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Gaussian random eigenfunctions and spatial correlations in quantum dots

Mark Srednicki
Department of Physics, University of California, Santa Barbara, California 93106
(Received 6 February 1996

We show that spatial correlations in wave functions of quantum dots, obtained earlier by averaging over a
random potential via supermatrix techniques, can be computed with much less effort by making use of Berry’s
conjecture that the energy eigenfunctions in a quantized chaotic system are Gaussian random variables. Fur-
thermore, in the case of a time-reversal invariant system, we find a greatly simgtifimegh equivalent
formula for these correlation§S1063-651X96)09505-(
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Prigodin [1] and Prigodinet al. [2] have computed the where M =(yf ¢;)=V [§;+(1-&;)f], and f
joint probability distribution =f(|x—y|).
For the time-reversal invariant cages=2 andy; is com-
P(v1,02)=(8@1—V|¥(x)|>)@w,—V|g(y)|?)) (1) plex; changing integration variables to,=V|y|> and
0,=argy; , including a proper Jacobian, and integrating over
for the squared amplitude of an energy eigenfunciiér) at 6, and 6, yields
two different points x andy) in a quantum dot with volume

V, assuming either brokgr] or unbroker 2] time-reversal P( )= oxt] — U1t U2 | 2fJvqv, @
invariance. This was accomplished by averaging over a ran- v1,U2)= 742 1-f2)0 1-¢2 )

dom potential using supermatrix techniques. Here we show
that their results can be obtained much more easily by makwhere Io(z) is a modified Bessel function, and
ing use of Berry’s conjecturg3] that the energy eigenfunc- f=f(|x—y|). This is the same as E{L5) of [1].

tions in a quantized chaotic system are Gaussian random For the time-reversal invariant case=1 andy; is real;
variables. Furthermore, in the time-reversal invariant caseshanging integration variables 1g=V? and including a
we get a formula foP (v 1,v,) which is considerably simpler proper Jacobian then yields

than (though mathematically equivalent)tthe one given in

[2] 1 [{ Ul+ Uo

We interpret Berry’s conjecture as implying that P(v1,02)= 27(1- 1900, PR T 2(1-17)

I’{ f \/vlvz)
X COoS

1—-f2 |

B
P(tp)ocexp[—g f dxdyy* (K ¥y) |, @ ©
This should be compared with E¢5) of [2], in which
P(vy,v5) is expressed as a parametric double integral. To
verify that these two very different expressions for
P(vq,v,) are equivalent, we compute the moments

whereP(¢) is the probability that a particular energy eigen-
function (with a definite energy eigenvalués equal to the
specified functiong(x). Here B=1 for a system which is
time-reversal invariant, an@=2 for a system which is not.
In the former casey(x) is a real function. In either case, the o
kernel K(x,y) is the inverse of the two-point correlation Qnmzf dv;dv,v vy P(vy,0,)

function (¢* (X)(y))=V f(]x—y|), where the angular 0

brackets now denote an average oRér)), rather than over ST gy [20] g, 2T ©)

a random potential. We note that an assumption equivalent to 1 2l /7

Eq. (2) was made irj4] to calculate the probability distribu- \;qing standard combinatoric properties of Gaussian distribu-

tion of level widths and conductance peaks in a quantum dof,s " \we have, in the time-reversal invariant case when
with attached leads. We will not need the explicit formula for #(x) is real

f(r) [3], but notice that proper normalization of the wave
function requires(0)=1.
To getP(vy,v,) from Eg. (2), we note that integrating (g ¢2p>:;irs<¢ilwi2>' Wiy iy (7
out all variables excepf,= #(x) and,= (y) will yield a P
Gaussian in these variables, and this Gaussian must repr@mere the sum is over the p2-1)!! ways of pairing up all
duce the correct two-point correlation functions. Thus weype #'s. Recalling that (gi)=(yp)=1N and
conclude that (1) =11V, the last line of Eq(6) is easily evaluated as a
special case of Eq(7). To find the contribution toQ,m,
_ B _ which is proportional tof?9, where q is an integer, w
812 _ P N proportional tof<9, ereq is a eger, we
P(ih1,42)*(deM) exp{ 2 VT (M0, ®  choose 2 of the 2n 4's in (2n)!/(2g)!(2n—2q)! ways,
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2q of the 2m #,’s in (2m)!/(2q)!(2m—2q)! ways, and (7 ) ={(y5 ¢,)=f/V. To find the contribution toQun,
pair them up in (2)! ways. Then we pair up the remaining which is proportional tof?9, we choosey of the n ;s in
2n—2q ¢,’s with each other in (2—2g—1)!! ways, and nl/q!(n—q)! ways, q of the m ¢3's in m!/q!(m—q)!
the remaining B—2q ¢,'s with each other in ways, and pair them up ig! ways; we also choosg of the
(2m—2q—1)!! ways. Putting all of this together, and using n y*'s in nl/q!(n—q)! ways, q of the m i,’s in
the identity (2 —1)!!=(2p)!/2"p!, we find m!/q!(m—q)! ways, and pair them up ig! ways. Then we
min(n,m) (2n)!(2m)! £20 pair the remaining—q ¢,'s andn—q ¢7's with each other
Q= E — : : . ® in (n—q)! ways, and the remainingh—q ,'s and m—q
"mo§S 2" (n—qg)!(m—q)!(29)! ¥%’s with each other in ih—q)! ways. Putting all of this
together, we find

This is equivalent to Eq(21) of [2] (as corrected in the

erratun). min(n,m) (n1)2(m! )22

For completeness, we note that we can also easily com- Qnm= (=l (m—q)! (g2 (10
puteQ,, in the case of broken time-reversal invariance. The a=0 a: Qg
analog of Eq(7) is This same formula follows from Eq14) of [1] (after ex-

panding in powers of and doing the contour integral in that
(W11 Py bp) = p;mswff i) (i), (9 equation term by terin
I thank V. N. Prigodin and N. Taniguchi for helpful cor-

where the sum is over thep! permutations of the respondence. This work was supported in part by NSF Grant
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