8 are
shifted vertically up in multiples of 0.5 to avoid overlapping on the
graph. The crossover timetc is indicated by a vertical arrow. The
calculatedr (t) for other interaction strengths conforms well to the
exp(2t/t0! for t,tc and the exp@2(t/t* )b# for t.tc . The inset
shows the Kohlrausch exponentb as a function of interaction
strength. The exponentb for K8/K51.2 case is also included in the
inset.
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interaction strength. Thus the relaxation of the nonlinearity
coupled arrays of coupled nonlinear oscillators has verified
the basic features of the coupling model. The degree of slow-
ing down in relaxation due to the interarray interaction de-
pends also onM , increasing withM but leveling off for
M.4. Figure 3 shows the results for differentM ’s. Note
thatM51 is the case without any interaction.

The good correspondence between relaxation of simpler
prototype chaotic systems and the key features of the cou-
pling model shows that a theory of the coupling model is in
the making. The encouraging results obtained will provide
impetus for future study of more complex chaotic Hamil-

tonian systems that bear closer resemblance to polymers,
small molecule glass-forming liquids, and vitreous ionic con-
ductors.

V. CONCLUSION AND DISCUSSION

The effect of interactions betweenM arrays of coupled
nonlinear oscillators has been studied. It is found that for
sufficiently larget, r;exp(2t/t) for M51, indicating that
the coupled array has exponential relaxation. For other
M.1 with nonzero interaction strength, it is found that there
exists a timetc such thatr is still an exponential function of
time, exp(2t/t0), for t,tc , but r;exp@2(t/t* )b# for t.tc .
Thus the relaxation of the interacting arrays proceeds with a
stretched exponential time dependence fort.tc and t*@t.
Thus the interaction between the arrays is observed to slow
down the relaxation of single arrays. As expected, the frac-
tional exponentb decreases further from unity with increas-
ing nonlinearity or larger interaction strengths.

In the study of relaxation in real systems in physics,
chemistry, and materials science, it is found that a system
without interactions~e.g., an isolated molecule in dilute so-
lution! usually relaxes exponentially. However, when such
systems are densely packed and interacting with each other,
the relaxation proceeds differently and exhibits many fasci-
nating properties. A coupling model has been very successful
in explaining these properties@13#. This model is based on
the hypothesis that an interacting system relaxes initially ex-
ponentially until a temperature-independent microscopic
time, tc , but relaxes stretched-exponentially afterwards with
continuity of the correlation function at the time of crossover
@14,15#. A recent neutron scattering measurement on a poly-
mer has shown direct experimental evidence for this hypoth-
esis@16#. In our present work, the addition of interarray in-
teractions introduces additional nonlinearity which has
similar effects on the relaxation towards equilibrium as
many-body interactions have on relaxation in densely packed
molecular systems. Since the numerical result obtained bears
strong similarity to the basic features suggested by the cou-
pling model@14# and seen in neutron scattering experiment
@16#, the interacting array model provides a useful first step
in applying nonlinear dynamical models to the study of irre-
versible processes of real physical systems in physics, chem-
istry, and materials science.
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