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Influence of electron collisions on the resonance cone phenomenon in a cold magnetized plasma
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We present a theoretical study of the potential produced by an antenna immersed in a cold magnetized
plasma. This phenomenon is described in the literature as the “resonance cone” phenomenon. In this work, we
take into account electron collisions with other partidlesutral or charged We show that the domain—in
terms of frequencies—where the resonance cone exists is drastically reduced for a collisional plasma. Further-
more, the resonance cone peak is shifted by collisions, so that the usual formula used to compute the electronic
density is not quite exact. All the calculations are done with a finite magnetic fi&l963-651X96)50508-§

PACS numbsds): 52.35.Hr, 52.20.Fs, 52.76m, 52.25.Mq

The resonance cone phenomen@m the upper hybrid wz(wf,eJr wge_ w?)
branch has been extensively studied during the past thirty Sifk= 0202 ; 1)
years, and especially since the first experiment of Fisher and peTice

Gou_ld, Wh(_) showed it co_uld be used to measure the elecv'vherek is the cone angléFig. 1) [1—4].
tr(_)nlc density ofamagnetlz_ed p'as.’ﬁ‘“]- Go_nfalone used . Therefore the condition of existence of the resonance
this method as a plasma_ diagnostic, measuring _the ele_ctron&me isk, K, <0, which gives
density and the electronic temperat(idg¢. Neglecting colli-
sions, the electronic density is known by measuring only the
resonance cone angle. The electronic temperature is mea-
sured using the interference structure which appears around
the resonance cone, via the measurement of the angle be-
tween two successive maxima of the structure. This structure . .
has been explained as a consequence of the thermal effe®f€€_@uy is the upper hybrid frequency: wyy
[3]. These studies are making reference to what is called th& V@pet @ce- When we take into account electron collisions
“cold cone,” that is to say without thermal effects: actually With ions or with neutral particles, these conditions are no
thermal effects shift very lightly the resonance cone peak. Ifonger valid. We need to recalculate the potential with the
other respects, a cold plasma could be highly collisional witteollision frequencyv. _ _
respect to the other typical plasma frequendies)., mag- Near the emitting antenn@<<2zc/w, wherer is the dis-
netic field B=50 G, electron density,=10' cm 3, elec- tance from the antenpand near the resonance cone péai_k
tronic temperatureT,=0.1 eV: electron-ion collision fre- résonance the wave numbder-~) the electrostatic potential
quencyve~0.1w,,, plasma electronic pulsation,~20w,, ~ can be computed using the quasistatic equafiomd =pe,,
with ., the electronic cyclotronic pulsation; in addition, we With D the electric induction ang,,, the charge density cre-
must take into account the electron collisions on neutral par@ted by the emitting antenna as an electric oscillating point at
ticles). The influence of collisional effects on the cold cone frequency w, localized at the origin, and given bi8]
has not been studied so far, to our knowledge. In this workPext—de €XH—iwt) 8(r), with g the elementary electric
we use a simple analytical collisional model to study thecharge;i the complex numbef0,1), t the time, & the Dirac
influence of electron collisions on the resonance cone.  function, andr the position vectofFig. 1).

A typical experimental setup is described in Fig. 1: an
antenna immersed in a cold magnetized plasma emits a polar coordinate p
wave. The magnetic field is uniform and externally pro-
duced. z is along the magnetic field

The signal, received by another antenna moving around
the first one, could be considerably enhanced on the reso-
nance cone, when it exists. If we do not take into account the -
thermal velocity in the dispersion relation and if we neglect ‘ recetving antenna
collisions of electrons with other particles, the equation of
the resonance cone #$+p*(K /K, )=0 wherez is the coor-
dinate along the magnetic field apdthe polar coordinate,
with K, andK, the diagonal terms of the reduced dielectric
tensorK, =1-[w5d (0’ — 0 2] andK =1— (w5 »?), with
w the frequency of the wave.

The equationz®+p*(K,/K,)=0 leads to the usual for-
mula, used to determine the electron density, knowing the
magnetic field and the wave frequency: FIG. 1. Principle of the experiment.
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INFLUENCE OF ELECTRON

For an anisotropic medium, the relationship between the

electric induction and the electric fiel# is D=gK-E,
whereggK is the dielectric tensor, with:
. (- &
K=|1+i—], 2
WE(Q

where &, is the conductivity tensor. The tenstr can be
written as

COLLISIONSON TH. .. R1067
Je eXp—iwt) exmk Mk, dk, dk,dy
L |
g K (2m) » Ki
() H K
(6)

where the integration domaifp) is defined as

(p)={(k, k) eR® with k, e R*;k, e R;¢pe[—m,7]}.
()

Then the first integration, along, gives, taking cylindrical

K —iKx O space coordinate®,z)
K=| K Koo 01, ®) e Xp—iwt)
o 0 K SN K@
for a finite magnetic field. The diagonal terms, taking into 1 [+ +oo lef)l)(kﬂdeki
account electron collisions with the other partic{emns and Xzf f K
neutral particlesvia the electron collision frequency, are - - k2 + ka”
[5]
X exp(ik,z)dk 8
K wizje(w-i-iv) K Z1 wge Hikjz)dk ®
LT of(wtiv)?— iy’ " w(o+iv)’
Im
neglecting ionic terms. The electron collision frequency !
represents losses for the wave, propagating in the plasma. By
its presence, the dielectric tensor becomes complex. Then, as
part of the quasistatic approximation, sinEe=—V-¢(r,t),
we have
ﬁ(lZ v o(r,t)= exr(—uot)é(r) (4) fl\’ 0 m . Re
k- k+
a)
Taking the Fourier transform of this equation, we obtain
(k = Je Je EXP(— i wt) 1 5) Im
go (2m)3? (KKK, +KkK))’ 1
where kH—k €, and k. =K- eX/cos//—k &/siny with K the
wave vector andp the Fourier transform of the potential. @nyw:
Figure 2 describes the axis coordinates of the integration
domain.
Taking cylindrical coordinates for the wave vector Re
d®k=k, dk, dk,dy, we obtain by inverse Fourier transform 0 i
b)
ZA Im
% -
—>
0
k” > =Re
v X,

FIG. 3. Integration pathia) First case: two half contributions of
two poles;(b) second case: one pole contributidn) third case:

FIG. 2. Axis coordinates of the integration domain. one pole contribution, the one with the positive real part.
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whereHBl) represents the Bessel function of the third kind So in every case, we find at last tsame resulfor the
(or Hankel function of zeroth order. This calculation has potential¢(p,z,t) [see Eq(10)].

been made by KueHl6,7]. For the two following integra- Thus, the potential modulus is
tions, we present a new calculation, taking into account elec-
tron collisions. Respecting the Jordan lemj@h the integral lgel 1 1
!th = L
@ 0201 gy KL [ 577+ (70,7
+= Kk Hy (k. |p|)dk, (1)
Z(ky,p)= K, ©)
- 2 2
KL+K K, where we put,=ReK;/K, ), b,=Im(K,/K,). The potential
is maximum gn V\;hat is called the resonance cone defined by
converges. For the second integration, depending ¢k, ,  the equatiore”+pa,=0, if it exists. . .
we have three different cases depending on the integration The resonance coneistsonly if a, is negative Taking
path. a=owlwge, B=wpdwce, and y=vlwe, this condition can be

(& Im[(—K/K,)¥?]=0 (half contributions of two poles Written asa,(«,3,7)<0, with
k_ andk,): the case of collisionless plasma, when a reso-
nance cone exists, that is to say whigpK, <0 [cf. Fig. a,(a,B,y)=[a®+ab(—2B°+3y°—2)
3(@]. The calculation of the integralZ(k,,p) gives

4 pb 4 pp2.2 2
—mNo(K|p)), whereN represents the Bessel function of the ta(BTH 3y ATy 357+ D)

second kindor Nel/JZmann functioy of zeroth order and with +a?(y8+ 2% 2 — 28294 — B4+ 24
ki =|k[(=K /K )" andk_=—k, .
The third integration give§9] — B?y?— B2+ yA) + B4y (Y2 + 1)1/
Qe exp—iot) 1 (a*+y*+2a%y?—2a%+29%+1). (12
(P(plz!t): 8me K K 172- (10)
0 L Z2+p2_) Figure 4 shows thes dependence of the domains—in terms
Ky of (w,wpe,wce,¥)—wWhere the resonance cone exists. We see

that this domain is reduced Ippllisions the losses due to

(b) Im[(—K,/K)*?]>0 and R&-K,/K,)"’=0 (one electron collisions with the other particles are too important
pole ko): the case of collisionless plasma, nonexistence of ao permit the building of the resonance cone. The upper hy-
resonance cone, that is to say whepK , >0 [cf. Fi%- 3b)].  brid branch disappears far=0.22® . . . ; thelower branch
The calculation of the integral(k, ,p) givesi mH (Kolp)),  for y>0.447 . .. .
with ko=i[k[(K,/K )2 Then the third integration gives  For a collisional plasméthe collision frequency is non-
the same result as i@ [see Eq(10]. zerg, K, andK, are complex numbers priori. The poten-

(© IM[(-K/K)¥]>0 and RE—K/K,)")+#0 (one tial maximum is obtained for
pole k. =k_ or k, depending on which pole has a positive

imaginary park the case of collisional plasma, that is to say 1
when v#0 [cf. Fig. 3c)]. The calculation of the integral P_ \|———
(K, ,p) givesi mHP (K. |p), with k. ==|k|(K,/K, )2 Then z  Va,t(b/a,)
the third integration gives the same result agahand (b)

[see Eq(10)]. with a,<0, and is written

e.g.: domain where the resonance
cone exists for y = 0.35
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FIG. 4. Domains where the resonance cone
exists: 8= wpdweVersus a=wlwe, depending
on y=vlwge.
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FIG. 5. The resonance cone angl€in degrees
Versus B=w,dwce, depending ony=vlwge, with
a=wlw.=1.5 (upper hybrid branch

1/4 typical case wherew,>w.., t0 approximate the plasma
(13)  electronic pulsationw,, with the antenna pulsatiom, and
then to compute the electronic density.

In conclusion, the frequency domain—in terms of
(w,0p¢,0¢¢,¥)—Where the resonance cone exists could be
drastically reduced for a collisional plasma and disappears
for “high” collision frequency. Collisions reduce the reso-

ance cone peak level and widen the resonance peak. Fur-

can see in Fig. 5: the cone angtedecreases when the col- thermore, because of collisions, the resonance cone peak is
lision frequency increases. Therefore, the form(dg used shifted, so that formulél), frequently used to determine the

to determine the electronic density, is no longer exact eIec.tronic dgnsity, is no longer usable. These phenomena are
because the cone angtadepends on the collision frequency. particularly important for_ cold and weakly magnetized plas-
The only thing we can do is to detect the existence of thénas, such as ionospheric plasmas.

resonance cone on the upper hybrid branch, and then, in the

a’+b?
2
bV

Je eXp—iwt)
8mey K. |Z

@ma)(zit):

The potential maximum is finite, except for the oridiz+=0).
For a collisionless plasm@=0), the potential maximum
is obtained forp/z=+/—1/ag with a;<<0, and the potential
diverges on the resonance cone.
The resonance cone peak is shifted by collisions as w
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