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Phase transitions in nonlinear oscillator chains
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It is shown numerically that a one-dimensional system of coupled disparate nonlinear oscillators undergoes
a phase transition from a synchronized to a desynchronized state as the range of interactions is decreased.
Using a coupling that decreases with distancer a8, the functional dependence of the critical coupling
exponent on the coupling constasf(K) is mapped out and the nature of the transition is discussed. Previ-
ously studied models and results are recovered in the appropriate limits of the coupling exponent.
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Spontaneous synchronization among an ensemble of siméf natural frequencies was not too large. Kuramoto and col-
lar constituent elements is a phenomenon that allows for thborators, as well as other investigators, extended this work
proper functioning of many biological and physical systemsby considering ensembles with nearest-neighbor interactions.
A dramatic example from biology occurs when the memberd-or a one-dimensional chain, Strogatz and Mird®g pre-
of certain species of fireflies overcome their individualSented proof that synchronization was not possible in the
rhythms to begin flashing in unisdi]. This form of spon- thermodynamic limit. Similar conclusions were reached by
taneous collective behavior may also be important in physiPaido [10] using an analysis similar to renormalization
cal systems. In applications of Josephson junctions, one igroup. One might expect that this would be due to rare or
often interested in the behavior of a whole array. Within theeXtreme fluctuations in the tails of the frequency distribution
array these quantum devices possess a distribution in intrif@ Phenomenon known in other fielfis1]), but it turns out
sic frequencies due to variations in resistances and criticdhat the inability to synchronize persists if the tails of the
currents. If the junctions can overcome this frozen disordeflistribution are removed.
and attain the in-phase state, power output is expected to Thus it has previously been found that synchronization is
increase proportionally to the number of junctig@$ Other — @n accessible state for a one-dimensional ensemble in the
examples of such collective behavior include cardiacthermodynamic limit if it possesses mean-field interactions,
rhythms, lasers, and neural activity,3]. while it is not attainable with nearest-neighbor coupling. It is

These systems have been modeled as ensembles € purpose of this article to investigate the requirements of
coupled nonlinear oscillators with distributed frequenciesinteractions among the oscillators such that the synchronized
[1,3-10. Quantifying this approach, Wiesenfeld, Colet, andState is spontaneously attainable in this limit. To this end, we
Strogatz recently mapped a series array of Josephson jun'tmroduce a one-dimensional model with interactions that de-
tions onto such a model with mean-field interactipsis As ~ cay Wwith lattice separation according to a power law;'.

a result, they were able to make quantitative predictiondor a fixed coupling constant, it is shown that this system of
about the conditions necessary for such an array to synchr&oupled nonlinear oscillators undergoes a transition from a
nize. Although the junctions as well as the other given ex-state that will spontaneously synchronize to one that will
amples are nonequilibrium systems, usually considered demain desynchronized as the range of interactions is de-
zero temperature, they show many similarities to ensemble&eased. We find that there exists a critical coupling expo-
from equilibrium statistical physics. For example, in spinnent dependent on the coupling constap(K). The func-
systems the synchronized state might be thought of as a fefional dependence is mapped out and the nature of the

romagnetic arrangement. Thus it has become quite commdfansition between the synchronized and desynchronized
to refer to “phase transitions” in such oscillator communi- states is discussed. Since several of the systems mentioned as

ties when some control parameter is variée-7]. examples are effectively one-dimensional, these results show
In this spirit, Kuramotd8] introduced a mean-field model that the interactions must be sufficiently long ranged if the

from which he was able to solve for the critical coupling System is to reside in the synchronized state. The proper

necessary for synchronization to occur. His results showefHnction of these systems may therefore be dependent on

that a system possessing this type of “all-to-all” interaction their ability to maintain a sufficiently long interaction range.

would always be able to synchronize for some finite value of The oscillator model is governed by the equation

the coupling constant, provided the spread in the distribution
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where (=1,... N), N'=(N—1)/2, andN is the number of 0.4F 3
oscillators taken to be odd. Periodic boundary conditions are ~ 02F (a) E
assumed. The coefficieny is a normalization factor that @i ook o =
allows interpolation between the nearest-neighbor and mean- -0.2F 3
field limits: -0.4f .
200 400 600 800
N’ oscillator
n=22, i " ) : :
=1 04F ®) ]
~ 0.2F E
The natural frequencies; are chosen at random from a ©i 0.0F—1L___J MIRNE
unimodal distributiong(w), taken to be a Gaussian. Since -0.2F 3
selecting the appropriate scaling transformation allows one —0.4F 3
to fix the variance, we chosg(w) to have unit variance. 200 400 600 800
Equation(1) was integrated numerically using a fourth- oscillator
order Runge-Kutta algorithm. The majority of these compu-
tations were performed on a MasPar single-instruction N
multiple-data(SIMD) massively parallel computdr2]. It w;
turns out that finite-size effects can be quite important in this
case. Thus, runs were performed folN=51, Py ]
401, 801, 901, 1501, and 2001 and finite-size scaling was 200 200 600 200
used to extrapolate to the thermodynamic limit. oscillator

In the lower limit of the coupling exponent—0 in Eq.
(1), all of the oscillators become coupled to one another with FIG. 1. The average frequency defined by E4.for represen-
equal strength, thereby resulting in the mean-field modetative values of the coupling exponent whele=801K=7.0: (a)
studied by Kuramoto. Accordingly, our numerical simula- @=1.8; (b) @=2.0;(c) «=4.0.
tions demonstrated his result for the critical coupling con- . . ) )
stant in this limit,K .= 2/[g(0)]. To describe the collective Y simulations demonstrated. For a coupling constant just

behavior, Kuramoto used an order parameter defined by thRelow the critical value, two plateaus of locally synchronized
expression oscillators develop in the average frequency with a break

between them: the system behaves effectively as two renor-
L malized oscillators and is no longer globally synchronized.
Ré‘Pz—E et (3)  As the coupling is decreased, more and more plateaus in the
Ni=1 average frequency quickly form.
By increasing the coupling exponent in E4) from its
) P e ) - lower bound of zero, we observed a transition from a syn-
value in the thermodynamic limit, although in a finite systemcp,nized to a desynchronized state. To ensure that the en-
there may be fluctuations of the ord@(1/VN), while in the  semple would synchronize far=0, the coupling constant
desynchronized stat& will be very small and have fluctua- \ya5 chosen to be larger than the critical value in the mean-
tions of the same type. _ field limit. Figures 1 and 2 show the average frequency and
As the coupling exponent becomes larger, the in-  grder parameter defined by Eq8) and(3), respectively, for
teraction terms in Eq(1) reduce to local coupling, in the N=801,K ="7.0, and three selected coupling exponents. Fig-
limit, resulting in the one-dimensional model with nearest- ;.o 1(@ shows a state in which two plateaus in average fre-
neighbor interactions. In this limit, the behavior of the OSC”'quency have just developed. This state may be thought of as
lators may be well described in terms of the average fregonsisting of two groups of oscillators moving with dissimi-
quency. The value at thgh site is defined by lar average frequencies on the unit circle in the complex
plane. As a consequence, the order parameter will undergo
;= lim 6;(t+T)—6;(T) , (4) periodic behavior as shown in Fig(&. Figure Xb) shows a
t—oo t state in which several plateaus have developed, as can be
seen in Fig. ) by the large variations in amplitude in the
where T is chosen such that transients have decayed. lorder parameter. This state is basically a sum of several in-
terms of this measure the synchronized state corresponds ¢@mmensurate periodic functions. Figur@)lshows a state
all the oscillators having the same value. Although forwhere a great many plateaus are present and can be consid-
a— in Eq. (1) synchronization is not possible in the ther- ered to be consisting of incoherent motion: small groups of
modynamic limit, it will be attainable for a finityl provided  neighboring oscillators are still locked, but the ensemble be-
K is sufficiently large[9]. The ability to reach the synchro- haves in an essentially random fashion. Correspondingly, the
nized state is dependent on competition between the frozeprder parameteR is seen in Fig. &) to be fluctuating near
disorder of the natural frequencies and the aligning interaczero.
tions. If the coupling strength is large enough to constrain the To clarify this transition, consider the behavior of the av-
disorder, then the ensemble will synchronize. The value oerage plateau size divided by the total number of oscillators,
the coupling constant necessary for spontaneous synchronithich we will denoteP(«)=[N(«)]/N. This expression is
zation should increase with system size\&§ a dependence equivalent to the inverse of the number of plateaus. Choos-

In the synchronized state, the magnitudegoes to a fixed
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1.0F 1 constanta(K) in the thermodynamic limit. An infinite size system
0.8F (e) 3 whose coupling parameters lie within the region labeled synchroni-
06F e zation will spontaneously evolve to a synchronized state.
R o0sf 3
0.2F . synchronization was lost was approximately 0.2 for the vari-
0.0 IVMAAM Nt oo, AtANN LA A i ati - ot i divi
0 200 200 500 B0 1000 ous realizations, while quahtat_wely all of the individual
time curves showed the same behavior as the average. It should be

noted that the range at values over which the transition

FIG. 2. The temporal behavior of the order-parameter magniiakes place could be broadened by some atypical realizations

tude defined by Eq(3) for the same parameter values as shown inOf the natural frequencies. In numerics other than those av-

Fig. 1 (N=801K=7.0): (@) a=1.8;(b) «=2.0;(c) a=4.0. eraged we observed such behavior for a single realization of
the natural frequencies.

ing the samé< andN values as before, the behavior of this  In view of the sharpness of the transition, it is possible to

ratio is plotted in Fig. 3. The values &f shown in the figure ~identify a “critical” interaction exponentx (for a givenK
resulted from averaging over six independent series of sim@NdN) such that the oscillator system cannot synchronize if
lations, each with a particular realization of the natural fre-&>ac. Since our central interest is the behavior in the ther-
quencies. Perhaps the most striking aspect of this transitioiodynamic limit, finite-size scaling was used to extrapolate
from a synchronized to a desynchronized global state is itde ac(K) results at the varioud values leading to the curve

abrupt_nature. Sinc®=1 corresponds to synchronization SOWn in Fig. 4. This was performed by plottiag versus

while P~0 corresponds to incoherent oscillations, the rangelll\I and extrapol:’;\tlng f0|1\l—>oo [12]. As shqqld be ex:
of a values that result in more complex dynamics is remark-.peCted’ Kurar_noto_s analytlcal result for the critical qogplmg
n the mean-field limit ¢=0) was recovered. In the limit of

ably small. The loss of synchronization is characterized b erv large coupling constants... apoears to be aporoachin
the emergence of plateaus of locally synchronized oscillator ylarge coupiing © app PP 9
gn asymptotic value of 2.

in the average frequency. The location and relative sizes o The similarity of the present results to those for spin Svs-
these plateaus is dependent on the particular realization ?f -2 Y P ) . or spin Sy
ems is interesting. For the one-dimensional Ising &nd

intrinsic frequencies. Despite this, the majority of our simu- dels with an int " f the form.<. it is Kk
lations demonstrated similar quantitative dependence odels with an interaction of the form #, it is known (see

P(a). The range of coupling exponent values over which

ef.[13], and references thereithat ferromagnetism is not
possible at finite temperatures fer-2, while ferromagnetic
order becomes an accessible state at low temperatures if
a<2. Likewise, for the one-dimensional spin-glass model a

Lo phase transition is found fogr<a<1 [14]. We note that in
08 - those cases the critical value does not depend on the cou-
pling constant. The analogy between spin systems and oscil-
06 ] lator ensembles is intriguing and may be a useful guide for
- intuition, but it remains to be seen if it is more than just a
P 04 | useful similarity.
Summarizing, for a one-dimensional chain of interacting
02 - disparate nonlinear oscillators in the mean-field limit, global
’ order is possible, while it is not in the limit of nearest-
o o neighbor coupling. Using a decaying power-law interaction,
0.0 1"0 2"0 30 40 we examined the loss of synchronization. We found that if
o a<«a. a synchronized state exists for some firtewhile if

a>a, no finite coupling will synchronize the ensemble. We

FIG. 3. Dependence of the average plateau size on the couplingapped out the functional dependence of the critical expo-
exponent. The circles represent the average over six series of simaent on the coupling constaat.(K). The nature of the tran-
lations with independent natural frequencies.

sition between the two extremes was found to be abrupt and
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