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Phase segregation dynamics of a chemically reactive binary mixture
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We investigate a model system of a chemically reactive binary mixture, where the simple reaetiBn
between the two constituents of the mixture occurs simultaneously with spinodal decomposition. The compe-
tition between the thermodynamic short-range attractive and the reactive long-range repulsive interactions
leads to the formation of steady-state patterns. In the case of equal forward and backward reaction rates the
steady-state average domain wid®,, scales with the reaction ratE, asR.,~ (1/T")®, where the exponent
s equals approximatel% for low rates and equals exact&/for high rates. These exponent values and the
variation of the maximum amplitude of the order parameter with the reaction rate can be derived by minimiz-
ing the free energy in a square wave and a single mode approximation, respectively. The phase segregation
dynamics is simulated numerically using the appropriate Langevin equgBt663-651X96)50509-X

PACS numbe(s): 05.70.Fh, 64.60.Cn, 47.54r, 61.20.Ja

In recent years there has been a growing interest in physF[¢]:fddr(f(¢)+(K/z)(v¢)2), where k is a phenom-
cal and chemical systems exhibiting periodic macroscopienological constant related to the interaction range. The bulk
patterns and textures. Typical morphologies are stripes, labfree energy f(¢) has the usual double-well structure,
rinthine patterns, and circular or spherical droplets which arg ()= — (r/2)$?+ (u/4)¢*, wherer and u are positive
found in such diverse systems as type | superconductorghenomenological constants. Since we study the model at
Langmuir films, diblock copolymers, and chemical mixtures.zero temperature there is no noise term in Eq.and the
The suggested mechanism giving rise to the formation o&tatistical nature of the problem appears in the random initial
periodic textures is a competition between interactions otonditions, which have to be averaged over.
different ranges and strengths favoring spatial inhomogene- Since for unequal rates the system settles in an uninterest-
ities in an otherwise uniform ground stdte]. ing uniform one component phase, we restrict ourselves to

In this paper we investigate a simple model system, prothe case of equal forward and backward reaction rates. With
posed by Glotzeet al. [2], of a chemically reactive binary I'=T",=T,, Eq. (1) takes the form

mixture. Here a chemical reaction of the forA=B be-

tween the two constituents occurs simultaneously with spin- d¢ , OF[#]

odal decomposition3]. The chemical reaction, which can be ot v Y 2l'¢. 2

identified as an effective long-range repulsive interaction,

tends to spatially mix the two components causing the phasas a first observation we notice that for a large reaction rate

separation process to evolve into a labyrinthine steady-stat®e reaction term dominates, leading to an exponential decay

pattern in which the demixing thermodynamic and mixingof the order parameter. Contrary to the demixing caused by

reactive processes balan¢See Refs|[4,5] for recent experi- the underlying thermodynamics, the effect of the chemical

mental and theoretical investigations of similar syst¢ms.  reaction is thus to spatially mix the two components. For-
The model is a binary A-B) mixture described by an mally, the type of interaction introduced by the chemical

order parametep(r,t) (—1<¢<1), the local concentra- reaction can be identified by rewriting Eq(2) as

tion difference of the components. When the mixture, ini-9¢/dt=MV28F] ]/ 5¢ with the effective free enerdy,8],

tially in a homogeneous equilibrium state, is rapidly cooled

(quenchedlinto the two-phase coexistence region, small in-  FL&(r,t)]=F[&(r,t)]

homogeneities in the order parameter evolve into macro-

scopic domains of uniform phas¢=—1 or ¢=1. The +£j Jddrddr’¢(r,t)G(r,r’)¢(r’,t),
well-known Cahn-Hilliard equatiofi6] describing the time M

evolution of the order parameter fluctuatioggy ,t), follow- 3)
ing a critical quench, is extended in order to include the

chemical reactiod=B, whereF[ ¢] is the Ginzburg-Landau functional from above

andG(r,r’) is the Green'’s function defined by the Poisson
equation,V2G(r,r')=—8(r—r"'). In three dimensions, for
example, with suitable boundary conditio@(r,r’) has the
form of a Coulomb potentialG(r—r')=(4mx|r—r'|)"L.
wherel'; andI', denote the forward and backward reactionThe free energy in Eq3) thus contains both a short-range
rates, respectively. Heid is a mobility, andF[ ¢»] a coarse-  attractive interaction whose strength is controlleddyyand a
grained free energy functional of the Ginzburg-Landau formnonlocal effective long-range repulsive interaction character-

J oF
a_f:Mvz%_ (1@ +T,(1-¢), D)
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ized byI'. As a result the modified Cahn-Hilliard equation 1000 ' ' . .
[Eq. (2)] describes phase separation in a system with com- i ’
peting interaction$9].

The initial evolution of perturbations in the order param-
eter is revealed by a linear stability analysis of Ez), [10].
Transforming to dimensionless variables,— «/rr,

t— (k/2Mrd)t, ¢—rlup, and '—(Mr?/ ), and per-
forming the functional differentiation, E@2) takes the form

100

R(t)t™*/R,,

d¢

- = EV2 — b+ 3_V2 -T 4 10 ! . .
at - 2 ( ¢ (:b ¢) d) ( ) 0.01 0.10 1.00 10.00  100.00 1000.00
Tt

Linearizing in Fourier space abogt=0 one finds that the FIG. 1. Test of the scaling form E¢). Low rate systemssolid
fluctuannS, 5¢k1 in the order parameter decay exponen_llnes) satisfy the Scaling fOI’m, whereas the form is violated by hlgh
tially, S (1) = 8 (0)exrd — m(D)t] with rate rate systemgdashed lings The inset shows the time evolution of
y(D)=1/2 (k4— K2+ 2T). Since onlyk modes with positive the average domain size for various values'ofA: spinodal de-

i 1 composition.B and C: low rate systems which scale &t)~t®
vdI') are damped, the rootk™ =[3(1+y1-8I)]" of i, a5 intermediate time period prior to saturati@.and E: high

(') (existing only for O<I'<3) define long and short rate systems which quickly reach the saturation regime. The long-
wavelength cutoffs for the unstabkemodes. The former is dashed straight lines in both graphs have slgpe

of greater interest since such a cutoff is not present in the

case of spinodal decompositiol € 0). The effect of the reaction rates. We interpret this lack of scaling of the struc-

long wavelength cutoff is to dampen the soft modes, thugure factor as being due to the presence of several competing
preventing continuing domain coarsening; that is, the phast€ngth scale$5].

separation is frozen owing to the presence of the chemical Inaccordance with Glotzest al.[2] our simulations show
reaction. We notice thaf =1 is the upper limit for reaction that the average width of the steady-state domains scales

rates allowing phase separation with the inverse reaction rate &,~ (1/T")®, where the scal-
We have solved Eq(4) numérically using a standard ing exponent approaches the valug(we finds=0.29) for

finite-difference schemgl1] on two-dimensional lattices of low rates, |.e.I‘zO_. I_n ad_dltlon we find tha_t the stea_ldy-state
size 256X 256. In order to ensure that finite size effects areSyStemS also exhibit this scaling behavior for high rates,
not relevant, smaller systems were also investigated. Apprd-=3 ©nly now with with s=0.25[13]. These exponents
priate to a critical quench the system was |n|t|a||y prepared‘lave earlier been derived numerica”y by Liu and Goldenfeld
in the homogeneous single phase state by assigning to eatfl in an investigation of the phase segregation dynamics of
lattice site a small random number uniformly distributed@ diblock copolymer system which accidentally is governed
about$=0. We have monitored the time evolution of the by an equation of motion identical to E(®).
patterns formed by calculating the average domain size, The dynamical properties of the system, for small reaction
R(t), as 2r/Kk(t), wherek(t)=(fdk kk,t)/fdk Sk,t)) rates,_can be given a formql description by the introduction
is the first moment of the circularly averaged structure factof @ single scaling form which captures both the dynamical
S(k,t). Here() means an average over random initial condi-Scaling of R(t) and the static scaling dR... The average
tions implemented by several independent runs. In the agiomain sizeR(t), may be written a$7,14]
sence of the chemical reaction, the system exhibits the usual e
Lifshitz-Slyozov growth[12] where, at late times after the R(O)=t*F(T), ©)
uench, the characteristic domain si , scales dynami- . I . .
gally asR(t)~t3, In addition, the stffét)ure factor)éatisfies wherea=; is the Lifshitz-Slyozov dynamical scaling expo-
the scaling forms(k,t) = R(t)2g(kR(t)), which implies that nent, gndF(x) is a scaling function with Ehe asymptotic
R(t) is the only characteristic length scale in the pr0b|embehaV|0rsF(x)—>cqust, x—0, and F(x)~x"¢ for x>1.
[3]. However, for nonzero reaction rates we observe that thd NeNR(t) =R.~T""* ast—c and R(t) ~t* for '—0. In
phase separation process is eventually halted, and the systéry: 1 Wwe test this scaling form by plotting

reaches a steady-state configuration with a characteristic tim@9(R(t)t "~/R.) versus log('t), and find that systems with
independent domain siz&,, (Fig. 1). sufficiently low rates satisfy this relation, whereas the rela-

The dynamical evolution of the system prior to saturationtion iS Violated by high rate systems. The values of the reac-
behaves in two markedly different manners depending offon rate for which Eq(5) is satisfied gives rise to the expo-
whether the reaction rate is high or low. For low reactionn€nts=0.29, whereas the high rates for which E8).is not
rates the average domain size scales in an intermediate paeYyed yields the exponesi=0.25. Due to the characteristic
riod before saturation approximately R¢t)~tY3. For high ~ average domain sizes the scaling regimes corresponding to
reaction rates, on the other hand, no such intermediate sca= 3 ands=j are designated the strong and weak segrega-
ing is observed, as the system rapidly reaches its asymptotion regimes, respectively.
state(Fig. 1). Despite the intermediate scalingRft) at low The steady-state systems formed at high rates are charac-
rates we find, however, no evidence that the structure factderized by weakly segregated domains with a labyrinthine or
satisfies the above-mentioned scaling law for any nonzerstripelike morphology{Fig. 2b)]. The corresponding struc-
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FIG. 3. The behavior of the saturation amplitude as obtained by
simulations @) compared with the analytical expressions obtained
in the single mode approximation.

amplitude of the order parameter, the saturation amplitude,
decreases with increasing reaction rate. The mixing effect of
1 1 the chemical reaction tends to diminish the amplitude of the
¢ 1 order parameter, whereas the demixing caused by the ther-
3 1 modynamics has the opposite effect on the field amplitude.
Thus the value of the saturation amplitude for a given

, {(b) strength of the chemical reaction reflects the level at which
1.0F 1 these counteracting interactions balance. When the chemical
0.8k ] reaction is absent, the saturation amplitude is determined by

the minimas of the potential(¢) located at= r/u, or,
expressed in dimensionless variables, Zat. The initial

7 growth of fluctuations ceases when the order parameter am-
0.2t ] plitude | ¢| has reached its saturation valge,,. Sharp do-
0.0 ‘ main walls are then formed, and further temporal evolution

takes place through mutual annihilation of these walls in the
process of smaller domains coalescing into larger ones. In
the case of spinodal decomposition the saturation amplitude
is unity, whereas for nonzero reaction rates we observe a
monotonic decrease of the saturation amplitude of the
steady-state patterns, as a function of the reaction(Fatg

3).

In order to incorporate the variation of the saturation am-
plitude with the reaction rate, the order parameter at high
reaction rates should thus be approximated by d¢bsine
form ¢= ¢s,c0sky). The dependence of the saturation
amplitude and the wave number on the reaction rate can
then be determined by substituting tlesine ansatz into
the free energy expression and minimizing with respect
to k and ¢¢,;. Using the(1D) dimensionless form of the
free energy [Eq. (3)] F=3/dX —3¢°+i¢*+3(ddlX)’]

FIG. 2. Steady-state patterns of %64 systems, along with T172fdx dX ¢(X)G(x,x") $(x"), with the Green’s function
their circularly averaged structure factors, and profiles extracted5(X,x')=0 andG(x,x")=(x'—x) for x<x’ andx>x', re-

from the lines bisecting the patterns for systems belongirig)tthe ~ spectively, the free energy per volume becomes
strong andb) the weak segregation regime.

2 3
ture factor is very sharply localized, and we therefore pro- HbsaK) =35 (—1+ k2+F) ¢§at+§¢gat )
pose to describe the steady-state configurations by a single
mode approximation, in which the modulation of the order . .
parameter is given by~ coskx). In addition to the variation Determining ¢S.a‘ and ks, by SOI\{LTQ d77d¢sa=0 and
of the average domain size with the reaction rate, we alsg}—/dk:0 yields _ Ksar=(2I) 1 and bsall)
find another functional dependencelafComparing the pro- = 2V1—22I'/{/3. Noting thatR..~kg, we conclude that
files of the steady-state patterns for low and high rate systhe single mode approximation correctly reproduces the

tems[Figs. 4a) and 2b)], we observe that the maximum simulation resuls= 3, valid for high reaction ratel5]. The
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obtained expression faps(I") should be valid for reaction 1 1 T\? 4 1
rates neag, and comparison with simulation data show that ~ H(#satM)=5| —5+ 5+ 30N Plart §¢gat' ®
this is indeed the casé&ig. 3).

For lower values of" the morphology of the steady-state

configurations is irregular and the corresponding Strucw“ﬁ/linimizing Eq. (8) with respect to o, and A gives
. sat

factor contains many modes. Tl®sine approximation is N T —13 1= (8™
therefore not applicable, as is also revealed by the profile &_Z(FO =2(y2I) and ¢sal') = V1-(8I'/ %)

the low rate system in Fig.(8). Ideally one should consider = V1—(4T)™". Thus, sincex ~(1/1)**, the square wave ap-
domains separated by an interface described by a hyperboljroximation recovers the resudt= : suggested by numerical
tangent profile which is the exact solution in the limit work. These results are valid in the strong segregation limit
I'—0,[3]. This, however, complicates the calculations and it(i.e., I'< 1) for which {<\. We conclude by noting that the
is more convenient to approximate an interface by a squargnportant difference between the weak and strong segrega-
wave form, i.e.,p(X) = ¢sal 1 —20(x—N/2)], for O<x<N\, tion limits is that they correspond to an interfacial thickness
where 6(x) is a Heaviside step function. Substituting this that is of the order of the selected wavelengti+-{) and
expression into the free energy gives negligible (<\), respectively.
) In summary, we have identified two segregation regimes
1( 'A ) 2, 1, characterized by different dynamical evolutions prior to satu-
FlbsaM)=5| =5+ 75| bt 5 . . | e scal
2\ 2 12 )7sat’ g7sat ration and different scaling exponents for the static scaling of
1 (= 2 the steady-state domain sizes with the inverse reaction rate.
+ dx(%) (7) The scaling exponents were derived analytically by minimiz-
4N Jo x|’ ing the free energy using the order parameter profiles char-
acterizing each regime. That iscasineand asquare wave

where the selected wave vectorkig,=27/). The integral  variation for high and low reaction rates, respectively.
over the gradient square term diverges formally for a square

wave and we regularize this term by using the hyperbolic
tangent profile p(x) = ¢ tanhf/?) at each interface, where J.J.C. and H.C.F. wish to thank Ole G. Mouritsen for
{—+2 and ¢s,—1 in the limit —0. Hence the free en- attracting our attention to this problem and Alan J. Bray for

ergy[Eq. (7)] is helpful discussions.
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