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Roundoff-induced coalescence of chaotic trajectories
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Numerical experiments recently discussed in the literature show that identical nonlinear chaotic systems
linked by a common noise terrfor signa) may synchronize after a finite time. We study the process of
synchronization as a function of the precision of calculations. Two generic behaviors of the average coales-
cence time are identified: exponential or linear. In both cases no synchronization occurs if iterations are done
with infinite precision.[S1063-651X96)51509-6

PACS numbdss): 05.45:+b, 05.40+j

It is well known that deterministic systems may exhibit aa kind of phase transition. Several data were exhibited to
chaotic behaviof1]. Typically, two chaotic orbits initially confirm the collapse and the existence of the transition.
displaced only slightly from each other deviate exponentially Recently Pikovsk[5] has suggested that the synchroniza-
with time approaching separation on the order of the stranggon observed by MB is a numerical effect of finite precision
attractor size. In practice this means that small errors makef calculations. However, no systematic analysis has been
long time evolution of nonlinear, dynamical systems unpre-given. It is therefore of interest to investigate the effect of
dictable[1]. Thus, identical chaotic systems are not expectedomputer roundoff on the coalescence, which we would like
to synchronize. to propose in this paper. We show that the average coales-

Recently, in a series of papdi@-5], it has been demon- cence time(or simply the relaxation time T, for the two
strated that synchronization could nevertheless be achieveddfbits of the model (1) follows the exponential law:
the systems are linked by@mmonsignal or noise term of T=eAMW*BWN ywjith A andB being functions of the noise
an appropriate strength. That is, if we take a chaotic map angtrength;N is the precision of the calculations. This law,
start numerical evolution of two arbitrarily chosen initial which is different from the one suggested[1, proves that
points subject to the same sequence of noise, the resultirgatistically the coalescenceveroccurs for a map or flow
trajectories will collapse after a finite number of iterations. of infinite precision.

Two cases could be distinguished. The first one, discussed We also show thano nontrivial critical valueW, exists.
by Pecoraet al. [2] and Fahyet al. [2] (PP, defines the Even for W<0.5 the collapse does occur. If we consider
collapse as a process where the average distance between fifgte precision iterations and/=W,,;,=0.5x10 N then the
trajectories converges exponentially to zero. According to PRwo different trajectories should always collapse. As a con-
such synchronization takes place if the largest Lyapunov exelusion one can say that the limit discussed in the paper of
ponent becomes negative. MB (first, time going to infinity, then the precision going to

A different scenario was found by Maritan and Banavarinfinity) is trivially satisfied in the sense th&tlmos} all two
(MB) [4]. They claimed that the coalescence also may occupoints coalesce in this limit. Finally, a synchronization by
abruptly, without any specific time dependence of the avercommon signals observed in the chaotic systems with nega-
age distance between the trajectories. As an example thejve Lyapunov exponen{®] yields the relaxation time linear
studied the well-known one-dimensional logistic mapwith N.

[1,6—9 in the presence of additive noise Our analysis starts by considering the map studied by
MB, Eq. (1). But the approach differs from that of MB in the
X' =4x(1—x)+ W7 1 way the map is iterated. Namely, we perform the iterations

with controlled absolute accurachy fixing the number of
digits after the decimal point. More specifically, for all num-
where Osx<1; 5 is a random number chosen uniformly bers from interval [0,1] with decimal representation
from the interval—1 to + 1 andW=>0 is the strength of the x=0 .a;a,---ay the value ofN is being fixed after each
noise. The values of violating the bounds &x’'<1 were iteration. Here the symbol “.” represents the decimal point
discarded and a new was chosen. They found that for anda;=0,1,...,9 (=1,... N). Forx=1 we get automati-
W>W,, (W,~0.55) and after about f£Gterations the trajec- cally x’=0.
tories of almost any two points became identical and follow  Finite accuracy calculations are done with programs run-
a single random trajectory. As a conclusion they claimed thahing under control of thenAPLE package. To use the pro-
in the limit of infinite time and finite precision all trajectories gram the precisioM has to be fixed. We assunieto vary
should collapse foww>W,. Thus atW=W, one would get from 1 to 16. Next, the noise strengtéi must be given and
the two initial numbers for the trajectories chosen randomly
from the interval 0,1]. After these preparations are done we
*Permanent address: Department of Statistical Physics, Jagiellstart two independent iterations according to the prescription
nian University, Reymonta 4, Krakg Poland. (1). The process continues until both trajectories became nu-
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FIG. 1. Logarithm of average relaxation time versus accuracy FIG. 2. Logarithm of the average relaxation time versus the
for W=0.7. The straight line represents the best least-square fitrengthW of the noise. Accuracies considered &re 3 (triangles
obeying 3<N<16. Triangles represent absolute accuracy calcula@nd circleg, 4 (diamonds, 5 (pentagons and 6(hexagons Aver-
tions while circles represent relative ones. For each accuracy th@ges are performed over 100 samples exceptNer3 (circles
average is performed over 100 samples. Insets show the histogradlich corresponds to 1000 samples. The lines are introduced to
of the coalescence times fbir=8 and for two sample sizes equal to 9uide the eye.

100 and 10 000, respectively.
for N=3 and N=7 where additionally the averages are

merically identical. The corresponding number of iterationstaken over 1000 experiments. In both cases the results are
is called coalescence time and denote@he whole proce- practically independent of the sample size. Ror 3 this is
dure (with fixed N andW) is repeated 100 times to gét shown in Fig. 2 where triangles represent averages over 100

Results of the simulations are shown as triangles in Fig. lexperiments and circles over 1000. It is seen thas high
where In{) varies with N for W=0.7. Circles represent for small values ofW and decreases with increasilig A
similar simulations but withN denotingrelative precision, minimum of T is found aroundW=0.6. ThenT increases
i.e., the number of digits in the mantissa as in usual floatinggain to finally saturate foV=1. This behavior is observed
point arithmetic. Note that for the map given by Ef), the  for all values ofN studied and its origin will be explained
absolute and the relative precision calculations yield statistitater in the paper.
cally the same results. Now one can easily understand the results of MB, pre-

Additionally, two histograms, representing the probability sented in their Fig. 2. A maximum of the probability that the
distribution functionP(t) that the coalescence timetisare  two trajectories collaps@lenoted a3 in [4]) corresponds to
shown as insets of Fig. 1. They are constructed\fer8 and  our minimum of T (see Fig. 2. Likewise, the decrease of
for two different samples composed of 100 and 10 000\ for W>0.6 is connected with our increase Bf The dif-
points, respectively. Thoughhas substantial statistical fluc- ference between our results and theirs is that we do not ob-
tuations, the difference between Th(calculated for both serve any transition around/=0.5. Generally we find that
samples differs by less than 0.9%. A similar result is foundcollapse takes place for all values A such that
for N= 15 with the averages taken over 100 and 1000 pointsW=W,,;,. This has been checked fbi<8. For higher val-
Hence 100 realizations of the process provide a useful estises ofN time t becomes too long and calculations are prac-
mate of In(T). tically impossible.

We shall observe thal increases exponentially witN. In order to understand whyW must be nonzero to get
This has been shown in Fig. 1 by plotting a line collapse please note that any chaotic map loses its chaotic
In(T)=2.297+0.763N (16=N=3) of the best least-square character when iterated with a finite accuratg|. Take, for
fit, which on the average is good to within better than 2.5%.example, the logistic mafl) and fix accuracy ttN=3. The
Interestingly, similar linear dependence ofThen N is pre-  domain of the map consists in this case of 1@ states
dicted for other values diV. This indicates thafstatistically (boxes equal (0,0.001,0.002,..,0.999,1). FolW=0 these
two trajectoriesnevercollapse in the limit of infinite preci- numbers evolve either to one of the fixed points:0 or
sion. x=0.750 or to a cycle of length 130.109, 0.190, 0.204,

At this point we would like to turn to the results of MB. 0.328, 0.388, 0.416, 0.616, 0.650, 0.882, 0.910, 0.946,
They found coalescence of the trajectories Wée=0.6 but  0.950, 0.972 Thus, in the absence of noise the trajectories
not for W=0.3, in both cases the number of iterations beingbelong to periodic orbits or fixed points and only acciden-
5x10°. Clearly, for W=0.3 the number of iterations they tally can they collapse. FaN+0 the structure of the cycles
performed was much too small to see coalescence. We fourid destroyed. Even the smallest numerical value of the noise
that for double precision experiments and M=0.5 - (W=W,,;,), which either does not modify the iterated states
0.6, time T is orders of magnitude smallethan that for or modifies them by*+0.001 (each realization being of the
W=0.1 or W=0.3. More specifically, folW=0.1 the col- same probability equal to 1y3is sufficient to have nonzero
lapse is expected after about 40iterations while for probability that all initial states are again accessible from any
W=0.3 after 187 iterations. This effect is illustrated in Fig. other state after a finite number of iterations. Interestingly,
2, where In() is plotted as a function oW for different  W,,;, does not depend on detailed structure of periodic orbits
values ofN. As previously averages are taken over 180 indicating that any sort of noise that restores ergodicity
Again the influence of scatter of the data onTn{s tested would yield collapse of the trajectories. The same statements
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3 . . . 0 .y1YoY3- - - YN, respectively. The first iteration moves the
~ points one step to the right yielding =0 .X,X3- - - x50 and
y’' =0 .y,y3- - -ynN0. As the last digi{zero is now the same
for both numbers’ andy’ the noise converts them into two

2r il numbers with the same digithe Nth digit of the nois¢ at
positionN after the point. Successive iterations in the pres-
ence of noise increase the number of identical digits by one
1 . .

making the coalescence time N and, consequentiyf, must
be a linear function oN. Similar linear behavior ofl with
N is predicted for the PF mode|€]. This follows directly
from the fact that the average distanck,between the PF
trajectories at the tim@ is d=A,10" "*, whereA, and A
are model dependent parameters. Compadngith 10N
FIG. 3. CoefficientsA(W) (thin line) andB(W) (thick line) of ~ YieldST~AN.
T(N) for the model(1). The lines are guides to the eye. Let us now come back to the logistic map and comment
on two issues{a) why the minimalT is found forW=0.5
hold for arbitraryN. Instead, if we consider infinite accuracy and(b) how T could be connected with the properties of the
the probability that two numbers coming out of iterations aremap and of the noise. An important point to nésee also
different is one. As we are in chaotic region, where dynamic$4)) is that, in general, chaotic maps consist of iterations that
is strongly sensitive to the initial conditions, these two pointsar® composed of two parts, the one which stretches the dis-
will move away from each other in the forward iterations. tance between the points and the other where the distance is
Another feature of the logistic map found in our simula- €nlarged. Consider the distandebetween images of and
tions and displayed in Fig. 2 is behavior of the curved)n( Y
as a function ofN. Namely, theyall scale linearly withN,
i.e., InM=AW)+B(W)N, with W-dependent coefficients.

Using the data shown in Fig. 2 we estimat8W) and  \here S=[0,1]%[0,1]. Then the distance contracting re-
B(W) by performing a linear least-square fit for ea®  gion (), is given by the condition: 34x+y<5/4, where
separately. The obtained set of points is given in Fig. 3(x,y) € S Thatis,V (x,y)eQ: d(x,y) < Ix—y]|. If we
These data show that faW~1 the time T behaves as require that the reduction of the distance is smaller than
10"2 and forw=0.6 as 10, which differs from the 18" o’ di(x,y)<s|x—y|, then the statesx(y) must be re-
law suggested if5]. stricted to a stripQ), C Q given by the inequality

Finally, Fig. 3 allows one to estimafe for W=0.3 and 1—e/4<x+y<1+e/4. The aredd, C Q. , where shrink-
for N=15 as being of order of 18 This is the reason why ing of the distance is the strongest, is found around

in experiments of MB, which dealt with £Gterations, the —(1/2.1/2 h di(1/2+ /2. 1/2+ &2
collapse forw=0.3 statistically has not been observed. |(::(é{)(s(’)2|' ), where d(1/2xs/2, 8'/2)

A_further insight into the coalescen_ce process and iFS con™ 1o proceed further we assume that the random orbits are
hection to the accuracy could be achieved by converting thaescribed by the joint probability distribution function
logistic map(1) into the 3 modulo 1 mag7] pw(X,y) [(X,y) € S] and apply the noise to all pairs of num-
bers &,y). Now the probabilityP\,(e) that this procedure
yields two numbers such that after applying the map, they
o ) . _ are moved into the contracting aréa, is given by the for-
This is done in practice by a change of variables:ya
x=31[1—cos(2ry)]. Note that the transformed noise, de- 7 Wino

: 11 X,V N e
2'3;335 byg(W,7, ...), depends at timen on the system PW(s)zj f dx dpr(x,y)l ( y. ) | @
prior tan. This dependence, represented by dots in Eq. 0oJo |Z(x,y;W)N S
(2), appears quite nontrivial and will not be of our concern
here. Instead we will discuss a simple case where the precisghere Z(x,y;W) is the interval from x—W,y—W) to
form of g(W, 7, ...) isirrelevant. Again the values aj (x+W,y+W) of length |Z(x,y;W)| = 2yJ2W. The key
violating the bonds &y’'<1 are discarded. guantity entering the formula4) is pw(x,y). Clearly,

Suppose that we study the binary version of the 8p pw(X,y) should be peaked about the diagomxaty with
in the interval[0,1). That is, we iterate the map by represent-strong (absolut¢ maximum at &,y)=(1,1). This observa-
ing each numbefincluding the noise terjnas a binary deci- tion follows from the fact that the logistic map exhibits sin-
mal 0 a,a,az---ay---=2;—,2 'a;, where each of the gular density of states near 1 and 0 and that the points
digits a; is either 0 or 1. With this simple change of base thearound 0 are images of those around 1. As after each itera-
iterations of the mag2) could be viewed as moving the tion the noise is adde@with the constraint that the pair of
decimal point “.” one position to the rightBernoulli shif}. numbers stays within the basin of attraction of the jrthe

A binary number of accuraci could now be introduced points around O are obtained less frequently. Thus, to get
as the one for whicta;=0,Yj>N. Consider two arbitrary maximal probabilityP(e) the integration in Eq(4) should
numbers< andy of binary accuracN and assume that their include the region around (1,1) which implies that0.5.
binary representations are of the formxx,x;---xy and  On the other hand, the second term under the integral, which

di 1S3 (x,y)—4[x=y|[1=(x+y)], )

y'=2y modulo 1+g(W,7,...). (2
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gives the probability of finding the noise-shifted point in  One may wonder whether the predicted linéar expo-
Q. , is for W=0.5 a decreasing function &¥ and saturates nentia) behavior of T with N could be correlated with the
for W>1. Combining these two facts we conclude thatsign of the maximal Lyapunov exponent. If the identical cha-
Pw(e) should be, forW=1, a decreasing function dV,  otic systems are subject to an external noise, which is gen-
approaching saturation foA>1. The saturation could be erated at each time step independently of the previous values
preceded by a maximum, lying between8¥W/=<1. In this  and of the states of the systems, then the analysis proposed
case one gets a minimum &f for 0.5sW=1. Finally, by Pikovsky applieg3]. In this case the largest Lyapunov
lim,_oPw(e)—0 implies thatT—c for N—o. exponent can be calculated from a single system. If this ex-
The upper limit ofT for W=0.5 also could be found from  honent is negative then, at least, for the systems studied in
the formula (4). As the distributionpy,(x,y) is strongly  [3] this would imply the linear dependence Bfwith N (i.e.,
peaked around (1,1) the functidPy(e) actually gives a  gynchronization However, such linear dependence does not
probability of finding a point in the are@, . From Eq.(4) it necessarily mean that the maximal Lyapunov exponent must
follows that the frequency of getting a point@, is propor-  be negative. For example, in the case of the binary tent map,
tional tos which givesT~1/e. Fore=10""?the image of \here T varies linearly withN (Vg), the sign of the
any point from(), yields two numbers that are 10 apart Lyapunov exponentfor N— o) could be arbitrary. Also we
indicating that the two trajectories just collapsed. Henceyould like to add that the techniquid] does not apply when
T~10"2, which is what we find folW~1. the noise depends on the states of the systems,(Eq$2).
These observations have important practical consem this case the difference between ensembles with positive

precision could be controlled by the noise. For the MBP  Thjs jssue is currently under investigation and will be re-
this is achieved by accepting only thoss in Eq. (1) which ported elsewhere.

fgive pointsféd,y’) restricted tOst- AIIc;wed Va“fes of as Finally, let us note thaT is governed by the properties of
unctions of assumeN andT and forW=0.5 could again be the invariant density of the chaotic map, the structure of the

inferred from_Eq.(4). . distance stretching arés, and the way in which the noise is
In conclusion, we showed that in order to understand the . N
. Introduced. This is demonstrated for the random logistic map

recently observed phenomenon of coalescence of the trajei hereT vari allv withy. The | found
tories [2,4] the precision of the calculations must be taken, ), wherel varies egponentla y_v;nt - Ihelaw we foun
into account. For all systems studied in the literature so far' d|fferent7fDrom a simple (_mN) deper)denc'e SuggeSted
the average coalescence tifiés either a linear or an expo- N [9] (=&, whereD=2 is the topological dimension of
nential function of the precision of the calculations. Thus, "€ SPace

statistically, coalescence never occurs when precision is in- This work was supported by the Conselho Nacional de
finite. Clearly the arguments as given are of general validityDesenvolvimento Cierfico e Tecnolgico (CNPg and by
and the logistic map or the tent map could serve as examplethe Financiadora de Estudos e ProjeteBNEP) in Brasil.
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