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We present a Monte Carlo simulation study of the phase diagram of an off-lattice molecular model of a fluid
in a disordered porous material. The model consists of a Lennard-Jones 12-6 fluid confined in a rigid matrix of
spheres and the size parameters are representative of methane in a silica xerogel. The fluid phase diagram
shows effects of confinement, wetting, and matrix disorder. Our results provide evidence of two fluid phase
transitions. The primary transition is analogous to the bulk vapor-liquid transition while the second transition
has its origins in the wetting properties of the fluid in the more confined regions of the matrix.
@S1063-651X~96!50907-4#

PACS number~s!: 05.70.Fh, 64.70.Fx, 68.45.Gd

The phase behavior of a fluid in a disordered porous ma-
terial can be expected to be determined by a variety of ef-
fects including confinement, wetting phenomena, and how
these are affected by the disordered microstructure. This
problem has been the subject of considerable recent interest
from both an experimental and a theoretical point of view
@1#. Experimental studies of vapor-liquid and liquid-liquid
phase separation have been made in a variety of porous
glasses and gels@2#. These studies have shown that the phase
diagram as well as the dynamics of phase separation are
dramatically altered by the presence of the gel. Even ex-
tremely dilute porous materials such as aerogels can have
profound effects on fluid behavior. A striking example of
this is provided by the case of4He in an aerogel@3# that
exhibits an extremely narrow vapor-liquid coexistence curve.
There does not yet seem to be a single unifying framework
within which all the experimental phenomena may be under-
stood.

An important theoretical approach used in understanding
these systems has been the study of the random field Ising
model @4#. The random field describes the spatially varying
preference of the medium for the different fluid phases.
There is no effect of confinement in the model and correla-
tions between the random fields that would model correlation
effects of potential importance in real systems are usually
neglected. Neither does the model provide a description of
the role of wetting. However, the central idea of inhomoge-
neous and disordered equilibrium phases is a key concept in
understanding these kinds of systems. Liu and co-workers
@5# have suggested that the phase separation dynamics for
these systems may be determined by the geometry of the
wetting phases that can be modeled within a single-pore ap-
proach. Another approach is to apply the methods of liquid
state statistical mechanics to off-lattice models of fluids in
porous materials@6#. Only very recently have these ap-
proaches been applied to the study of phase equilibrium
@7,8#.

The purpose of this paper is to describe Monte Carlo
simulation studies of the phase diagram of an off-lattice mo-
lecular model that provides a reasonably realistic picture of
the microstructure of a disordered porous material, in this
case a silica xerogel, while remaining computationally trac-
table. The model under consideration includes effects of con-

finement, wetting, and disorder on the fluid thermodynamics
in a realistic way. The phase diagrams we have determined
show several interesting effects. First of all, the critical tem-
perature for the vapor-liquid transition is lower than in the
bulk as expected for a confined system@9#. The coexistence
curve is much narrower than that in the bulk, which appears
to be a consequence of both the wetting behavior and the
disorder in the matrix. The critical density is likewise deter-
mined by the strength of the interaction between the fluid
molecules and the porous matrix. In addition to a vapor-
liquid transition analogous to capillary condensation, our re-
sults provide evidence of an additional transition which is
associated with the wetting behavior of the fluid in the
denser regions of the matrix. A second transition was re-
cently predicted using a lattice model of a fluid in a porous
material using the replica Ornstein-Zernike equation in the
mean spherical approximation@10#. A more detailed discus-
sion of our work will be presented elsewhere@11#.

The molecular model used in this work is based on one
used by Kaminsky and Monson@12# in studies of adsorption
in silica xerogel. The adsorbent matrix is modeled via a con-
figuration of hard spheres taken from an equilibrium hard-
sphere Monte Carlo simulation. In this model the size ratio
between the matrix spheres and fluid molecules is 7.055:1
and the volume fraction of the hard-sphere system used to
generate the matrix configuration is 0.386. The interaction
between the fluid molecules and the matrix particles has been
modeled in two ways. In one case the interaction was a
purely repulsive hard-sphere interaction. In other cases at-
tractive forces between the matrix particles and fluid
molecules were described by the composite sphere potential
in which each matrix sphere is treated as a continuum of
interaction centers@12#. In order to vary the strength of the
attractive forces while maintaining an approximately con-
stant porosity for the matrix, the following strategy was
adopted. The composite sphere potential for methane in
silica gel was divided into attractive and repulsive parts in
the manner used in the Weeks-Chandler-Andersen perturba-
tion theory@13#. Systems with similar porosity but different
attractive interaction strengths were then obtained by pro-
gressive addition of the attractive part of the potential to the
repulsive reference potential. This has allowed us to investi-
gate the effects of wettability on the phase diagram. The
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interactions between the fluid molecules were modeled with
the Lennard-Jones 12-6 potential truncated at 2.5 molecular
diameters.

The Monte Carlo simulations used in this work were car-
ried in the grand canonical ensemble by the usual method
@14#. Thirty-two matrix particles were used in a cubic cell
with periodic boundaries so that the cell dimensions were
about 25325325 fluid particle diameters. The number of
fluid molecules in the system ranged from just a few at the
lowest activities up to about 104 at the highest activities con-
sidered. The simulation runs typically involved
503106–1003106 configurations for equilibration of the
system from a given initial condition and an equal number
for obtaining the ensemble averages. A configuration con-
sisted of an attempted translation of a randomly chosen fluid
molecule followed by either an attempted addition or re-
moval of a fluid molecule. Most of our results are for a single
configuration of the matrix, since this was dictated by com-
putational limitations. This might at first seem questionable,
since a 32-particle configuration may not be sufficiently rep-
resentative of the statistical geometry of a hard-sphere sys-
tem. However, in some cases we carried out calculations for
other matrix configurations and the results are quite similar.

In these systems the conditions for equilibrium between
two phases at fixed temperature are the equalities of the
chemical potential and grand potential densities in the two
phases. We have therefore used the Monte Carlo simulations
to determine adsorption isotherms of the density versus the
chemical potential and we have determined from these the
isothermal relationship between the chemical potential and
grand potential density@6#. The grand potential density can
be determined from an isotherm of fluid density versus
chemical potential by integration of the Gibbs adsorption
isotherm. For low density states up to any phase transition,
this integration can be performed by starting in the low ac-
tivity limit where the fluid behaves as an ideal gas in an
external field. For the dense phase it is necessary to deter-
mine the grand potential density at some reference state and
then integrate the Gibbs adsorption isotherm starting from
that state. To determine this reference state value, we first
determined an isotherm of the grand potential density at a
temperature above the bulk critical temperature. The grand
potential at lower temperatures for dense states could then be
determined by integration over temperature of a grand ca-
nonical Gibbs-Helmholtz equation. In the cases at lower tem-
peratures where there are apparently two phase transitions on
an isotherm, we have not used this procedure for the second-
ary transition but have simply used the steps in the adsorp-
tion isotherms to estimate the location of the transitions.

Figure 1 shows the temperature versus density phase dia-
gram for the system with the~completely repulsive! hard-
sphere interaction between the fluid and the matrix. The bulk
fluid coexistence curve is also shown as calculated from the
accurate equation of state of Johnson, Zollweg, and Gubbins
@15#, corrected for the effect of truncating the potential. The
density and temperature are given in reduced units based on
the Lennard-Jones collision diameter and well depth, respec-
tively. The results indicate the presence of two transitions
between fluid phases in the system. We associate the larger
coexistence region with the vapor-liquid transition. Evi-
dently, the vapor-liquid coexistence region appears at lower

temperatures than for the bulk, as would be expected for
such a confined system. Also, the condensed phase densities
are lower than those in the bulk and the coexistence curve is
substantially narrower. Some care should be taken in making
such comparisons of density for systems such as the present
one, since the volume fraction of the matrix needs to be
accounted for and the finite size of the fluid molecules pre-
vents the void space from being uniformly accessible. Nev-
ertheless, in view of the magnitude of the effects seen here, it
is reasonable to divide the fluid density by the void fraction
to make an approximate comparison with the bulk coexist-
ence curve. The shift in the coexistence curve and its nar-
rowness are, to a significant extent, associated with the re-
pulsive interaction between the fluid and the matrix, which
promotes a low fluid density in the neighborhood of the ma-
trix particles and acts to lower the density of condensed
phases in the system. Computer graphics visualizations of
the system provide some insight into the nature of the coex-
isting phases. Figures 2 and 3 show snapshots from our
Monte Carlo simulations for liquid and vapor states, respec-
tively, close to coexistence at one temperature. Notice that in
both cases the spatial distribution of the molecules is highly
inhomogeneous and disordered. This is the kind of picture
that would be anticipated on the basis of the random field
Ising model. What is particularly striking is that for the liq-
uid phase there are extensive regions of the matrix that have
very low fluid density. These are the regions where the ma-
trix density is highest and where the repulsive fluid-matrix
interaction favors low fluid density. To provide further in-
sight into the role of the disorder, we have, for one of the
temperatures, studied a system in which the matrix spheres
are arranged in a fcc structure. At the same temperature, this
system exhibits a much larger density change during the

FIG. 1. Phase diagram for a Lennard-Jones 12-6 fluid in a hard-
sphere matrix. The solid circles are the saturated vapor and liquid
densities and the solid squares represent the coexistence densities at
the second transition. The solid line is the coexistence curve for the
bulk fluid. h is the volume fraction of the matrix particles and is to
be taken as zero for the bulk fluid.

R30 54K. S. PAGE AND P. A. MONSON



vapor-liquid transition than for the disordered system. More-
over, density distributions of the fluid for both liquid and
vapor phases in this system are periodic.

We turn now to the second coexistence region that occurs
at low temperature on the high-density side of the vapor-
liquid coexistence region. This transition is associated with
the change in the fluid density in the high-density regions of
the matrix. The physics involves a competition between the
repulsive fluid-matrix interactions that favor a lower fluid
density in the confined regions of the matrix and the attrac-
tive forces between the fluid molecules, which tend to stabi-
lize a high-density phase~where high density permeates a
much wider region of the matrix than shown in Fig. 2!. The

analogy with a predrying transition for a liquid in contact
with a plane surface is a tempting one, although the drying
transition itself is thought to be either second order or
weakly first order@16#, making the possibility of observing a
predrying transition for a plane surface unlikely.

Next we consider the case of attractive fluid-matrix inter-
actions. We have studied various values of the fluid-matrix
attractive interaction strength although here we confine our
discussion to the system for which we have most completely
determined the phase diagram. Figure 4 shows the phase
diagram we have determined for this system. We again see
evidence of two phase transitions. We associate the larger
coexistence region with the vapor-liquid transition. This is
now shifted to higher density than for the bulk and is quite
narrow. The shift of the coexistence curve and its narrowness
are again strongly associated with the attractive interaction
between the fluid and the matrix, which promotes a high
fluid density in the neighborhood of the matrix particles and
increases the density of the vapor phase in the system. How-
ever, comparison with results for a fcc matrix again reveals a
substantial role for the disorder. The coexisting phases are
again inhomogeneous and disordered. The second coexist-
ence region is again associated with the wetting behavior of
the fluid in the denser regions of the matrix and again in-
volves high density permeating the more confined regions of
the matrix. This time the second transition occurs on the
low-density side of the vapor-liquid coexistence curve. As in
the case of the repulsive fluid-matrix interaction, we might
be tempted to make an analogy with the prewetting transition
for a plane surface and indeed the adsorption isotherms at the
relevant temperatures are quite similar to those seen for a
planar fluid-solid system exhibiting prewetting@17#.

FIG. 2. Computer graphics visualization of a configuration of
the fluid in the hard-sphere matrix near the saturated liquid state at
a temperaturekT/egg50.75.

FIG. 3. Computer graphics visualization of a configuration of
the fluid in the hard-sphere matrix near the saturated vapor state at
a temperaturekT/egg50.75.

FIG. 4. Phase diagram for the Lennard-Jones 12-6 fluid in a
composite sphere matrix with the ratioegs /egg51.144. The solid
circles are the saturated vapor and liquid densities and the solid
squares represent the coexistence densities at the second transition.
The solid line is the coexistence curve for the bulk fluid.h is the
volume fraction of the matrix particles and is to be taken as zero for
the bulk fluid.
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In conclusion, our results indicate that confinement, wet-
ting, and matrix disorder are all important in the system. A
key feature of our results is the inhomogeneous and disor-
dered structure of the equilibrium fluid phases, a conse-
quence of the disorder in the matrix. Other important fea-
tures include the narrowness of the vapor-liquid coexistence
region and the occurrence of the second transition at lower
temperatures. These features are coupled effects of the ma-
trix disorder and the wetting characteristics of the fluid in the
matrix as determined by the relative strengths of the fluid-
fluid and fluid-matrix attractive interactions.

Our system is not directly comparable to any of the sys-
tems where phase transitions have been studied experimen-
tally. The closest experimental system to that studied here
would be adsorption in a silica xerogel@12#. However, the
attractive matrix-fluid interactions we have used in our cal-

culations are considerably weaker than those for methane in
silica xerogel. In fact, calculations we have done for a system
more closely representative of methane in silica gel indicate
that the attractive matrix-fluid interactions create a field suf-
ficiently strong to suppress all fluid phase transitions. How-
ever, there is certainly a case to be made for further studies
of fluids in xerogels at temperatures where phase transitions
might occur. In any event, we believe that our results provide
some insight into the molecular level behavior of fluids con-
fined in disordered porous materials.
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