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Controlling spatiotemporal dynamics with time-delay feedback
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We suggest a spatially local feedback mechanism for stabilizing periodic orbits in spatially extended sys-
tems. Our method, which is based on a comparison between present and past states of the system, does not
require the external generation of an ideal reference state and can suppress both absolute and convective
instabilities. As an example, we analyze the complex Ginzburg-Landau equation in one dimension, showing
how the time-delay feedback enlarges the stability domain for traveling wgs&663-651X%96)51407-§

PACS numbegps): 05.45+b, 47.27.Rc, 47.5%j

A common situation encountered in the operation ofequation shows both that this method can stabilize spatially
physical systems or devices is that a useful solution of thextended periodic orbits and, more generally, that the intro-
equations of motion turns out to be unstable in a parametetuction of spatially local time-delayed interactions can dra-
regime of interest. In many cases the desired behavior is &atically alter the stability properties of extended determin-
steady state or a regular periodic motion, and the instabilitystic systems. . _ _
eventually leads to chaotic fluctuations which limit the sys- Our method has three key features: First, it applies
tem’s performance. Thus one is led to explore the possiblg€qually well to systems with absolute or convective instabili-
modifications of the system that render the desired motiofi€s. Second, because the feedback is locally determined, the
stable. method is scalable up to arbitrarily large system sizes with

Recently, there has been intense interest in the applicatioR© increase in complexity. Third, it does not require com-
of proportional feedback for stabilizing periodic orbjs2].  Parison to an external reference signal and therefore might be
Since the orbit in question is a solution to the equations ofMplemented in fastoptica) systems, systems in which the
motion, the stabilizing feedback signal vanishes when conteference state is not knovenpriori, or systems in which the
trol is successful, so that all the desirable features of théeference state has nontrivial spatiotemporal structure. In
uncontrolled system are retainf8]. Many methods for con- Systems where the control works, the only information that
trolling systems with only a few relevant degrees of freedommust be supplied by the controller is the periedof the
have now been successfully demonstrated. desired motion.

Some of the most interesting and significant dynamical The general approach we take is as follows. To generate
instabilities arise in spatially extended systems which may béhe feedback signal for a system described by an evolving
described by partial differential equations, a large number ofield ¢(x,t), the entire field is compared to time-delayed
coupled ordinary differential equations, or coupled map latimages of itself¢(x,t—n), with 7 chosen to be the period
tices. Well-known examples of practical interest include con-of the desired orbit and taking all positive integer values.
vecting fluids, large Fresnel number lasers, and arrays diVith t,=t—nr, the feedback signal is the field
semiconductor lasers. For small systems, the number of un-
stable modes remains small and techniques involving only a *
few degrees of freedom can effectively treat the spatiotem- €4(X,1)= yE R b (X,t,) — d(X,thr1) ], (1)
poral dynamicg4]. For the case of open systems with con- n=0
vective instabilities, control of larger systems has also been
demonstrateds]. wherey is a real parametdthe gain andR is a real param-

In this paper, we present and analyze a method for stabgter between 0 and 1. We assume here that known in
lizing periodic orbits in arbitrarily large system@ different ~ advance(The problem of finding appropriate periodic orbits
approach has been suggested by Hu and[€u Our ap- and their periods is beyond the scope of this papkris
proach is a generalization of the technique known as “ex<lear thate, vanishes identically whee(x,t) is periodic in
tended time-delay autosynchronizatiofETDAS), which  time with periodr. As emphasized elsewhd2], the infinite
has been successfully applied to a variety of low-sum can be obtained in practice with a recursive feedback
dimensional systems, both numerical and experimdi2fal loop that contains only a single time-delay device. In some
In ETDAS, the current state of the system is compared to itsystems, it may be possible to implement this form of control
state one or more periods in the past. In this paper, we takdirectly, e.g., by using optical elements that preserve the spa-
the feedback mechanism to be local in space, in the sendi@l structure of a laser beam. Alternatively,(x,t) can be
that the signal at a given point depends only on previousonsidered as a limiting case of the placement of indepen-
behavior of that particular point, not on the behavior of dis-dent ETDAS controllers at many discrete points in the sys-
tant regions or spatially averaged quantities. The locally detem.
termined feedback is applied simultaneously at all points in We are interested in the extent to which proper choices of
the system. Our analytical treatment of the important speciay and R can improve the stability of selected time-periodic
case of the one-dimensiondiD) complex Ginzburg-Landau patterns of the fields(x,t) for arbitrarily large system sizes.
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FIG. 2. Stability diagrams for three choices of wave number
Space k and two choices of parameteR in Eqg. (1). (a
) ) ) ] . k=0.0757,R=0.75, The circles mark the values of,c; used in
FIG. 1. Numerical simulation of the 1D CGL equation with i 3 (See final page of text for explanationsdb, U1, and the
periodic boundaries and parameters=< c;=2). (See final page of  jqtteq line) (b) k=0.0757,R=0.5, () k=0.1r,R=0.75, (d)
text for simulation detail$. The plots show the evolution of the k=0.057,R=0.75. In the area labele8the uncontrolled traveling
phase of the complex field. Black (white) regions correspond to 5y s stable. In the shaded region, control is possible. In all cases

phases near 0{). (@) Without control, an unstable traveling ¢hown here, control is achieved with gaip|<1. In the region
wave statéwave numbek=0.075r) evolves into a turbulent state. o 1ed U, no value ofy can stabilize the traveling wave. The

(b) Time-delayed control stabilizes the traveling wave. The controly,ched line marks the transition from convectilaver left region
parametergsee Eq(1)] are y=—0.6 andR=0.75. to absolute instability in the uncontrolled system.

In this paper, we treat the 1D complex Ginzburg-Landau,qresnonds to a different set of values formnd R. The

(CGL) equation with a cubic nonlinearity, a partial differen- o546 region represents the parameter values for which the
tial equation that describes a large class of systems that u'f'r'aveling waveA, is a stable solution of the equation with

dergo a bifurcation from regular oscillations to spatiotempo-q 0| “hut would be unstable without control. The instabil-
ral chaos[7]. In addition to its relevance to fluid and laser :

! . _ ity would be convective just above onset, but absolute for
systems, this equation has the qdvantage of POSSESSIng pur gerc, or c; [8], as indicated by the dashed line in Fig. 2.
smuso!dal travghng Wave.s_olutlons V.Vh'Ch permit a det‘f’“le.dA surprising result is that time-delay feedback allows stabi-
analy_S|s. Our linear stab|_I|ty analysis shpws that perloqmlization of traveling waves deep into the ordinarily chaotic,
trav_ellng wave states can indeed be stabilized by approprlatgoSolutely unstable regime{cs~8), even though it is al-
ph0|ces ofy andR,“even for systsm pa_rameters correspond-most totally ineffective in stabilizing the unifornrk&0) os-
ing to turbulence(“defect chaos” [7]) in the uncontrolled

: : . ; ._cillatory state.
equation. A numerical illustration of successful control is We now describe our procedure for obtaining the stability
shown in Fig. 1.

. . ._domains depicted in Fig. 2. Standard linearization of @4.
dim-rehrwesi(i)onr}(targgefgrr(]:qil_s equation we study may be written InaboutAk(x,t) yields sets of ordinary, time-delay differential
equations for the Fourier amplitudes of a perturbation. The
@) technique of Ref[10] is then applied to determine the sta-
bility of the different modes. In each periad a given mode
wherex is a one-dimensional continuous variablx,t) is ~ 9"0Ws or decays by a complex factpr (a Floquet multi-
plier). A system is stable if and only ifu|<1 for every

a complex fieldc,; andcs are real parameters, amagd(x,t) is o : A
the control term defined above. Without the control term, EqMode. The defining relation for the Floquet multipliers of a

(2) admits traveling wave solutions of wave numbeand general, finite-dimensional system controlled by ETDAS is

AA=A+(1+ic,)d?A—(1—ic3)|A|’A+ ea,

frequencyw=(c,+c3)k?—c3. Each solution, [10]
_ M2 ey i g 1-p 1
A(x,t)=y1—-k* explikx—iwt), 3 T expfodt(J+y17£L,lM) _1‘20’ (4)
becomes unstable for large enougghand/orcy, and all of
them are unstable far;c3>1 [9]. whereT[ ] represents the time-ordered produttis the

We find that whenr is chosen to be 2/ w, the domain of  Jacobian of the uncontrolled mode equatiavsjs a “con-
c, and c; values over which the solutiod, is stable is trol matrix” that contains the information about the way in
expanded significantly for modest valuespindR. Some  which the control signal is formed and enters into the dy-
typical results are shown in Fig. 2. Each panel of the figurenamical equations, andis the identity matrix.
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In the present case, three features simplify the analysis:
First, M =1; second, the Fourier modes decouple, with each
yielding a condition of the form of Eq4) with 2X2 matri-
cesJ andM; third, neitherd nor M is time dependent. The
latter is due first to the trivial time dependence of the desired ¥
solutionAy and second to the directly additive way in which
€ appears in the equation for the controlled system. In such
cases, the determinant in E4) may be evaluated explicitly
by solving the differential equation that yields the time-
ordered product. Here the defining relation for the Floquet
multipliers associated with a perturbation at wave number
g+k becomes

FIG. 3. Maps of the stable domainéshaded area for
g(u H=u"2e?*"—2u te*cosiBr)+1=0, (5) k=0.0757 and R=0.75 in terms of the feedback gainand the
perturbation wave numbeq for four values of €;,c3). (a)
1 c1=c3=2, (b) c;=c3=2.5, and(c) c;=3.3,c3=1.75. The dotted
lines are drawn ay=0 to draw attention to the case of no control.
In (a) the dashed lines show the range pffor which control is
successful.

1—-p~

a= _q2—2iC1kq+ k2_l+ ’ym,

B=[(1—k3?—4iczkq+2c,c30%)(1—k?) +4k?g®+4dic kg®

—c3g*1*2 is approximately satisfied. In Fig. 3, the peak in the lower
boundary atj=0 corresponds tm=0. In Fig. 3¢), the peak
The stateA,(x,t) with particular choices ot4, c3, v, atg~0.75 corresponds tm= =+ 1. In the present case there
andR is linearly stable if and only if all of the roots @f lie  can be no effect from highém| because control will already
outside the unit circle. Note tha(x 1) has an infinite num- have been lost due tm= *+1.
ber of roots due to the time delay in the system. As described By analyzing stability diagrams in thg-vy plane for a
in Ref.[10], it is straightforward to perform a winding num- grid of values in thec,-c5 plane, one can construct the sta-
ber calculation(or a contour integrationthat will return  bility diagrams shown in Fig. 2. As in the example of Fig.
/", the number of roots that lie inside the unit circle. The 3(a), there is a range of the feedback gaithat successfully
linear stability condition then reduces.t6'=0. The winding  achieves control for each point in the shaded area of Fig. 2.
number calculation is performed numerically by evaluatingln general, the minimum value dfy| required increases
g on selected points on the unit circle. The precision of suclsmoothly asc; and/orc; increases. In the domains shown
a technique is determined by how well one can distinguisthere, as well as others we investigated, the valugypfe-
between a root inside the unit circle and one very close, bufuired for stability is less than 1 even at the highest values of
still outside. Using an adaptive step-size method, we ree; andcs in the controllable domain(Details will be given
solved the location of such roots to an accuracy ofé10 in a longer papey.Beyond the line labeletd0 (U1), control
It is at this point that the many degrees of freedom in ais lost due to the mechanism described above with O
spatially extended system complicate the analysis. In ordgfm= *=1), not through a divergence in the required
for a particular state to be stable, it must be true that a single Figures 2a), 2(c), and 2d) illustrate how the stability
value of y exists for whichA, is stable with respect to per- boundaries shift for different choices &f Figure Za) cor-
turbations at all wavenumbers. To see whether sughea-  responds t&k=0.075. For largerk [Fig. 2(c)], the UO line
ists for fixedk, cq, c3, andR, it is useful to plot the region moves farther from the uncontrolled stability boundary and
of stability in the space of and the perturbation wave num- U1l moves closer. For smallér[Fig. 2(d)], the situation is
ber q [11]. Figure 3a) shows an example for whicA, is  reversed. Ak is decreased toward 0, the bound&t§ ap-
linearly stable against perturbations of all wave numbers foproaches the original uncontrolled stability boundary, so that
a range ofy (shown between the dashed linedote that the no enhancement of tHe=0 state is obtainable. Figuresap
plot must be symmetric abogt=0 since from Eq(5) itis  and Zb) show the effect of changinB. As R is increased,
clear thatu(q)=u*(—q). The rapid divergence of the sta- the domain of stability increases in area. However, even as
bility boundaries for large merely reflects the fact that the R approaches its maximum value of 1, the domain of stabil-
system is highly stable with respect to largeerturbations ity cannot include the region in which one of the unstable

in the absence of control. modes of the uncontrolled system has frequeray. The
Figures 3b) and 3c) show why control cannot be boundary of this region is the dotted line in FigaR
achieved for some values of, c3, k, andR. The problem We have checked specific aspects of the results presented

is that peaks in the lower boundary reach valueg tat are  in Fig. 2 with numerical simulations of the controlled CGL
already ruled out by valleys in the upper boundary, so that nequation. Periodic boundary conditions were employed with
single value ofy can stabilize all wave numbers. The sourcethe system size chosen to be an integer multiple of the wave-
of the peaks may be understood as follows: For a perioditength of the traveling wave. System sizes corresponded to a
state with frequencw andJ andM independent of time, it length of at least 182x/k. The simulations were per-
can be shown that ETDAS cannot stabilize a perturbation foformed with a second-order predictor-corrector and finite dif-
which arg.=mew, wherem is any integer. The peaks in the ference technique with time steps of order #Gand spatial
lower boundary occur at wave numbers where this conditiomesolution ~400 points. The instabilities were observed to
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occur at values ofd; ,c3) consistent with the analytic results be attempted in a physical system given only the knowledge
presented here for infinite systems. of 7 and the ability to adjust the single paramejer

We have demonstrated that time-delay feedback can be Our work points to several important questions for future
effective in stabilizing periodic states of spatially extendedstudy. What is the minimum density of discrete controllers
systems. Application of this technique to the stabilization ofneeded in situations where spatially continuous processing in
unstable ordered states in fluid, laser, and biological systenthe feedback loop is not possible? What level of noise can be
is strongly suggested. We expect the control technique to bilerated? How can one force the system from the spatiotem-
applicable to many types of periodic states, though the stgporally chaotic state into the desired controllable state?
bility analysis may become complicated. If the linearized Finally, we suggest that the application of time-delayed
equation for the perturbations about the periodic solution hafeedback may be a valuable tool for studying the intrinsic
space-dependent coefficients but its time dependence is stghysics of spatiotemporally chaotic systems. By varyijng
trivial, perturbations can be decomposed into appropriatand = slowly, it may be possible to locate previously un-
eigenfunctions and the analysis discussed here will apply. lknown periodic states or to observe other novel effects.
the periodic state has trivial spatial dependence but nontrivial
time dependence, then the stability of the Fourier modes can
be analyzed using the numerical method of Ré&f]. Fi- We thank D. Gauthier and H. Greenside for useful con-
nally, when the periodic state has complicated spatiotemporersations and critical readings of the manuscript. J.E.S.S.
ral structure, it appears that numerical integration of the congratefully acknowledges the hospitality of the Aspen Center
trolled equations would be the most efficient approach. Eveffor Physics, where some of this work was done. The work
in the absence of any stability analysis, however, control cawas supported by NSF Grant No. DMR-94-12416.
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