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Driven anomalous diffusions~such as those occurring in some surface growths! are currently described
through thenonlinear Fokker-Planck-like equation (]/]t) pm52 (]/]x) @F(x)pm#1D (]2/]x2) pn @(m,n)
PR2; F(x)5k12k2x is the external force;k2>0]. We exhibit here the~physically relevant! exactsolution for
all (x,t). This solution was found through an ansatz based on the generalized entropic form
Sq@p#5$12*du@p(u)#q%/(q21) ~with qPR), in a completely analogous manner through which the usual
entropyS1@p#52*dup(u)lnp(u) is known to provide the correct ansatz for exactly solving the standard
Fokker-Planck equation (m5n51). This remarkably simple unification of normal diffusion (q51), superdif-
fusion (q.1) and subdiffusion (q,1) occurs withq511m2n. @S1063-651X~96!51209-2#

PACS number~s!: 05.60.1w, 05.20.2y, 05.40.1j, 66.10.Cb

Anomalous diffusion is intensively studied nowadays,
both theoretically and experimentally. It is observed, for in-
stance, in CTAB micelles dissolved in salted water, the
analysis of heartbeat histograms in a healthy individual, fi-
nancial transactions, chaotic transport in laminar fluid flow
of a water-glycerol mixture in a rapidly rotating annulus,
subrecoil laser cooling@1#, particle chaotic dynamics along
the stochastic web associated with ad53 Hamiltonian flow
with hexagonal symmetry in a plane@2#, conservative motion
in a d52 periodic potential@3#, transport of fluid in porous
media ~see@4# and references therein!, surface growth@4#,
NMR relaxometry of liquids in porous glasses@5# and many
other interesting physical systems. A paradigmatic class of
~correlated! anomalous diffusions are currently described
through the following generalizednonlinearFokker-Planck
equation:
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where (m,n)PR2, D.0 is a ~dimensionless! diffusionlike
constant,F(x)[2dV(x)/dx is a ~dimensionless! external
force ~drift! associated with the potentialV(x), and (x,t)
is a ~dimensionless! 111 space time. SinceD(]2/
]x2) @p(x,t)#n5 (]/]x) $Dn@p(x,t)#n21 (]/]x) p(x,t)%, the
possible nonlinearity introduced in Eq.~1! has a simple
physical interpretation form51. Indeed, there are various
real situations in which the standard diffusion coefficient de-
pends onp(x,t). It is then clear thatn.1 (n,1) corre-
sponds to the case where, for some reason, thep-dependent
diffusion coefficient vanishes~diverges! for p50. This is not
a very rare case. Indeed, it occurs in percolation of gases
through porous media (n>2 @6#!, thin saturated regions in

porous media (n52 @7#!, thin liquid films spreading under
gravity (n54 @8#!, radiative heat transfer by Marshak waves
(n57 @9#!, solid-on-solid model for surface growth (n53
@4#!, among others~see also@10#!. With no loss of generality
we could assume that m51 by renaming
p̃(x,t)[@p(x,t)#m and ñ[n/m, but, for reasons that will
become clear later on, we shall discuss Eq.~1! as it stands.
We intend to consider here a specific~but very common!
drift, namely characterized byF(x)5k12k2x (k2>0;
k250 corresponds to the important case of constant external
force, andk150 corresponds to the so called Uhlenbeck-
Ornstein process!. The particular casem5n51 corresponds
to the standard Fokker-Planck equation, i.e., tonormal dif-
fusion. The particular caseF(x)50 ~no drift! has been con-
sidered by Spohn@4# for m51 and arbitraryn, and has been
extended by Duxbury@11# for arbitrarym and n. The case
(m,k1)5(1,0) has been considered by Plastino and Plastino
@12#. Our present discussion recovers all of these as particu-
lar instances. On one hand, it will produce theexactsolu-
tions of Eq. ~1! for all (x,t) and arbitrary (m,n,D,k1 ,k2),
and on the other hand, it will enlighten their thermostatistical
basis.

Indeed, the thermostatistical foundation ofanomalousdif-
fusion ~as it is known fornormal diffusion! is naturally
highly desirable, and has long been looked for~see, for in-
stance,@13# and references therein!. This goal was recently
achieved by Alemany and Zanette@14# and others@15,16# for
Lévy-like anomalous diffusion, in the context of a general-
ized, not necessarily extensive~additive!, thermostatistics
that has been recently proposed@17#. In particular, within
this framework, the ubiquity and robustness of Le´vy distri-
butions in nature has been thermostatistically founded on the
Lévy-Gnedenko central limit theorem@16#. This thermosta-
tistics has already been applied to a considerable variety of
physical systems which include self-gravitating stellar ob-
jects, the hydrogen atom, the cosmic background radiation,*Permanent address. Electronic address: tsallis@cat.cbpf.br
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ferrofluidlike liquids, and apparent magnetism@18# ~see also
@19# for the linear response theory!. It has also been applied
with success to optimization techniques@20#. Finally, it has
been experimentally checked for a specific pure-electron-
plasma turbulence, the solar neutrino problem, and galaxy
clusters@21#. This nonextensive formalism is based upon the
entropic form

Sq@p#[
12*du@p~u!#q

q21
~qPR!, ~2!

which reduces, in theq→1 limit, to the standard Boltzmann-
Gibbs entropy

S1@p#[2E dup~u!lnp~u!. ~3!

First, let us illustrate the procedure we intend to follow,
by briefly reviewing normal diffusion (m5n51). We wish
to optimizeS1 @given by Eq.~3!# with the constraints

E dup~u!51 , ~4!

^u2uM&1[E du~u2uM !p~u!50 , ~5!

and

^~u2uM !2&1[E du~u2uM !2p~u!5s2, ~6!

uM ands being fixedfinite real quantities. The optimization
straightforwardly yields the solution

p1~u!5
e2b~u2uM !2

Z1
~7!

with

Z15E due2b~u2uM !25~p/b!1/2 ~8!

whereb[1/T is the Lagrange parameter associated with the
constraint~6! and satisfiesb51/(2s2). On the basis of Eq.
~7! we propose, for them5n51 particular case of Eq.~3!
~i.e., the standard Fokker-Planck equation!, the ansatz

p1~x,t !5
e2b~ t ![x2xM~ t !] 2

Z1~ t !
~9!

with

b~ t !

b~0!
5FZ1~0!

Z1~ t !
Gl

. ~10!

It follows straightforwardly thatl52,

b~ t !

b~0!
5FZ1~0!

Z1~ t !
G25 1

F12
2Db~0!

k2
Ge22k2t1

2Db~0!

k2

~11!

and

dxM~ t !

dt
5k12k2xM~ t !, ~12!

hence

xM~ t !5
k1
k2

1FxM~0!2
k1
k2

Ge2k2t. ~13!

To discuss thek250 case we can usee22k2t;122k2t,
which implies xM(t)5xM(0)1k1t and 1/b(t)5@1/
b(0)]14Dt, which, in the limit t→` ~i.e.,
t@1/@4Db(0)#), yields the familiar result 1/b(t);4Dt.
This result implies, in turn, the celebrated Einstein expres-
sion ^(x2xM)

2&1}t for Brownian motion.
Let us now address the general (m,n) case. Following

along the lines of Alemany and Zanette@14# ~and the generic
framework of the generalized thermostatistics@17#! we now
wish to optimizeSq @given by Eq.~2!#. The constraints are
Eq. ~4!,

^u2uM&q[E du~u2uM !@p~u!#q50 ~14!

@which generalizes Eq.~5!# and

^~u2uM !2&q[E ~u2uM !2@p~u!#q5s2 ~15!

@which generalizes Eq.~6!#. This is an appropriate moment
for commenting that the reason for using@p(u)#q @instead of
the familiar p(u)] in the constraints~14! and ~15! is the
~very essential! fact that by doing so we preserve@17# the
Legendre structure of thermodynamics and~through the non-
negativity ofCq /q @22#, whereCq denotes the specific heat!
guarantee thermodynamic stability. Let us consistently stress
that the constraint~14! is equivalent tô u&q5^uM&q , but not
to ^u&q5uM ~since, unlessq51, ^uM&qÞuM). All these pe-
culiarities are, of course, originated by thenonextensivity
that the indexq introduces in the theory. For example, if we
have two independent systems A and B @i.e.,
pA* B(uA ,uB)5pA(uA)pB(uB)], we immediately verify that
Sq(A*B)5Sq(A)1Sq(B)1(12q)Sq(A)Sq(B).

It is straightforward to see that the above described opti-
mization ofSq yields

pq~u!5
@12b~12q!~u2uM !2#1/~12q!

Zq
~16!

with

Zq5E du@12b~12q!~u2uM !2#1/~12q! ~17!

In the limit q→1, these equations reduce to Eqs.~7! and~8!,
respectively. The corresponding ansatz for solving Eq.~1!
now is

pq~x,t !5
$12b~ t !~12q!@x2xM~ t !#2%1/~12q!

Zq~ t !
~18!
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with

b~ t !

b~0!
5FZq~0!

Zq~ t !
Gl

~19!

@as before,b(t) and Zq(t) are nothing but the scaling of
space with time#. A tedious~but straightforward! calculation
yields l52m, and q511m2n. An equation forZq(t) is
also found; namely,

2nDb~0!@Zq~0!#2m2k2@Zq~ t !#
m1n

2
m

m1n

d@Zq~ t !#
m1n

dt
50, ~20!

which can be solved by substitutingZ̃(t)5Zq(t)
m1n. The

resulting solution is~for all values ofk1)

Zq~ t !5Zq~0!F S 12
1

K2
De2t/t1

1

K2
G1/~m1n!

, ~21!

with

K2[
k2

2nDb~0!@Zq~0!#m2n ~22!

and

t[
m

k2~m1n!
~23!

~see Fig. 1!. The functionxM(t) is the same as in the case of
normal diffusion, Eq.~13!, since it only describes the motion
of the average of the distributionpq(x,t), and does not de-
pend on the way in which it spreads.b(0) andZq(0) are
determined by the initial condition@i.e., by pq(x,0)]. For
k250, Eq. ~21! becomes

Zq~ t !5H @Zq~0!#m1n

1
2n~n1m!Db~0!@Zq~0!#2m

m
tJ 1/~m1n!

~24!

which, for t→`, asymptotically recovers Duxbury’s solution
@11#, namely, 1/b(t)}@Zq(t)#

2m}t2m/(m1n). As we see,
m/n51, .1 and ,1 respectively imply that
@x(t)2xM(t)#

2 scales liket ~normal diffusion!, faster than
t ~superdiffusion!, and slower thant ~subdiffusion!. The lim-
its m/n50 andm/n5` correspond to ‘‘no diffusion’’ and
ballistic motion, respectively. For (m,k1)5(1,0), the present
set of equations reduces to that of Plastino and Plastino@12#.
Finally, by using Eq.~19! with l52m, we can verify that

E dxpq~x,t !5@Zq~ t !/Zq~0!#m21E dxpq~x,0!. ~25!

FIG. 1. The m/n51/3 example: ~a! Time dependence of
b(0)/b(t)5@Zq(t)/Zq(0)#

2m for Zq(0)Þ0 and typical values of
K2 ~indicated at the right of each curve!. The curve forK250 lies
on the vertical axis. ForK250.25, 0.5, and 2 the asymptotic values
for t/t→` are shown by the dashed lines@t is defined in Eq.~23!#.
~b! Time dependence of$b(0)@Zq(0)#

2m%/b(t)5@Zq(t)#
2m for

Zq(0)50, b(0)@Zq(0)#
2mÞ0, and typical values of K28

[k2 /$2nDb(0)@Zq(0)#
2m% ~indicated at the right of each curve!.

The curve forK25` coincides with the horizontal axis. All curves
saturate at a finite value ast→`, except that forK2850, which is
proportional tot2m/(m1n) for all t.

FIG. 2. ‘‘Norm conservation’’ means thatN[*dxpq(x,t) is
time invariant; ‘‘norm creation’’ means thatN monotonically in-
creases~decreases! with time if K2,1 (K2.1); ‘‘norm dissipa-
tion’’ means thatN monotonically decreases~increases! with time
if K2,1 (K2.1). ‘‘Normal diffusion,’’ ‘‘superdiffusion,’’ and
‘‘subdiffusion’’ refer to the fact that, fork250, (x2xM)

2 scales
like t, faster thant, and slower thant, respectively. The standard
Fokker-Planck equation corresponds tom5n5q51. For the pre-
cise meaning of ‘‘unphysical,’’ see the text. On them51 line we
haveq522n; consequently, whenn varies from` to21, q varies
from 2` to 3, which is precisely the interval within which Eq.~4!
@and, consistently,*dxpq(x,0)51] can be satisfied.
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Consequently, the norm~‘‘total mass’’! is generically con-
served for all times only ifm51 (;K2) or if K251 (;m).
For 0<K2,1 ~a common case!, the norm monotonically
increases~decreases! with time if m.1 (m,1). If K2.1, it
is the other way around.

Before ending let us mention that whent grows to infin-
ity, the solutions we have found must be physically mean-
ingful. This imposesm/n.21. Indeed, ifk2Þ0, t in Eq.
~21! must be positive, which impliesm/n.21. Also, if
k250, x must scale with increasing function oft; hence,
b(t) must decrease witht, which implies@through Eqs.~19!
and ~24!# 2m/(m1n).0, hence, the already mentioned re-
striction applies once again. The entire picture that emerges
is indicated in Fig. 2~we have not focused on them,0
region because that would force us to discuss the stability of
the solutions with respect to small departures, and this lies
outside of the scope of the present work!.

To summarize, on general grounds, we have shown that
thermostatistics allowing for nonextensivity constitute a
theoretical framework within which a rather nice unification
of normal and correlated anomalous diffusions can be
achieved. Both types of diffusions have been founded, on
equal footing, on primary concepts of~appropriately gener-
alized! thermodynamics and information theory. Moreover,

the Lévy-like anomalous diffusion~see@16,23,24# and refer-
ences therein! is possibly describable~suggestion by
Zaslavsky@2#! by a linear Fokker-Planck-like equation with
fractional ~time and space! derivatives, and the present cor-
related anomalous diffusion is described by anonlinear
Fokker-Planck-like equation withintegerderivatives~in con-
trast with normal diffusion, which corresponds to thelinear
Fokker-Planck equation withintegerderivatives!. Since both
types of anomalous diffusions can be handled within the
present generalized thermostatistics, the conjecture is al-
lowed that further unification can possibly be achieved by
considering the generic case of anonlinearFokker-Planck-
like equation with fractional derivatives. On specific
grounds, we have obtained, for a generic linear forceF(x),
the physically relevant exact~space, time!-dependent solu-
tions of a considerably generalized Fokker-Planck equation,
namely, Eq.~1!.
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dation and the Cornell University Materials Science Cen-
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B. Widom.
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