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Threshold detection of wideband signals: A noise-induced maximum in the mutual information
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In some nonlinear dynamic systems, the addition of noise to a weak periodic signal can increase the
detectability of the signal, a phenomenon belonging to a class of noise-induced cooperative behavior known as
stochastic resonandSR). There has been much recent speculation on the possible role of SR in signal
processing by sensory neurons. However, most results have focused exclusively on increasing the output
signal-to-noise ratigSNR) of time-periodic signals, even though many real-world sigelg., those encoun-
tered in some neurophysiological and communications applicatamesnot of this form. Here we consider a
generalization of SR, based on the Shannon mutual information between the transmitted and received signal.
This generalization can be applied to cages., the information transmitted by the output spike train of an
integrate-fire model neuron which we consider hemevolving aperiodic input signals for which the output
SNR might be ill-defined, uninformative, or irrelevant. Since the SR-like effect in the transmitted information
disappears with the optimal choice of model parameters, we suggest that such an effect is likely to be
particularly relevant to systems, e.g., neuronal populations, in which natural circuit constraints may render
parameter optimization impracticd51063-651X%96)50109-1

PACS numbe(s): 05.40:+]

Intuition suggests that when noise is added to a signasubject to aperiodic inputis]. Within this framework, the
prior to or during transmission across a communicationmutual information(MI) I]s(t),z(t)] between the input sig-
channel, the received signal will be more corrupted than ifnal s(t) and the output signal(t) replaces the output SNR.
the uncorrupted signal had been transmitted. The amount &Y analogy with the classical formulation, where SR is de-
corruption is often quantified by thésuitably defineyi fined as a peak in the SNR vs noise characteristic, within the
signal-to-noise ratigSNR) of the output: for a linear chan- information-theoretic framework it is defined as a peak in the
nel, the output SNR decreases monotonically with increasin§/!l vs noise relation. SR has recently been observed in the
noise intensity. For a large class of nonlinear channels, howcricket cercal system in the conventional manner, using the
ever, there is a seemingly paradoxitatreasein the SNR, ~output SNR as a response meas(fe a sinusoidal input
up to a maximum, with added noise; this effect has beer$igna), and via the above-mentioned “resonance” in a
widely studied under the occasionally misleading name ofower bound on the transinformation functigfor a broad-
stochastic resonancéSR) [1-3]. Underlying SR is some band stimulus[7]. For the case of a fixed threshdlas in a
form of thresholding in the communication channel; specifi-level crossing detectgr SR may be related to the well-
cally, SR stems from a mismatch between the signal and thknown “dithering” effect[8]. We note that other researchers
threshold. [9] have also suggested alternative measures of the response

The classical SR formulation in terms of the output SNROf nonlinear neuron models, to aperiodic inputs.
has two problems. First, SR is usually defined for systems The basic approach can be illustrated with a very simple
with sinusoidal inputs; but in many cases it would be ofexample. Consider a binary communication channel whose
interest to consider arbitrary input signals. A second and®utput isy= 6(x+n), where the signat is a binary random
more basic problem is that for a nonlinear system driven by/ariable that is 1 with probabilit{?, and—1 with probability
a broadband input signal, the output SNR may be either illPx=1— Py, andn is a Gaussian random variable with mean
defined or uninformative. Only when the input signal is sinu-zero and variance?. The outputy is given by the threshold
soidal is it straightforward to compute the output SNR, at thgfunction 6( ) asy=1 if x+n>Q, andy=—1 otherwise,
fundamentalor at any higher harmonjiof the input signal Where the constar® denotes the threshold, and we define
frequency. P, and Py=1-P, as the respective probabilities of these

Information theory[4] provides a natural framework for two occurrences. Then we can compute the mutual informa-
many problems in biological information processihg]. tion 1(X,Y) between the ensemblésandY using the defi-
Here we describe an information-theoretic generalization ofiition [4]

SR that addresses the above-mentioned problems in the use

of the output SNR as an information measure for systems 1(X,Y)=H(Y)—H(Y|X) 1)
*Electronic address: bulsara@nosc.mil whereH(Y) = —(log,Py),= —P,log,P,— Pog,Pis the en-
TElectronic address: zador@salk.edu tropy of Y, and
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1 ' ' = . : function of the input noise varianag? for four values of the
. threshold,Q=0, 1.25, 2.5, 5. FoQ=0, in fact for all |Q|
N <1, the transmitted information is unity up to a critical noise
. 1 level and then falls off steeply; thus in the regin@|<1,
N the channel works best without added noise. However for
N |Q|>1, i.e., whenQ exceeds the dynamic ran§e 1,1] of
o e o e the inputx, in the absence of noise the outguis indepen-
noise variance dent of the input andl(X,Y)=0. As noise is added to induce
- threshold crossings, the transmitted information increases to
e a maximum, after which added noise degrades the signal.
e Thus for every threshol@ in this regime, there is an optimal
| .- _ noise level that maximizes the transmitted information. Note,
L7 however, that ifQ could be varied, then the maximum infor-
e mation would be a monotonically decreasing function of
~ . . (rﬁ; indeed, it would be precisely the sigmoidal envelope
input GNR 10 given by the optimal valu®Q=0 (dashed ling Thus the
SR-like effect can only be realized if the thresh@ds nota
FIG. 1. (Top) Simple example of noise-induced increase in in- free parameter.
formation transmission through a binary channel. Zero-mean We can now apply these observations to a question of
Gaussian noise is added to a binary inguand the sum is thres- substantial interest in neurophysiology. A typical neuron re-
holded atQ to produce a binary outpyt. The mutual information  ceives a continual barrage of synaptic inputs from other neu-
betweerx andy is plotted as a function of the noise varianggfor rons; with the exception of primary sensory transduction
Q=0 (dashed curve Q=1.25(top curve, Q=2.5 (middle curvé¢  neurons driven directly by external stimuli, this is thely
and Q=5 (bottom curvé. The dashedcurve represents the maxi- input that the neuron receives. The signal generated by the
mum information obtainable for each noise |e\(§0tt0m) Noise- Synaptic barrage iS, in generaL aperiodic_ Since a necessary
induced increase in information through a spiking neuron. The MUtput not sufficient condition for useful computation is that
tual information(3) between the output “spike train” and the input {he output of a neuron preserve information about its input, it
is plotted as a function of the input SNR, defined asd/ 7. For  ig reasonable to ask how the mutual information between a
both curves,7=20, Q=20, the signal variance was fixed &t noron's input and its output spike train depends on the input
=(0.4) an_d the noise varianae;, was varied to change the SNR. noise, when the input signal is nonsinusoidal.
For the solid curve, =0.8, while for thedashedcurve x=0.9. We consider a standard model of neuronal dynamics, the

Note that the information has been normalized separately for each s - & .
curve: the normalization factor for trdashedcurve was five times hleaky |.ntegrate and-fire modeﬂlo]. The mputy(t)_ to the
neuron is the sum of a signalt) and some noise(t),

that for thesolid curve, and in absolute units always exceeds it. The

mutual info (bits)
(=]
w

==

info rate (bits/time)

information rate was estimated by Monte Carlo methods. y(t)=n(t)+s(t). The neuron _dynamic_s_ are given byt)
=[v(t)/7]+y(t) +u«, with initial condition v(ty)=0 for
_ —p(_ v(t)<Q, where 7 is the membrane time constant,is the
H(Y[X) = = (10g2Pyjx)x = Px( = PyjxlogoPyx steady state inpu is the firing threshold, and(t) denotes
— Pylog; Pyry) + Pt — Py xtog,Py the membrane voltage. Wher(t)=Q, the neuron emits a
spikeand resets, deterministically, tty). The outputx(t)
- Pyl_xk)gZPH—x) (2 is completely characterized by a sequehgg,,...t; ... of

spikes, called thespike train i.e., the times at which the
is the conditional entropy o¥ given X. Equation(1) is a threshold was crossed. The sequence can equivalently be
definition, while the expressions fof(Y) andH(Y|X) ap-  represented by the list of interspike interval$Sls)
ply only if the output distributiorY is binary. For this simple  T;=t;_;—t;. This model is completely Markovian: no his-
example, the relevant quantities are straightforward to comtory prior to the last reset is preserved. Note that if buft)
pute. For example, the output is 1 whenever either the signalnds(t) are Gaussian and white, thg(t) is also Gaussian
X is 1 and the noise is smaller than +Q, orxis —1 and and white, and the distinction between ‘“signal” and
n is larger than-1—Q. Thus the probability?, of the event  “noise” is purely a matter of definition: no measure based

y=1 is the sum of these two conjunctions, solely on output statistics—such as the output SNR—could
provide a complete insight into the information being trans-
P~ perf = + Pxerf —1Q mitted.
yool X o2 X o2 || We are interested it S(t),Z(t)], the mutual information

between the signal and the spike train, because it tells us how
where the erfc arises from the cumulative density of themuch information(in bits/time) the spike train conveys about
Gaussian noise. Using similar arguments, we see that the signal. In general this is a difficult quantity to compute,
because it involves the joint probability distribution of all
. 1-Q Ly -1-Q possible signals and resultant spike trains—a high-
Pylx_ferf —\/— , Py|x—§erfc —_— . . . . . . . .
o2 gn\/i dimensional distribution. However, if the I1SIs are indepen
dent, then we can express the information in termB(fF),
Pyx=1—Pyy, andPy=1-Py3= the probability distribution of a single ISI. Since by assump-
Figure 1(top) shows the mutual informatioh(X,Y) as a tion the neuronal dynamics are forgetful, correlations in the
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ISI distribution can only arise from correlations in the signalhave considered the regimer<Q in which, for the weak
itself; if we consider only input signal§(t) drawn from a  signal strengths considered here, the threshold crossings are
white Gaussian distribution, and uncorrelated with the noisgargely noise-induced an&<1/r for o2=0. This corre-

N(t), then correlations' cannot arise from. the input and 'S|53ponds(in the zero-noise limjtto a near-exponential ISl
are guaranteed to be independent. In this dd48&),Z(t))  gistribution with maximal information transféa.1]. In this
can be expressed as the productl@(t),T), the mutual o, cqjieq “Poisson regime,” the assumptions leading4p

information per spike between the signal and a single ISIare expected to be rigorous and the spike rate is a very sen-
and the average spike raR=1/T) [which is calculated giye function ofa?, so that a small amount of added noise
directly from the distributiorP(T)], greatly increases the spike rd@ebut exerts only a moderate
Bl Bl _ amount on the information per spike. Thus, at low noise
| (S(O.2())=RISO.D=RHTM - ATISW)]. @ (high SNR the information raténcreaseswith added noise,
where we have used the expression for the mutual informadntil the mutual information passes through a maximum.
tion given by Eq.(1). The right-hand side is straightforward This maximum is analogous to the maximum in the output
to evaluate, since it depends only on the ISI distributionSNR in the classical formulation of SR, and is seen to occur
P(T) and the conditional distributioR(T|s(t)), rather than  at an input SNR-2. We note that, for the solid curve of Fig.
the distribution of all spike train®(Z(t)). 1 (bottom), the producR+ decreases from 1.0 to 0.01 with
In general, bothP(T) and P(T|s(t)) depend on the sta- increasing input SNR; at the maximuRz=0.1.
tistics of the signal and noise ensembles. Thus, the entropy The SR-like maximum disappears outside the Poisson fir-
of the ISI distribution is H(T)=—/oP(T)log,P(T)dT, ing regime, i.e., when the conditidR<1/r is not met: the
where we utilize a new realization of the signal and noiS€gttact is observed only when the noise-induced increase in
aftereverythreshold crossing, ultimately computing the den- . firing rate compensates for the concomitant noise-
sity function P(T). The conditional entropy is similarly de- induced decrease in the information per spike. Tashed

fined in terms of the ISI distribution conditional on the signal curvein Fig. 1 (bottom) shows the effect of increasirRg by

o increasingu. In this case, the signal is effectively supra-

H(T|S(1))= —< J P(T|s(1))log,P(T|s(t))dT . threshold(although we still have.7<Q) and the information
0 s(t) rate is a monotonically increasing function of the input SNR.
(4) Note that the information rate is shown in normalized units;
TIhe actual peak information rate is five times lower for the
solid curve in which information rate was increased through

. noise than for thelashedcurve in which the information rate

Svas increased by varying the threshold. The same effect is
is introduced following each threshold crossing and the con-, .. : ) o
ditional density P(T|s(T)), and hence the entropy obtained by increasingrg or decreasingQ. However, the

I . . difference in scales between the curves of Figbattom
glgiiﬁ‘;{()a)s t%%r?ﬁgﬂefo{,?;J?ﬂﬁ?\lﬁﬁy%ﬂn(ﬁf r:;i Elgnrzg ;Efdillustrates that when trying to enhance the detectability of a

S .~ weak signal in a noise background, the best results are ob-
as a measure of the reliability of the response to the partICL%ained by lowering the detector threshold, rather than by add-

lar input S(t); in general, the reliability decreases as the'n more noise although, for nonlinear detectors, the latter
noise variance increases. This procedure is then repeated i gn, o
rocedure has been shown to enhance the “detection prob-

different realizations of the signa(t) drawn from the en- proc o . .
semble, and the average over the signal ensemble is og—b'“ty under the SR scenarifil2]. We note that a SR-like

tained; this is the reliability averaged over the ensemble oﬁgﬁcitnh:;;ifaernﬂ%gse dnri\?(lajr?rt])t)l/ﬁ:((jj’c\g%;g?irl::/?/rr]](iet:e 'g?&?sa_'
mputs. For any partlcular choice of S|gnal and noise statis: N ,noise[13] as well as via a dynamical entropg4] in a
tics, the above expression can be estimated through Montg ; . o

Carlo methods. sinusoidally driven Schmitt trigger.

We now conidr he efect on the nornaton st of " 1SS0 work Decee s Ok veed o
added noise, where the noise leatlthe inputis character- PP y

) . N 2, 2 neuronal dynamic$6]. They considered the linear-filtered
ized by_the SNR V.Vhlczh 'S .by deflmtlomylon._l+05/.0“' threshold crossing model and showed that if, as in our simple
Inzcre_asmg the noise, Wh|le holding the_ signal variance exampleFig. 1 (top) dashed curvkabove, the model param-
o fixed decreases the input SNR but mcreagés This  aters(e.g., the threshojdwere set to optimize information
exerts two competing effects on the mutual information.qate, the rate was a monotonic function of the SNR of the
First, the increase iwrf, increases the spike raR Second, input, and no SR effect was observed. They therefore sug-
the decrease in the input SNR decreases the information pgested that adding noise could be viewed as a strategy for
spike 1(S(t),T). The relative contribution of these two ef- overcoming an “incorrect” setting of model parameters.
fects to the information ratdRl (S(t),T) depends on the Although, in the integrate-and-fire model that we have
model parameters. When the first effect dominates at loveonsidered, the SR similarly disappears with the appropriate
noise and the second effect dominates at high noise, an SRining of model parameters, SR-like effects may neverthe-
like effect is observed. less be relevant to the nervous system when constraints make
Figure 1(bottom) (solid curve shows an example of an it difficult or inappropriate to maximize the transmitted in-
SR-like relation between the input SNR and the transmittedormation. Consider the mammalian cortex, whemoaula-
information (shown in normalized units of bits/timeWe  tion of neurons within a cortical column represents some

The evaluation of the conditional entropy can be thought o
as involving two steps. First, some particular realizat¢r)
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sensory feature. Each neuron within the column transformbust approach satisfies only a constant factor of 2 in the
similar inputs from thousands of other neurons into a singlénformation. Thus the role of SR may not be to achieve the
output spike train; that is, the input entropy to each neurorglobally optimal mutual information, which in this case
exceeds the maximum possible output entropy. would require an implausibly sophisticated decoder, but
A caricature of this situation illustrates how constraintsrather to make efficient use of the simplest architecture.
might make SR-like effects relevant. Consider a small modi- Most of the SR literature to datel-3] has focused on
fication of the simple binary model analyzed above, wherdime-sinusoidal signals in Gaussian noise backgrounds.
we now allow the inpui to have higher entropye.g., by Wh|le_ t_he output SNR may be an a_ldequat_e measure for char-
drawing it from a continuous distributionhan the outpuy; ~ actérizing the response to such signals, it is not, in general,
herey; is analogous to the output from thth neuron in the thg most appropriate measure Wh?” cons'|der|.ng more com-
column, andx=S.u; is the analog sum of the other input Plicated signals of the type considered in this work. The
elementsu; (outside the columnconnected toy;. Under conventional” SR effect may also bdor a sinusoidal input
these conditions, the signal can be represented using an signa) conne_ctgd[lS,lQ -W-'th a synchromzatlon _between
ble oN binary elements, each receiving the saxne the characteristic deterministithe input signal periodand

'?hn;eqmuestion s howl . the information about the. input stochastidthe Kramers rate for zero input sighéime scales

' . associated with the system. Clearly, the above-described
represented by the populatign depends oN. Under the

. ) 4 ; phenomena may be regarded as a generalization of the “con-
most efficient population coding strategy, wherein each ele

X .S / e ventional” SR effect for more complex signals.
ment represents a binary “digit,” the informationis di-
rectly proportional to the population siziexN, but this op- A.Z. acknowledges support from the Howard Hughes
timum requires a sophisticated encoding-decoding schemdedical Institute to Charles F. Stevens, and A.R.B. was sup-
that might be awkward to implement using simple summa-ported by the Office of Naval Resear¢Rhysics Division
tion elements wherein we limit ourselves to decodingand by NATO CRG No. 931464. We also acknowledge valu-
z=2,;y;. A much simpler strategy involves simply adding able discussions with W. BialeklNEC) and M. DeWeese
noise to each input, so thatlogNY?= ZlogN; this more ro-  (Salk Inst)
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