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Random sequential adsorption ofk-mers on a square lattice: The largek regime

B. Bonnief*
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(Received 14 February 1996

The random sequential adsorptionkefners on a two-dimensional lattice is studied in the regime of large
k, up to infinity where the coverage has a finite limit. A simple and accurate representation of the coverage as
a function of the time is given for any value &f Its parametrization is a consequence, through the master
equations, of the particular behavior that we find for the deposited clusters in Monte Carlo simulations of the
process. The parameters are fixed by matching a seventh-order time series expansion.
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Random sequential adsorptiéRSA) is a model in which  ratio goes to infinity. Indeed, a standard Padenmation of
objects are deposited on a given substrate one at a time, withe seventh-order expansion ®{(T) in powers of the time
random positions, such that new objects cannot overlap préF cannot be trusted at any time whkrnis large: it appears
viously adsorbed ondd]. A variety of large molecules ad- thatT has to be smaller than 1 whémnis greater than 10. It
sorbs in an essentially irreversible manner, and the RSAs however possible to derive the jamming lir@i{, from this
model may be appropriaf€] to describe this process. When expansion, as we have shown in our previous wigk
the substrate is one-dimensional, the model is generally solwhere we performed MC simulations of this model in the
able, as the well known deposition kfmers(line segments range 2<k<512. In agreement with the MC simulations, we
of k site9 or its continuous versiofthe car parking problejn  have shown that
[3]. In higher dimensions, no model has been solved, but a
great amount of information has been collected, especially 0,=0.664+0.83k—0.7/k?, (D)
for the coverage®(T): at low coverage, exact but finite
perturbative series can be derivéimne or virial-like expan- ~ Which implies a finite coverage for infinite-mers, that we
siong [4], and at large time the asymptotic approach to thdnterpret as a consequence of the alignment constraint. In
jamming limit can be guessed from heuristic arguméhis  order to complete our previous analysis, we want to report
In many cases, it then appears feasible to invent an interpdiere the very simple behavior that we find for the coverage
lating function for the coverage in agreement with the Montein the largek regime,k>10:

Carlo (MC) data at any timg6].

There is a noticeable exception to this scheme, when the OM=TO/(T+xi), T=2/In(k), )
deposition involves very anisotropic objects, such as for ex- ) )
ample, rectangles with a large aspect ratig where Wh_ere the constar_m/k y which can be estimated from the
a=(length/(width). In the RSA of such unoriented rect- S€Ti€s expansion, is given by
angles on the plane, where= 4, no satisfactory interpolation
hag been foun%?] between the low coverageyregimz, known X=1.22-11.07k+63.7k*, C)
from a third-order virial-like expansion, and the asymptotic
regime where saturation occurs 853, This failure is at-
tributed to the very different nature of the two regimes. In
fact, intuitive arguments and MC simulatiofi8] indicate
that at low coverage the orientations of the adsorbed recEth K d ition is d | h | latti
angles are weakly correlated but that at long time an ordering . ex-mer .eposmon 'Si one along two orthogona gttlce
effect occurs: the adsorbed rectangles have orientations Sinﬁ_rlentathns (’J_) and IeFEn be a clugtgr ofn congepgtlve
lar to those of their preadsorbed neighbors. This regime beEMPY sites aligned with the direction On an initially
comes more pronounced as the aspect ratio increases, aﬁlalpty lattice, the averaged probabilities of such sets are po-
some shrinkage of the low coverage regime weakens th

@ltion and orientation free, and they can be denoted by
ability of the low time expansion at moderate order to fix thePn(T), With Po(T=0)=1. We use a dimensionless time
scale of the coverage at large time.

The representatiofR) is an approximation whose accuracy
increases withk, according to our MC simulations, and
which appears as an approximate solution of the master
uations that we derive below.

variable T=Rkt, whereR is the rate of random deposition

The model we consider in this work suffeaspriori this ~ attémpts ofk-mers per site and per unit time such that
kind of problem: it is the RSA ofk-mers on a two- — K(d/dT)Py(T) counts all the possible ways of filling at
dimensional lattice for large values & i.e., the RSA of least one of then sites of E;, through ak-mer deposition.
oriented rectangles of lengthand width 1, when the aspect Then—k(d/dT)P(T)=2kP,(T), which gives for the cov-

erage
.

o

Pk(T’)dT’=®k—2J' P (THdT. (4)
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Whenn=k, two kinds of events have to be considered: the T1— e [X+x(¥]
deposition occurs with orientatidnand thek-mer is inside S(X;T)=Zf WdeLO
or overlappingE,,, or it occurs with another orientatiop 0 X

and it intersectE,, at some sites. This last contribution can ) ) ]
be written asS P(E!EL), where thes summation is per- Which can be writterS(x;T) =S+2In(T+) for T suffi-

formed on thenk possible intersections of a pair of orthogo- cientlllarge and greater thar,, under the assumption that
nal clustersE,, andE}. In order to truncate the hierarchy at for T=Ty, x(T) saturates its limity,, and whereS is a

1
E) : (11

the P,(T) level, we putS P(E!EL)=nkP,(T)¢(T), where

thek-dependent conditional probability(T) is left unspeci-
fied. This approximation will be justified later on, and we

end up with

d k—1
—k==P(T)=(n—k+1)Py(T)+2 >, Py y(T)
dT =1

+nkPy(T)e(T), ©)

which is solved as its one-dimensional analog. Inserting in @ ,(T)=

the system(5) the ansatz?,(T)=z""%(T)P,(T) for n=k,
one obtains

d
—kﬁlnz(T)=1+k<p(T), (6)
d k—1
—kd—|npk(T)=1+22 Z(T)+k2p(T). 7)
T =1

Defining the functiony(T) asX(T)=kf$go(T’)dT’ and tak-
ing into account the initial conditions, one arrives at

z(T)=exp{~[T+x(T)]/k} ®

and finally

T
PK(T)=eXD( _E—X(T)_S(X;T))1 9
where we have definef(y;T) as

TZ(TH-ZNT")
Jo 1z 9T

(10

k—1
2(7 2
S(x;iT)= ;fo 2, 2(T)dT =¢

At this point we can mention the experimental tests of the(
truncation hypothesis that we have made. In the course

MC simulations of the model, for various choiceskoaind
T, we have measured some ratigs=P,, . 1(T)/P,(T) for

time-independent constant. Thus from E), Py(T)
=A/(T+ x)? which inserted in Eq(4) gives for the cov-
erage

k(T):®k_2Ak/(T+Xk)’ T?Tk (12)

One can eliminate the constafyt in favor of ®,(T,) in the
previous expression to obtain

TO Tt xx
T+Xk T+Xk

(13

Thus, if one can find Ty such that 0,(Ty)
:Tk®k/(Tk+Xk)l then

In order to test this assumption we have performed MC
simulations, within the method already explained in our pre-
vious work[9], for k running from 12 to 128. In all cases,
taking for ®, the values given iig1), one can find a constant
Xk such that the expression E@.4) fits perfectly with the
data forT=1. It is an interpolation of these values which is
given in expression Edq3). It also appears thak,, defined
as the smallest value df where the data and the fit E{L.4)
coincide, shrinks to 0 approximatively dg=2/In(k), sug-
gesting a very simple form for the asymptotic coverage
0.,(T)=0.664T/(T+1.22). A sample of these results is dis-
played in Table |, wherd is restricted toT<1, as the data
and the fit coincide at higher values.

It remains to show that the values gf can be obtained
from the expansion 00 ,(T) in powers ofT. In the large
k regime, the Padeesummation of this series is not reliable
at largeT, but it works in the regiolf=T, in such a way
that a comparison of these approximants and the form Eq.
4) fixes ®, and y,.. A direct evaluation ofy, is also pos-
ible, and we give here as an example its determination in
the most difficult casek=c. In this case, up tdO(1/k)
terms, the series gf(T), obtained by matching the expan-

n=k. As a consequence of this hypothesis, they must bg;,, o P.(T) [known from the series 08 (T)] with the

independent of, since they are all equal t(T) given by

Eqg. (8). The simulations indicate a small discrepancy be-
tweenz, andz,, 1, increasing withT, but always less than
5%, the remaining measured ratips ; to z,, 5 being prac-

tically equal. They also show thg{T) increases withr, in

agreement with its definition, and quickly saturates some fi-
nite limit y,. This behavior, which implies the rapid de-
crease ofp(T), indicates the tendancy to align for the de-

positedk-mers.
In the large k regime, where from (8) z(T)
=1—[T+x(T)1/k, S(x;T) becomes

parametrization9), reads in the variabla=kT

ey Lo, 8o 23, 48L . 24007
X(T)=u=Zu™ 52U 235U+ 35000" ~ 5832000
+0(u’). (15)

As y., is the limit of Eq.(15) atu=o, we use the mapping
v=y(1—e"Y), which transforms the serigd5) into av
seriesy(v). Theny,, is the value ofy(v) atv=y. As this
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TABLE I. For the values ok given on top of each double column, the MC values of the coveffage
column are compared with the expression EB). (second column The sign= indicates that the data and
the fit are equal within one unit on the last digit, which is the maximum uncertainty on the MC results, which
are obtained as in our R¢B] where details can be found. For any choicépthe values fo®, andy, used
to compute expression E(R) are given by the interpolations E€l) and Eq.(3), respectively.

T k=12 k=48 k=80 k=128 k=00
0.1 0.124 0.087 0.082 0.061 0.072 0.057 0.065 0.054 0.050
0.2 0.190 0.155 0.129 0.112 0.116 0.104 0.107 0.100 0.093
0.3 0.237 0.210 0.168 0.155 0.153 0.145 0.143 0.140 0.131
0.4 0.275 0.255 0.201 0.192 0.186 0.181 0.176 0.174 0.164
0.5 0.307 0.294 0.230 0.225 0.215 0.212 0.205 = 0.193
0.6 0.335 0.326 0.256 0.253 0.241 0.239 0.231 = 0.219
0.7 0.358 0.354 0.280 0.278 0.264 = 0.255 = 0.242
0.8 0.380 0.378 0.300 = 0.285 = 0.276 = 0.263
0.9 0.399 = 0.320 = 0.305 = 0.295 = 0.282
1.0 0.418 = 0.338 = 0.322 = 0.313 = 0.299

value must be independent of the mapping paramgtgris  consistent determinations which, even if they work for small
fixed at finite order by a stationarity condition. One obtains k-mers, fail in the largek regime sincey, becomes un-
bounded and the coverage vanishes. For example in the

_ .49 203 2+£5 5 805 4y 3367 o “shielding” approximation[10], where o=2z*""1, one finds
Xw=Y)=55Y~55Y " 216"~ 2502Y ' 72000’ ®,=£~0.8889(MC value[9] =0.9068 but ask increases
xx=In(k) and®,=1/k. This is also the case for the mean-
24097 field approximationgo=P,, which givesP, throughout the
N 583200(}/ (16) nonlinear equatioKb), and it can be proven that the coverage

is bounded by 4 I/k. These approximations fail because
and one can check that this polynom has only one extremunhe probabilities of the empty clusters are independent of
for positivey at y=2.13. It is a maximum with the value their shape, which eliminates any ordering effect, but a real-
1.218 and the Padeble givesy..=1.22+0.01, in agree- istic self-consistent determination &{T) at largek is still
ment with the interpolation given in Eg3). an open problem.

More generally, for any value &€, x,(T) can be recov- ) ) , )

ered from its time series expansion, assuming that it has a 1he author is grateful to Dr. E. Pommiers for his help in
finite limit. This has to be contrasted with its usual self- Performing RSA simulations.
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