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Anomalous diffusion in the presence of external forces: Exact time-dependent solutions
and their thermostatistical basis
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Driven anomalous diffusiongsuch as those occurring in some surface growttre currently described
through thenonlinear Fokker-Planck-like equationd(at) p*=— (d/9x) [F(x)p*]+D (9% 9x?) p* [(u,v)
e R?; F(x)=k;—kox is the external forcek,=0]. We exhibit here théphysically relevantexactsolution for
all (x,t). This solution was found through an ansatz based on the generalized entropic form
Sqlp]={1-fdu[p(u)]%/(g—1) (with ge R), in a completely analogous manner through which the usual
entropy S;[p]=—fdup(u)Inp(u) is known to provide the correct ansatz for exactly solving the standard
Fokker-Planck equationy{= »=1). This remarkably simple unification of normal diffusiog=€1), superdif-
fusion (@>1) and subdiffusiond<1) occurs withq=1+ u—». [S1063-651X96)51209-3

PACS numbsg(s): 05.60-+w, 05.20-y, 05.40+j, 66.10.Cb

Anomalous diffusion is intensively studied nowadays,porous media =2 [7]), thin liquid films spreading under
both theoretically and experimentally. It is observed, for in-gravity (v=4 [8]), radiative heat transfer by Marshak waves
stance, in CTAB micelles dissolved in salted water, the(y=7 [9]), solid-on-solid model for surface growth €3
analysis of heartbeat histograms in a healthy individual, fi{4]), among otherg¢see alsd10]). With no loss of generality
nancial transactions, chaotic transport in laminar fluid flowyye  could assume  that uw=1 by renaming
of a wa.ter-glycerol_mixture ir) a rapidly rotating annulus, Px,H)=[p(x,t)]* and T=w/u, but, for reasons that will
subrecoil laser coolingl], particle chaotic dynamics along pacome clear later on, we shall discuss Eg.as it stands.
the stochastic web associated witlla 3 Hamiltonian flow  \ya intend to consider here a specifiout very common
yvith hexagon_al symmetry in a plap2], conservati\_/e motion drift, namely characterized byF(x)=k,—kox (K,=0:
Ina qzz periodic potentia[3], transport of fluid in porous k,=0 corresponds to the important case of constant external
media (see[4] and references therginsurface growt{4], force, andk,;=0 corresponds to the so called Uhlenbeck-

NMR relaxometry of liquids in porous glassgs] and many . . -
other interesting physical systems. A paradigmatic class Oanstem procegs The particular casg.=v=1 corresponds

(correlatedd anomalous diffusions are currently described© the standard Fokker-Planck equation, i.e.newmal dif-

through the following generalizedonlinear Fokker-Planck ~ fusion. The particular casé(x) =0 (no drift) has been con-
equation: sidered by Spohf¥] for u=1 and arbitraryv, and has been

extended by Duxbury11] for arbitrary u and ». The case
d d , (m,k1)=(1,0) has been considered by Plastino and Plastino
PG =~ &—X{F(X)[IO(X,'E)]”}+ D elP(x.01", [12]. Our present discussion recovers all of these as particu-
(1) lar instances. On one hand, it will produce tieactsolu-
tions of Eq.(1) for all (x,t) and arbitrary f,v,D,kq,K5),
where (u,v) e R?, D>0 is a(dimensionlessdiffusionlike  and on the other hand, it will enlighten their thermostatistical
constant,F(x)=—dV(x)/dx is a (dimensionlessexternal pasis.
force (drift) associated with the potentidl(x), and ,t) Indeed, the thermostatistical foundationamomalougdif-
is a (dimensionless 1+1 space time. SinceD(d°/  fusion (as it is known fornormal diffusion) is naturally
ax?) [p(x,t)]"= (a/9x) {Dv[p(x,t)]"~*(3/dx) p(x,t)}, the  highly desirable, and has long been looked dsee, for in-
possible nonlinearity introduced in Eql) has a simple stance[13] and references therginThis goal was recently
physical interpretation fop=1. Indeed, there are various achieved by Alemany and Zanefte4] and other$15,16 for
real situations in which the standard diffusion coefficient de-_évy-like anomalous diffusion, in the context of a general-
pends onp(x,t). It is then clear thatv>1 (v<<1) corre- ized, not necessarily extensiv@dditive), thermostatistics
sponds to the case where, for some reasonpttlependent that has been recently proposgt?]. In particular, within
diffusion coefficient vanishe@livergesg for p=0. Thisis not  this framework, the ubiquity and robustness of/edlistri-
a very rare case. Indeed, it occurs in percolation of gasesutions in nature has been thermostatistically founded on the
through porous mediave2 [6]), thin saturated regions in Lévy-Gnedenko central limit theorefii6]. This thermosta-
tistics has already been applied to a considerable variety of
physical systems which include self-gravitating stellar ob-
“Permanent address. Electronic address: tsallis@cat.cbpf.br  jects, the hydrogen atom, the cosmic background radiation,
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ferrofluidlike liquids, and apparent magneti$8] (see also and
[19] for the linear response thegnjt has also been applied
with success to optimization techniquiggd]. Finally, it has dxm(t)
been experimentally checked for a specific pure-electron- dt =ki—kaxu(1), (12)
plasma turbulence, the solar neutrino problem, and galaxy
clusterd 21]. This nonextensive formalism is based upon thehence
entropic form
ke K| t
1— fdu[p(u)]? Xm(1) ==+ Xm(0) =~ e " (13
Spl=—"——=—" (qeR), 2 2 2

q-1

which reduces, in thg—1 limit, to the standard Boltzmann-
Gibbs entropy

Sl[p]E_f dup(u)inp(u). ()
First, let us illustrate the procedure we intend to follow,

by briefly reviewing normal diffusiong=v=1). We wish

to optimizeS; [given by Eq.(3)] with the constraints

fdup(u)=1, (4)
<u—um>15f du(u—uy)p(u)=0, 5

and
<(u—uM)2>1Ef du(u—uy)?p(u)=d?, (6)

uy ando being fixedfinite real quantities. The optimization
straightforwardly yields the solution

e Blu—uy)?
pu(u)= Z, ()
with
zlzf due AU’ = (/)2 ®

whereB=1/T is the Lagrange parameter associated with th
constraint(6) and satisfieg3=1/(20%). On the basis of Eq.
(7) we propose, for theu=v=1 particular case of Eq3)
(i.e., the standard Fokker-Planck equatjdhe ansatz

e~ BOIx—xy(1]?

pl(x1t): Zl(t) (9)

with

Bt [Zy(0)*

W‘[zm)} | (o
It follows straightforwardly thatk =2,
B(Y) :[zl<0>r: 1 an
B(0) | Zu(D) { ZDE(O)} i 2DB(0)

1-—— e ' ———

k, k,

To discuss thek,=0 case we can use 22'~1—2kyt,
which implies Xxy(t)=xu(0)+k;t and 1B(t)=[1/
B(0)]+4Dt, which, in the limt t—w (e,
t>114DB(0)]), yields the familiar result 13(t)~4Dt.
This result implies, in turn, the celebrated Einstein expres-
sion ((x—Xy)?);t for Brownian motion.

Let us now address the general,f) case. Following
along the lines of Alemany and Zanefti4] (and the generic
framework of the generalized thermostatistitZ]) we now
wish to optimizeS; [given by Eq.(2)]. The constraints are
Eq. (4),

(U—Um>q5f du(u—uy)[p(u)]?=0 (14
[which generalizes Eq5)] and
<(U_UM)2>qEJ (u=uw)?p(u]i=0? (15

[which generalizes Eq6)]. This is an appropriate moment
for commenting that the reason for using(u)]9 [instead of
the familiar p(u)] in the constraints(14) and (15) is the
(very essentialfact that by doing so we presery&7] the
Legendre structure of thermodynamics atidough the non-
negativity ofC,/q [22], whereC, denotes the specific hgat
guarantee thermodynamic stability. Let us consistently stress
that the constraintl4) is equivalent tqu)q=(Uy)q, but not
to (u)q=uy (since, unlesg=1, (uy)q#Uuy). All these pe-
culiarities are, of course, originated by tm@nextensivity
that the inde)q introduces in the theory. For example, if we
have two independent systems A and B [i.e.,
ax8(Ua,Ug)=pa(up)ps(ug)], we immediately verify that
q(A*B)=Sy(A)+S4(B) + (1-0)Sy(A)Sy(B). _
It is straightforward to see that the above described opti-
mization of S yields

[1-B(1—g)(u—uy)* "9
Z

Pq(u)= (16)

q

with

Zqu du[1—B(1—q)(u—uy)?]¥E-@ (17)

In the limit g— 1, these equations reduce to E5.and(8),
respectively. The corresponding ansatz for solving @g.
now is

{1-BO(A-g)[x—xy ()]
) 20

Pa(X,t) (18)



(b) Time dependence of B(0)[Z4(0)]**} B(t)=[Z4(t)]?* for
Z4(0)=0, ,8(0)[Zq(0)]2"¢0, and typical values of K}
Ekz/{2vD,8(0)[Zq(O)]2"} (indicated at the right of each cunve
The curve forK,=« coincides with the horizontal axis. All curves
saturate at a finite value as-, except that folK;=0, which is
proportional tot?#/(***) for all t.

with

py_[20)

B(0) | Z4(1)

[as before,B(t) and Zy(t) are nothing but the scaling of
space with tim¢ A tedious(but straightforwarg calculation
yields A=2u, andq=1+u—v. An equation forZy(t) is
also found; namely,

19

20D B(0)[Z4(0) ]~ ko[ Zo(D)]# 1Y

po dlZg(t)]*"”
dt

=0, (20

Mty

which can be solved by substitutir:zjj(t)=zq(t)“+”. The
resulting solution igfor all values ofk;)

1 1 7t/7'+ 1
K, € K,

1/(pu+v)

Zy(1)=Z4(0) . (2D
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Pq
time invariant; “norm creation” means tha monotonically in-
creaseddecreaseswith time if K,<1 (K,>1); “norm dissipa-
B(0)[Z,(0))* 0 tion” means thatN monotonically decreasdicreaseswith time
B(t) 025 if K,<1 (K,>1). “Normal diffusion,” “superdiffusion,” and
05 “subdiffusion” refer to the fact that, fok,=0, (x—x)? scales
’ like t, faster thart, and slower thar, respectively. The standard
rT ! Fokker-Planck equation correspondsuge- v=q=1. For the pre-
3 cise meaning of “unphysical,” see the text. On the=1 line we
4 haveq=2— v; consequently, when varies fromee to — 1, q varies
from —oo to 3, which is precisely the interval within which E@t)
O\E [and, consistently[dxp,(x,0)=1] can be satisfied.
0 ; 1
0 f 5 " with
b
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FIG. 1. The u/v=1/3 example:(a) Time dependence of 2vDB(0)[Z4(0)]
,8(0)//3(t)=[Zq(t)/Zq(0)]2" for Z4(0)#0 and typical values of
K, (indicated at the right of each cuvéThe curve fork,=0 lies  and
on the vertical axis. FdK,=0.25, 0.5, and 2 the asymptotic values u
for t/ 7— o0 are shown by the dashed linesis defined in Eq(23)]. =" (23
Ko(p+v)

(see Fig. 1 The functionxy(t) is the same as in the case of
normal diffusion, Eq(13), since it only describes the motion
of the average of the distributiop,(x,t), and does not de-
pend on the way in which it spreadg(0) andZ,(0) are
determined by the initial conditiofii.e., by py(x,0)]. For
k,=0, Eq.(21) becomes

Zy(t)=1[Z4(0)]*"”

| 20 wDB(O)[ZgO) T |+
2’

which, fort— oo, asymptotically recovers Duxbury’s solution
[11], namely, 1B(t)[Z(t)]?#et?#/*7) As we see,
plv=1,>1 and <1 respectively imply that
[x(t) —xm(t)]? scales liket (normal diffusion, faster than
t (superdiffusion, and slower tham (subdiffusion). The lim-
its u/v=0 andu/v=o correspond to “no diffusion” and
ballistic motion, respectively. Fon{,k;)=(1,0), the present
set of equations reduces to that of Plastino and Plaftigp
Finally, by using Eq(19) with A\=2u, we can verify that

Jdqu(x,t)=[zq(t)/zq(0)]ﬂ—1f dxpy(x,0). (25
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Consequently, the norrti‘total mass”) is generically con-
served for all times only ifu=1 (VK,) or if K,=1 (V).
For 0<K,<1 (a common cage the norm monotonically
increasegdecreaseswith time if u>1 (u<1). If K,>1, it
is the other way around.

Before ending let us mention that whemrows to infin-
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the Levy-like anomalous diffusiorisee[16,23,24 and refer-
ences therein is possibly describable(suggestion by
Zaslavsky[2]) by alinear Fokker-Planck-like equation with
fractional (time and spacederivatives, and the present cor-
related anomalous diffusion is described bynanlinear
Fokker-Planck-like equation witimtegerderivatives(in con-

ity, the solutions we have found must be physically meantrast with normal diffusion, which corresponds to tiveear

ingful. This imposesu/v>—1. Indeed, ifk,#0, 7 in Eq.
(21) must be positive, which implieg/v>—1. Also, if
k,=0, x must scale with increasing function of hence,
B(t) must decrease with which implies[through Eqs(19)
and (24)] 2u/(u+v)>0, hence, the already mentioned re-
striction applies once again. The entire picture that emerg
is indicated in Fig. 2(we have not focused on the<0

Fokker-Planck equation witimtegerderivatives. Since both
types of anomalous diffusions can be handled within the
present generalized thermostatistics, the conjecture is al-
lowed that further unification can possibly be achieved by
considering the generic case ofhanlinear Fokker-Planck-

Sfke equation with fractional derivatives. On specific

rounds, we have obtained, for a generic linear fd¥¢g),

region because that would force us to discuss the stability 9
the solutions with respect to small departures, and this Iiea
outside of the scope of the present work

To summarize, on general grounds, we have shown th:ﬂamely’ Eq(1).
thermostatistics allowing for nonextensivity constitute a ) ) )
theoretical framework within which a rather nice unification ~ 1hiS work was carried out in the research group of
of normal and correlated anomalous diffusions can béd3. Widom, and was supported by the National Science Foun-
achieved. Both types of diffusions have been founded, osation and the Cornell University Materials Science Cen-
equal footing, on primary concepts ¢dppropriately gener- ter. One of us(C.T.) is grateful for warm hospitality by
alized thermodynamics and information theory. Moreover, B. Widom.

e physically relevant exadspace, timgdependent solu-
ons of a considerably generalized Fokker-Planck equation,
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