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Intensity fluctuations in closed and open systems
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We consider the intensity pattern, generated by a monochromatic source, in a disordered cavity coupled to
the environment. For weak coupling, and when the source frequency is tuned to a resonance, the intensity
distribution P(1) is close to Porter-Thomas distribution. When the coupling incredg$,gradually crosses
over to the Rayleigh distribution. The joint probability distribution for intensities at two different points is also
discussed[S1063-651X96)51608-9

PACS numbes): 05.40:+j, 42.25—p, 71.55.Jv

A wave propagating in a random medium produces a The above discussion suggests the following idea. Let us
complicated, highly irregular intensity pattern. This pattern isassume that the cavity is weakly coupled to the environment,
described in statistical terms. One considers an ensemble &r instance, via a small opening or due to some small ab-
different realizations of the random medium and inquiressorption in the bulk. Then, by placing a monochromatic
e.g., about the probability distributiodR(l) of the wave in-  source inside the cavity and tuning its frequeacyo a reso-
tensity | at some point. In many case®(l) is accurately nance, one will generate in the cavity an intensity pattern

described by the Rayleigh distribution I(r) which closely follows the “profile” |,(r)|? of the
eigenstater with frequencyw,= w. Thus, the intensity dis-
1 tribution will be given by the Porter-Thomas statistics. On
PR(|):meXp(_|/<|>), (D the other hand, for a sufficiently strong couplifan open

system the distribution should obey the Rayleigh statistics,
Eqg. (1). The main purpose of this paper is to investigate the
crossover between weak and strong coupling and to propose
a generalized distributio®(1) which interpolates between
the two regimes.

Let us first emphasize the difference between an open and
éclosed system, using the simple picture of addition of many
random wave$1]. In an open system the local fielt{r,t)
can be viewed as a sum of great numbetrafelingwaves,

where(l) is the average intensity. A simple derivation of Eq.
(1) is based on an assumption that the field at poican be
viewed as a sum of many random contributidis2]. A
more systematic derivation, which paves the way for calcu
lating corrections to the Rayleigh distributip®,4], is based
on the perturbative diagrammatic technique. Here one star
with the wave equation

{V2+k§[1+,u(r)]}z,/;w(r)=0, @) arriving at a pointr from various scattering processes:
supplemented by appropriate sources. In this equation N
¥, (r) describes a fieldfor instance, pressure field in an zp(r,t)=N*1’221 cog O+ kT — wt), (4
n=

acoustic wave or a component of the electric field in an elec-
tromagnetic wavg excited by a monochromatic source of

frequencyw. The random functionu(r) describes the fluc- \ynere the phases, are completely random and all the am-
tuating part of the refraction index ag=w/c, c being the  pjitudes have been taken to be eq(aie could assume ran-
the speed of propagation in the average medium. In the digjom independent amplitudes, without any change in the re-
grammatic approach one computes moments of the intensiyjiy The wave vectork, are uniformly distributed on a
I=|y,,(r)| and reconstructs the distributid(1). d-dimensional sphered(=2,3) of radiusk,. The instanta-

Let us stress that Ed1) applies to the case of a mono- s |ocal intensity is defined ag(r,t). The measured
chromatic wave propagating in an open system. A differeng, oy | is the intensity averaged over time, i.e., over one
type of problem arises if one considers the wave equa#ipn period T =27/ w:

in a closed geometry without sources. In this case one in-
quires about the statistical properties of a single eigenstate

(), e.g., about the distributioP(u) of the quantity 1(7
u=|y,(r)|. Extensive studies of chaotj&] and disordered I= $L dty?(r,t)
[6] cavities have demonstrated that the main part of the dis-
tribution is described by the Porter-Thom@sT) statistics 1 N
5N cog 0,,— O+ (k= k) -r]. 5)
\Vj 1/2 n,m
Pﬁu)z(a exp(—uV/2), (3

Note that the same expression floiis obtained if one as-
whereV is the volume of the cavity an¢l)=1/V. sumes a complex, time independent field
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N

P(r)=(2N) 722, expli(Ontkn1)] (6)

and defines the intensity d¢r)=|y(r)|2. It follows now
from the central limit theorem that both Reand Imy) are

independent Gaussian variables, with zero mean and equg,

variances, which leads to E@l) for the intensity distribu-
tion.

In a closed system the field is viewed as a sum of many

standingwaves:

N

zp(r,t):N*l’ZZl cog 6, +K, - )coswt. 7
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where | o[ x] is the modified Bessel function. Thah mo-
ment of this distribution is then given by(I™)
=(1)"n!,F,[—n/2,(1-n)/2,1,(1+2€%) 2], where ,F, is
the Gaussian hypergeometric function.

Since the parameterin Eq. (10) is attached to the propa-
gating part of the field, it can be related to {ta@eraged over
e) current density7]:

J<r>=2'—(k’o[¢<r>vw*<r>—c.c]. (12)

Substituting ¢ from Eg. (10) and averaging over phases,
one finds that (J(r)) vanishes [8] and (J(r))

As far as the time-averaged intensity is concerned, one car 2¢%(1)%€*(1+€?)/(1+2¢€%)?. Therefore, instead of using

ignore the factor cast and define a stationary field

N

PN =(2N) "2 cos Oyt kn:r). (8)

The central limit theorem now tells us tha@y,(r) is a Gauss-

the somewhat vague notion of the “coupling strengthor
parametrization of the distributioR(l), one can use the di-
mensionless ratiéd=(J?)/c?(I)2.

We, thus, propose a one-parameter distributggl) for
the intensity(we normalize to its average value, i.e. choose

(Iy=1):

ian variable with zero mean, and the Porter-Thomas statistics

1 1/2
PPT(I):(W) exp(— /(1)) 9

for the intensityl dei(r) follows immediately.

After clarifying the difference between sums of random

traveling waveqopen systemsand standing waveglosed

system$ we move to the general case of a disordered cavit
coupled to the external world. We write the stationary field

as
N

lp(r)=[2N(1+262)]—1/221 {cog 6,+kp-T)

+eexdi(6,+k, 1)1} (10

where the parameterdescribes the strength of the coupling.
For smalle, and when the source frequency is tuned to a

%exp(—l/Zé)lo(l J1-26126).

Psl)= (13

The parametes can assume values from(6losed system,
no current to 1/2 (open system, maximal current dengity
When this parameter changes from 0 to 1/2, the intensity

Yistribution changes from Porter-Thomas to Rayleigh.

Let us mention that a somewhat different crossover phe-
nomenon has been considered in R8f. These authors dis-
cussed the statistics of,(r)|?=u for an electron’s eigen-
state in a quantum dot, in the presence of an arbitrary
magnetic field. For zero field the distributid(u) is given
by Eg. (3), whereas for a sufficiently strong field it crosses
over to a Rayleigh distributioP(u) =Vexp(—Vu). In this
crossover problem, as opposed to the one considered in the
present paper, the system always remains closed.

In a similar way one can consider the distribution for the

resonance, the field consists of a large-amplitude standingcal current density(r) or the joint probability distribution

wave (an eigenstadewith a small traveling wave “riding”
on top of it. The intensity distributiof(l) is close to the
expression in Eq(9). Large € corresponds to an open sys-
tem, where the field is mostly a traveling wave, @) is
close to the Rayleigh distribution, E¢L).

All the phasesg, and 6, in Eq. (10) are independent and
uniformly distributed between 0 andr2 It is then clear that

both Re) and Imy are independent Gaussian variables with

variances ((Rey)2)/{(Imy)?)=(1+ €?)/€2. This leads to

the  following distribution for  the intensity
| =(Rey)?+ (Imy)*:
1+2€? | (1+2€%)?
P()=_———7—=exg - 2 2
2(1)e\1+ € Al)e” 1+e
| | 1+2¢ "
“lolame e 1y

P(1,J). We will not discuss here these objects but limit the
discussion to the joint probability distributioR(l4,l5),
wherel;=I1(r;) (i=1,2). We start with a wave propagating
in an open system. The fiel(r) is then given by Eq(6). It
follows from that equation that, in the lar@é&limit, the joint
probability distribution forg(r )=y, and (r,) =, is

1
W(wlv’;bZ):mexq_l//i*(Kil)ij’/fj] (14

where Kjj=(¢;/) is the 2<2 covariance matrix with
K11=Ky=1, Ki,=K3,=f(p), and p=|r;—r,|. The ex-
plicit form of the field-field correlation functio(p) will be
given below. Transforming to polar coordinates,
= Jl;expl¢), and integrating out the phases, one obtains
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1 l1+1, 2|11, After some lengthy algebra, this leads to
Pl 1—|f|zex'3< TP '0( =7 )
(15) exd — (1, +1,)/25] (27d6,d6,
Equation(14) is the standard assumption in the theory of Ps(l1,12)= 28(1—f1?) o (2m)?
optical and acoustical speckles and the resulting distribution
P(l4,1,) is well known in optics and acoustics of disordered J1-26
media[1,2]. After averaging the produat(r)¢* (r,) over xex 25(1-12) | ,c0826; +1,C0820,
the random phase,, one findsf(p) == ,exp(k,- p) where
the sum is taken oveN points on a unit sphere. In the cog 6,+ 65)
. . . . 1 2
N—co limit, replacing the sum by an integral, one finds +2f\/m( Ccog 01— 0;) ——F——— ] .
f(p)=Jo(kop) in two dimensions and f(p) V1-26
=(kop) ~Isin(kyp) in three dimensions(A more rigorous (18)

calculation[3] shows that, for an open geometify,p) de-
cays exponentially fop larger than the mean free path)

Equationg(14) and(15) describe the statistics of radiation Equation(18) interpolates between a weakly coupled cavity
in an open system. In contrast, for a weakly coupled cavityat the resonangeand an open system.
(under resonance conditipthe main part of the field corre-  |n conclusion, we consider statistics of radiation in a dis-
sponds to a standing wave. Such a field is represented bygkdered cavity coupled to the environment. The coupling can
sum of real waves, E@8), and a derivation analogous to the occur via an opening in the wall of the cavity or via absorp-

one outlined above gives tion in the bulk. For weak coupling, and when the source
frequencyw is close to an eigenfrequenay,, the wave
P(I,.1,)= 1 1 generated in the cavity is close to(standing eigenmode

b s =12 I 15 ¥,(r), with only a small admixture of a traveling wave. The

intensity statistics is defined by the statistics of the eigen-
[4+15 140, function ¢,(r). For strong coupling the system becomes
Xexp — 572|975z |- (19 open and we recover the old results of the speckle theory for
propagating waves. These results for the intensity distribu-
The statistics of eigenstates,(r) in a closed system has tion look very similar to the recently derived expressions for
been rigorously studied by Prigodin and co-workers with thethe eigenfunction amplitude distribution in closed systems
help of a zero-dimensional supersymmetric nonlinear with broken time-reversal symmetry. Thus, in optical sys-
model[10,11]. They studied the joint probability distribution tems considered in the present paper, coupling to the envi-
P(uy,u,), whereu;=|,(r;)|? (i=1,2). For the unitary case ronment breaks the time-reversal symmetry either via the
[10] (broken time-reversal symmejryan expression identi- boundary conditions or by absorption in the bulk.
cal to Eq.(15) (with |; replaced byu;) was obtained. For the There are many similarities between intensity correlations
orthogonal case, Prigodiet al. [11] ended up with a rather in open random systems and correlations in a single eigen-
complicated expression, containing a double integral. Later istate of a disordered cavity. There are also some differences.
was shown by Srednickil2] that the expression in Rdfl1]  In open systems, the correlations described by (Ef). are
can be reduced to the function given in E46). He was valid for distancep </, where/ is the mean free path. For
using the assumptio5] that a chaotic wave function, distancesp>/ a rather different type of correlation, due to
,(r), obeys the statistics of a Gaussian random processgliffusion, takes ovef13].
This is in complete analogy with the standard assumption of Finally, let us mention that intensity distributions dis-
the speckle theory1,2], as outlined above. Again, the dif- cussed above, such as in E¢B), (9), or (13), apply only to
ference is that in the speckle theory one usually considerthe “bulk” of the distributions. Tails of the distributions,
propagating waves in an open geometry, whereas REs.  corresponding to very large or very small valuesl piwill
12] study a single eigenstate in an isolated system. show significant deviations from the above-given expres-
Now, we can analyze the general case of a disorderegions and will not be universal. Indeed, it is well known that,
cavity coupled with arbitrary strength to the external world.both in open and closed systems, distributions for various
The local field is now given by a combination of traveling quantities/conductance, density of statés,(r)|?] develop
and standing waves, EQLO). As a result, the real and imagi- log-normal tailg/14]. This must also be true for the intensity
nary parts of the field at two points; andr,, are compo- distribution P(l) discussed in this paper. For instance, for a
nents of a four-dimensional Gaussian  vector,point source placed at=0, the field ¢,(r) is just the
@ "= (Rey;, Imypy ,Reyr, , Imy,), with the following covari-  Green's  function G,(0r) and the intensity is
ance matrix: 1=]G,(0r)|?. The Green’s function can be expanded in
terms of the eigenfunctiong,(r), and the log-normal tail of
1+€ 0 (1+e)f 0 P(|#,]?) is responsible for such tails in the intensity distri-
0 € 0 €*f bution.

1+2€%| (1+eAHf 0 1+ €? 0

Kij=(;®;)=
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