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Phase transitions near the “game of Life”
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Whether or not the cellular automatéBA) “game of Life” is an example of self-organized criticality has
been a controversial question. Here we view the problem from a different perspective by introducing prob-
abilities into the rules. Thereby we extend the discrete space of deterministic CA to a hypercubic space of
stochastic CA, where each corner represents a deterministic CA. We examine the scaling structure near the
“game of Life” corner and identify a phase-transition line separating “Life” and “Death.” The transition line
ends very close to but not in the “game of Life[51063-651X96)51408-X

PACS numbes): 05.40:+j, 64.60.Lx, 64.60.Ak, 64.60.Ht

The “game of Life” (GOL) is a two-dimensional cellular & =0. At the border betweed =0 and® >0, we may have
automaton which has been suggested to mimic aspects afcritical behavior with diverging length and time scales. If
complexity in naturd1,2]. It simulates by means of a simple the border line betwee® =0 and®>0 lies close to a cor-
algorithm the evolution of a society of cell®n a square ner, the associated deterministic CA may also show a nearly
lattice), where each cell is either “dead(0) or “alive” (1). critical behavior. We shall see that the border line lies very
The evolution depends on the number of living cells amonglose to GOL.
its 8 nearest and next-nearest neighb@rable ): A dead Here, we illustrate the general idea by extending the rules
cell will only come to life if it has exactly three living neigh- in Table | with just two probabilitiespy and p, (Table II).
bors. A living cell will stay alive if it has two or three living We permit dead cells with two living neighbors to come to
neighbors, otherwise it will die. Starting from random initial life with a nonzero probabilitypy, generally raising the life
conditions, “Life” will evolve through complex patterns density®. Moreover, a living cell with two living neighbors
eventually settling down in a stationary state with static orwill only stay alive with a probabilityp, , generally lowering

(time) periodic cell colonies. the density®d. Hence, we controfb by raisingpy from the
Former reports on GOL have used a deterministic apGOL value 0 and lowering, from the GOL value 1.
proach in investigating the critical properties of G(8-6]: We have carried out simulations of the CA given by Table

After the system has relaxed to a stationary state the system at various values ofpy and p;, with emphasis on the
was perturbed and the distribution of avalanches was obegion near the GOL. The CA was initiated from a random
served. For a finite lattice the decay time to the stationargonfiguration with 10% living cells, and we usedlLa<L
state is finite. Therefore the slow probing of a finite system=500x 500 lattice with periodic boundary conditions. The
may as well be simulated by changing the “life” conditions density of life, ¢(t), was sampled over 10 000 time steps,
slightly. From this perspective we may study the critical\which was sufficient to separate the asymptotic density pro-
properties near the GOL by introducing probabilities into thefile from the transient behavidsee inset of Fig. 1 From the
life conditions[7]. distribution of densitiesD(¢), a peak is easily identified
First, consider the general case, where all 0’s and 1's ifFig. 1). The peak is centered around a vafie which we
Table | are replaced by probabilitigg ; andp, ;, whered  determined as the average value over the last 1 000 time
and| refer to the cell being dead or alive, apet0, ... ,81is  steps.
the number of living neighbors. Assume further that We observe a transition frod@=0 to®>0 a|0ng a line
P4,o=0, such that “death” is an absorbing state. Then com-ending very near the GOL cornéfig. 2). At this line, length
plete “death” may be viewed as the ordered state, whereynd time scales diverge as at a second-order phase transition
“life” provides the fluctuations. We are left with a 17- (See be|0\b/_ The region near the GOL is magniﬁédsets of
dimensional  hypercubic  cellular-automaton  spacefig. 2). We find that the transition line converges to the point
(Pa,li=1,....8,p[i=0,....8) where the corners are (p,=0p,=p}=0.9968+0.0006), and not to the GOL point
deterministic cellular automatéCA). We are interested in (p,—0p,=1). We discuss this further below.
separating the living states from the completely dead states, \\e mention the suggestion by Langt@] to characterize

i.e., we wish to distinguish thestochastic as well as deter- the CA according to theih parameter, i.e., the number of
ministic) CA with a nonzero life densityp from those with
TABLE Il. Probability of life, depending on the states of the cell
TABLE I. The state of a cell in the “game of Life” depends on and the 8 neighbors at the previous time step. In the “game of
the states of the cell and the 8 neighbors at the previous time stepife,” py=0 andp,=1.

No. living neighbors 0 1 2 3 4 5 6 7 8 No. living neighbors 0 1 2 3 4 5 6 7 8
0 Dead cell 0O 0 o 1 0o O O o0 O 0 Dead cell 0O 0pgy 1 0 O O 0 O
1 Living cell 0o 0 1 1 0 O O O O 1 Living cell 0O 0 p 12 0 0 0 0 O
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FIG. 1. The density distributio® (¢), (a) above the transition FIG. 3. Double-logarithmic plot of the life densitly vs distance

line (py=0.02p,=0.985), and (b) below the transition line p—p. from the critical line.0: p=py and p.= py.=0.0416, for
(pg=0.02p,=0.978). The distributiorD(¢) was obtained over 3 fixed p,=p,;=0.95. ®: p=p, and p.=p,.=0.782, for fixed
runs of 10 000 time step®(¢) has a peak situated @=4.9% in Pa=Pq4c=0.111. A: p=pg and p.=py.=0.0023, for fixed
case(a). This peak has moved t®=0 below the transition line p,=p,.=0.995. The straight lines have all slopgs=0.5. Inset:
[case(b)]. Inset: Density of life¢p as a function of timet. Life density ® vs p, for fixed py=0.005. Abovep,.=0.9925,P
increases asp{— p;c)? with 3=0.5.
transitions to a living state normalized by the total number of
transitions. For the stochastic CA given by Table II, the frac-same value fop at different transition points. The value of
tion of transitions giving a living cell in the next time step s s found to be=0.5+0.1. In comparison, we note that
(weighted bypy and p|) is A=7(4+py+p)/128. At the  the value for (2+1)-dimensional directed percolation is
GOL, A~=35/127~0.273. However,\ is not constant Bap=0.60[9,10.
along the transition line. Away from the GOL, the transition " “Tne error bars given in Fig. @nsed are determined using
line bends downwards, and decreases. Ap;=0, we find  the condition thatd follows a power law,® o (py— pic)?.
Pg=0.37, andx ~0.239. To obtain upper and lower bounds for the valuepgf, we
Let (Pqc.Pic) indicate a point on the transition line from ot jog(@) vs log(—pio). At the lower and upper bounds
¢=0 to ®>0. Right above the line we find a power-law for p, there is a clear curvaturéFig. 4. Our results for
behavior ®(pg=pac.P1)* (P —Pic)”, and ®(pg,P=Pic)  p,. are where the points lie on a straight line. In the same
*(pa=Pgc)’¢ (Fig. 3. Within error bars, we find3) and  \ay, we find upper and lower bounds fos.. We note that
Ba to be identical, ;= B4= . Moreover, we obtain the the error bars are distinctly smaller than- b =0.0032.
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p;— pic from the critical point f4.=0.004p,.=0.9935). Ifp. is
FIG. 2. (a) Phase diagram for the stochastic cellular automatorchosen wrong a curvature is observe. p,.=0.9935. The best
consideredTable I)). Top left corner is the “game of Life’(GOL). choice for p,.. The straight-line fit has slopgs=0.5. [I:
The line is the phase transition line between asymptotic life density,.=0.9945. The choice fop,; is too large, and a curvature is
®=0 and®>0. (b) and(c): Magnifications of the region near the observed towards a non-zero value fbr A: p,;=0.9925. The
“game of Life.” The transition line touches thep, axis at  choice forp is too small. Consequenti approaches zero at a

Py =0.9968+ 0.0006. finite value ofp,—pc .
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at various values ofp, near p,;=0.9925 (log-log ploYy. O:
FIG. 5. Double-logarithmic plot of the life densith vs system  p,=0.990. @: p,=0.992. A: p,=0.994. A: p,=0.996. OI:
size L at the critical point py=pyc=0.005p,=p;;=0.9925) p =0.998.M: p,=1. The straight line has slope a=—1.48. For
(®). The straight-ine fit has slope—g8/v,=—0.75. For p<p,. andp;>p,, the “death time” distributions are cut off
p;=0.9935 ©), slightly larger tharp,. , the densityd saturates at  exponentially at time scales lower than the total simulation time
largelL. (10,000 time steps Lower inset: Semilogarithmic plot of the res-
caled “death-time” distributionr*P(7), emphasizing the exponen-
In order to further confirm the accuracy of our results fortial tails. ¢ : p;=0.993. The slopes have the valuel/§), where
Pic, we carried out a finite-size analysis. One finite-size ef<|| i the cutoff time. Upper inset: Double-logarithmic plot of time
fect is the rounding ofb vs p,—p,. very close top. (see, scale& vs p;—pic [pg=0.005. The slope of the straight line is
e.g., the inset of Fig. )3 Finite-size scaling predicts — I~ ~1.27-
D (Pyc.Pic) <L #"L, where v, is the spatial correlation-
length exponent. We determined the dendityas the value
where the density distribution has its peak. In Fig. 5didg
shown vs logt for 10<L=<1000 at the transition point
(pgec=0.005p,;=0.9925). On large latticesL¢>100), the
density distribution was sampled over 1 to 10 rdnsmber
decreasing with system sizeeach simulated 10 000 time o
steps. Ongsmallerylatticesj_)z(s 100), a large fluctuation in plotted vs f,—p;¢) (double-logarithmic plgtnear the tran-

¢(t) may cause the system to go extinct, i.e., to enter th .|t|on point (pdc,.p,c)=(0._005,0.9925). From this plot we

completely dead state within the simulation time. In this cas ind »=1.27 (this value is exactly the value obtained for

the density distribution was sampled over 24 to 92 runs. wélirected percolatiof9]). . .

find B/v, =0.75+0.1 (for directed percolation, /v, As shown in thf phase d|agratﬁ*|g. 2, we ha;ngD>O

=0.82[9]). Forp, chosen slightly abovp,, (for example, at (®=0) for p>pj"=0.9968 (p<p;"), where p" is the

the upper bound fop.) log® vs lodg. saturates at large L

(Fig. 5. We conclude that the size of the error bars in Fig. 2 P4 0.01

are reasonable. 0.1 T T T
When we move from the deterministic GOL system into

the probabilistic regime, the stationary structures of the GOL 0.08 |- .

(for example, the square-cell colonieare perturbed—and

distributions have an exponential cutoff. This can be seen by
plotting 7P (7) vs 7 on a semilogarithmic scalgower inset

of Fig. 6). From standard percolation theory we expect to
have a scaling form P(7)=7"f(7/§)) with §
o|p—p I, where—gﬁ1 is the p,-dependent slope in the
lower inset of Fig. 6. In the upper inset of Fig. §, is

they will therefore spread or shrink. Near the phase transi- 0.06 |- .
tion, the time evolution of the system depends crucially on
pgq andp, . Above the transition line the growth rate balances 0.04 |- -

the death rate and the system keeps evolving. Below the line,
the death rate exeeds the growth rate, and the system even- 0.02 .
tually reaches complete “death.” As we go closer to the 6 00 Qoo0B
phase-transition line the characteristic time scale diverges.
To examine the dynamics, we determined the distribution
P(7) of “death times,” defined as the time from when a cell
is vacated (1-0) until it again becomes occupied€01); FIG. 7. Life density® along the two edgespi=0,p,) [left
see Fig. 6. At the transition line this distribution has a power-jge and (4, p;=1) [right side near the “game of Life,” situated
law behavior,P(7)= 7", only cut off at time scales com- in the mid-point p4=0,p,=1). A jump in the value ofb is seen
parable to the total simulation lengthO 000 time stepsWe  on both sides of the “game of Life”. The jumps are slightly
find « to be a=1.48. Slightly above and below the line the smoothened, due to the finite simulation time.
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asymptotic value fop, for p;—0. However, we may en- to life and perturb the colony. The perturbation leads to ex-
counter “first-order” jumps in density® as we go from tinction or growth, dependent on the valuemf

pgs>0 to p4=0, simply because some of the static or peri- Finally, we consider the GOL pointp{,p;)=(0,1). At
odic structures known from the GOL may become stablethis point, “blinkers” and other cell colonies become stable.
and because certain perturbations produceeyatO are ab-  Along the edge §4=0,p,) we therefore observe a jump in
sent atpy= 0. Similar considerations apply to the case wherejife density from ®=0.6% to ®=®dgo, =2.6% (Fig. 7).

we go fromp;<1 to pj=1. We therefore examined these along the other edgep(y,p;=1), important perturbations
situations carefully. In the latter casp 1 to pj=1), We  gre produced as soon pg>0. The perturbations cause the
found that®(p,—1)=®(p;=1) [py>0]. However, in the |ite density to increase abruptly fronbgo =2.6% to
former case [§4>0 to py=0), we do find a jump in the 0D =1)~6.0% (Fi

value for®. This is a consequence of the fact that along the ] - S
edge py=0,,) the square-cell colony remains stable. It In summary, we have identified a phase-transition line in
consists solely of cells with 3 living neighbors and is thus@ Stochastic environment of the deterministic “game of
unaffected by the value op,. Accordingly, we find that Life” cellular automaton. The transition line is of the
®(py=0,p)) has a nonzerg,-independent valug¢p,<1],  “second-order” type with power-law diverging length and
given by the asymptotic density of square-cell colonies. Wéime scalegexponents consistent with directed percolation
find that this value igb(py=0,0,)=0.6%. Forpy>0, the  Our simulations show that the “game of Life” is very near,
neighbor cells to a square-cell colony will eventually comebut not on the critical transition line.
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