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In this Brief Report we show explicitly how the repeated randomness assumption commonly used to derive
irreversible transport equations in statistical mechanics can be put in the language of Zwanzig’s projection
operator technique. Some consequences of the results are also discussed.@S1063-651X~96!05406-2#
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We present the form that the repeated randomness as-
sumption takes when cast in the language of Zwanzig’s ap-
proach to nonequilibrium statistical mechanics, which is
based on the projector operator technique. The randomness
assumption is a basic postulate to understanding the form in
which microscopic reversibility is connected with the irre-
versibility of the macroscopic processes. This work aims to
establish a bridge between the powerful mathematical for-
malism of Zwanzig with the very clear physical description
given by van Kampen. Thus we attempt to express van
Kampen’s ideas about the randomness assumption@1–3# in a
simple mathematical formalism.

We consider the ensemble associated with the system un-
der study, and denote byN(aW ,t)DaW the number of the sys-
tems that at timet are in thea cell, i.e., in the region defined
by aW <AW (G)<aW 1DaW . Thus

N~aW ,t !DaW 5E
aW <A~G!<aW 1DaW

Nr~G,t !dG

5NE r~G,t !DSAW ~G!2aW

DaW D dG, ~1!

whereD$[AW (G)2aW ]/DaW % is the characteristic function of
theaW cell. In the limit of exact measure@4,5# we have that

N~aW ,t !5N lim
DaW→0

E r~G,t !
1

DaW
DSAW ~G!2aW

DaW D dG

5NE r~G,t !d„AW ~G!2aW …dG. ~2!

Thus N(aW ,t) is the number of systems that satisfies the
condition thatAW (G t)5aW .

When we perform a measurement on the ensemble at time
t1, we determine the number occupation set$N(aW 1 ,t1)% for
all possible values of theaW ’s. In order to determine the oc-
cupation number’s time evolution we introduce the random-
ness assumption:The future values AW (G t) do not depend on
the precise position ofGt within the phase cells@2#. This
assumption implies that$N(aW ,t)% is only a time independent
functional of the occupation numbers att1, namely,

$N~aW ,t !%5F„$N~aW 1 ,t1!%…, ~3!

where clearlyt.t1. This functional restriction implies that a
certain constraint has been made regarding the form of the
initial distribution function. Indeed, it can be seen from the
expression forN(aW ,t), which is given by Eq.~2!, that the
randomness assumption implies that we do not need the pre-
cise form of the distribution function at the initial time to
evaluate the future values of the cell’s occupation number,
we only require the dependence through the initial cell’s oc-
cupation numbers$N(aW 1 ,t1)%. As we shall see below, this
dependence is given by the projected part ofr~G,t1!.

To pursue the argument, assume that at a certain timet1
we determine by direct observation the occupation numbers
$N(aW 1 ,t1)%. From the microscopic point of view, knowledge
of these quantities does not determiner~G,t1!. Indeed, there
is a whole set of functions, call itR~t1!, such that

R~ t1!5 H r~G,t1!UN~aW 1 ,t1!5NE dG r~G,t1!G~aW 1,0!J ,
~4!

where G(aW 1,0)5d„AW (G,0)2aW 1…. Nevertheless, the set
$N(aW 1 ,t1)% does have the property of uniquely determining
one part of any member of this family. Indeed, take Eq.~2!,
which defines according to Eq.~4! the members of the family
R~t1!, multiply it by G(aW 1,0)/W(aW 1) on both sides, and
integrate over the whole aW space. Here W(aW 1)
5*dG d„AW 1(G)2aW 1… is the volume of theaW 1 cell in the
phase space. After theaW integration is performed on the
right-hand side, we get;

E N~aW 1 ,t1!
d„AW ~G,0!2aW 1…

W~aW 1!
daW

5NE dG8r~G8,t1!
d„AW ~G8,0!2AW ~G,0!…

W„AW ~G,0!…
. ~5!

But according to Zwanzig@6–7# the right-hand side of Eq.
~5! is precisely the ‘‘projected’’ part of ther~G,t1! over the
microcanonical cell whose volume isW(aW ), so that, in fact,
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México, D.F., Mexico.

PHYSICAL REVIEW E JULY 1996VOLUME 54, NUMBER 1

541063-651X/96/54~1!/950~4!/$10.00 950 © 1996 The American Physical Society



r̂~G,t1![Pzr~G,t1!5E N~aW ,t1!

N

G~aW ,0!

W~aW !
daW , ~6!

wherePz is Zwanzig’s projection operator@6,7#.
In other words, of the familyR~t1!, the set$N(aW 1 ,t1)%

uniquely determines the projected part of the distribution
function of the members of such a family, namely,
Pzr(G,t1) defined by Eq.~6!. Therefore, with the knowledge
of $N(aW 1 ,t1)% we describe the system’s state by an ensemble
formed by a superposition of microcanonical ensembles in
each cell. This is the more logical selection from the proba-
bilistic point of view because we do not have more detailed
information that allows us to know the precise position of the
phase point within the cell for each ensemble’s member.
This latter information is contained in the irrelevant pro-
jected part of the distribution function, and the randomness
assumption tells us that it is irrelevant for the future descrip-
tion of the phase functionsAW (G,t). Thus, for macroscopic
purposes, we consider that (12Pz)r(G,t1)50, which im-
plies thatr(G,t1)5Pzr(G,t1). This assumption is compat-
ible with Eq. ~3!, as seen when we separate the distribution
function in both its parts. Indeed, Eq.~2! takes the form

N~aW ,t !5E daW 1N~aW 1 ,t1!
„G~aW ,t !,G~aW 1 ,t1!…

W~aW 1!

1E dG$N~12Pz!r~G,t1!%G~aW ,t2t1!,

which after use is made of the condition (12Pz)r(G,t1)50
simply reduces to

N~aW ,t !5E daW 1N~aW 1 ,t1!
„G~aW ,t !,G~aW 1 ,t1!…

W~aW 1!
. ~7!

Equation~7! shows that applying the randomness assumption
guarantees the functional relationship given by Eq.~3!. Thus
the functional form of this equation is entirely equivalent to
the randomness assumption given by Eq.~6!.

We now proceed to give a physical interpretation for the
inner product

„G~aW ,t !,G~aW 1 ,t1!…5E dGd„AW ~G,t !2aW …d„AW ~G,t1!2aW 1…,

~8!

which can be expressed in the following form:

„G~aW ,t !,G~aW 1 ,t1!…5 lim
DaW→0
DaW 1→0

E dG
1

DaW
DSAW ~G,t !2aW

DaW D
3

1

DaW 1
DSAW ~G,t1!2aW 1

DaW 1
D .

Therefore,

„G~a,t !,G~a1 ,t1!…daW daW 15EaW 1<AW ~G,t1!<aW 11daW 1

aW <AW ~G,t !<aW 1daW

dG, ~9!

thus„G(aW ,t),G(aW 1 ,t1!… is the phase volume occupied by the
system’s ensemble such that at timet1 the representative

points are in theaW 1 cell, and at timet they are inaW cell. We
denote byN(aW ,t;aW 1 ,t1) the number of these systems, so that
we have

N~aW ,t !5E daW 1N~aW ,t;aW 1 ,t1!. ~10!

When we compare this expression with Eq.~7!, we obtain
that the randomness assumption implies that

N~aW ,t;aW 1 ,t1!

„G~aW ,t !,G~aW 1 ,t1!…
5
N~aW 1 ,t1!

W~a1!
. ~11!

Thus Eq.~11! means that the ensemble’s number density is
constant in the course of macroscopic times. In some sense
Eq. ~11! is similar to a macroscopic Liouville theorem, be-
cause the local number densityN(aW 1 ,t1)/W(aW 1) does not
change in macroscopic times, although the phase volume is
not an arbitrary smalldG, but the volume associated with the
system’s macroscopic observables.

We now proceed to apply the repeated randomness as-
sumption when we consider the time evolution of the en-
semble for three timest3.t2.t1 such that the time intervals
are macroscopic intervals, namely, those in which we make a
macroscopic measurement on the system. In this case, the
randomness assumption can be applied separately to timest3
and t2, a condition that according to Eq.~3!, may be ex-
pressed as

$N~a3 ,t3!%5FDt9„$N~a1 ,t1!%… with Dt95t32t1 ,
~12a!

$N~a2 ,t2!%5FDt„$N~a1 ,t1!%… with Dt5t22t1 .
~12b!

However, the intervalt32t25Dt8 is also a macroscopic
time interval, so that the repeated randomness assumption
allows us to treat the evolution during this interval in the
same manner as we do with the first intervalt22t15Dt.
Then, we also have that

$N~a3 ,t3!%5FDt8„$N~a2 ,t2!%…. ~13!

This last expression implies that the system goes fromt1 to
t2 in such a form that~12b! is satisfied, and the occupation
numbers att2 are given by Eq.~7!. Thus we redistribute the
systems inside each cell to obtain a distribution with constant
density, so that according to Eq.~7!,

N~aW 2 ,t2!

W~aW 2!
5E daW 1N~aW 1 ,t1!

„G~aW 1 ,t2!,G~aW 1 ,t1!…

W~aW 2!W~aW 1!
.

~14!

Notice that we repeat here the same procedure that is fol-
lowed to select the distribution function at the initial time
after the system evolves tot3, and due to the fact that the
time interval t32t25Dt8 is a macroscopic one, Eq.~11! is
satisfied, so we have that

N~aW 3 ,t3 ;aW 2 ,t2!

„G~aW 3 ,t3!,G~aW 2 ,t2!…
5
N~aW 2 ,t2!

W~aW 2!
, ~15!

and the cell’s occupation numbers are given by
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N~aW 3 ,t3!5E daW 2N~aW 2 ,t2!
„G~aW 3 ,t3!,G~aW 2 ,t2!…

W~aW 2!
.

~16!

Of course the procedure can be repeated for all future times,
with the condition that the corresponding time intervals in-
volved be macroscopic. This is precisely the significance of
the repeated randomness assumption.

Now we draw the conclusion arising from the requirement
that Eqs.~12! and ~13! must be compatible. The repeated
randomness assumption implies that

FDt81Dt„$N~a1 ,t1!%…5FDt8~FDt„$N~a1 ,t1!%…!. ~17!

The right hand side of this functional equation is obtained
when we substitute Eq.~14! into Eq. ~16!, so that we get

N~aW 3 ,t3!5E daW 2H E daW 1N~aW 1 ,t1!
„G~aW 2 ,t2!,G~aW 1 ,t1!…

W~aW 1!
J „G~aW 3 ,t3!,G~aW 2 ,t2!…

W~aW 2!

5E daW 1
N~aW 1 ,t1!

W~aW 1!
H E daW 2

„G~aW 3 ,t3!,G~aW 2 ,t2…

W~aW 2!
„G~aW 2 ,t2!,G~aW 1 ,t1!…J ~18!

and the left hand side of Eq.~17! referred to the initial time
t1 is

N~aW 3 ,t3!5E daW 1
N~aW 1 ,t1!

W~aW 1!
„G~aW 3 ,t3!,G~aW 1 ,t1!….

~19!

Therefore, Eq.~17! implies that

„G~aW 3 ,t3!,G~aW 1 ,t1!…5E daW 2
„G~aW 3 ,t3!,G~aW 2 ,t2!…

W~aW 2!

3„G~aW 2 ,t2!,G~aW 1 ,t1!…. ~20!

Thus the repeated randomness assumption implies this rela-
tionship between the phase volume. Using now the fact that
the macroscopic phase density is constant in a macroscopic
time interval, Eq.~20! can be expressed in a more familiar
form, by dividing both sides byW(aW 1) and using Eq.~11!.
This leads to the expression.

N~aW 3 ,t3 ;aW 1 ,t1!

N~aW 1 ,t1!
5E daW 2

N~aW 3 ,t3 ;aW 2 ,t2!

N~aW 2 ,t2!

N~aW 2 ,t2 ;aW 1 ,t1!

N~aW 1 ,t1!
.

~21!

Finally, using the fact that the conditional probability is
given by

P~aW ,tuaW 1 ,t1!5
N~aW ,t;aW 1 ,t1!

N~aW 1 ,t1!
, ~22!

Eq. ~21! takes the form

P~aW 3 ,t3uaW 1 ,t1!5E daW 2P~aW 3 ,t3uaW 2 ,t2!P~aW 2 ,t2uaW 1 ,t1!,

~23!

which is the Chapman-Kolmogorov equation. In other
words, the fact that the randomness assumption implies the
conservation of the number density of the members of the
representative ensemble, provided macroscopic time inter-
vals are taken to measure, is equivalent to asserting that the

conditional probability is governed by a Markovian random
process. This result isper senot new, it was obtained by van
Kampen over 30 years ago@3#. The novel aspect of this
derivation is the fact that successive applications of the ran-
domness assumption in macroscopic time intervals is equiva-
lent to the operation behind Zwanzig’s projection operator.

We now briefly analyze Zwanzig’s formulation and dis-
cuss the form in which the randomness assumption is used in
this formalism. The central quantity in his formulation is the
distribution function

g~a,t !5E r~G,t !G~a,0!dG, ~24!

which is proportional toN(aW ,t), as follows from Eq.~2!.
Thus we discuss Zwanzig’s approach in terms of the cell’s
occupation numbers. He begins deriving the exact time
evolution equation forN(aW ,t), which has the following form:

]N~aW ,t !

]t
5E dbW iV~aW ,bW !N~bW ,t !

2E
0

t

dsE dbW K~aW ,bW ,t2s!N~bW ,s!

1„~12Pz!r~G,0!,F~aW ,t !…. ~25!

The explicit forms for the quantitiesiV, K, andF are irrel-
evant in this work, but are explicitly given in Eqs.~33! and
~34! in Ref. @8#. To proceed, one requires some information
about the initial distribution function, which indeed implies
the randomness assumption when the requirement is made
that

r~G,0!5Pzr~G,0!. ~26!

Use of Eq.~26! leads to a closed equation for the oc-
cupation number, due to the fact that the last term of the
right hand side in Eq.~25! is zero. However, the resulting
equation is very complicated because there appears a
memory termK(aW ,bW ,t2s) and it is necessary to introduce
another simplification, the so called slow approximation. For
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this purpose, one assumes that the times in which we are
observing the system are sufficiently long compared with the
correlation time of the kernelK, in such a way that for such
time scalesK(aW ,bW ,t)52K(aW ,bW )d(t), the kinetic equation
takes the form

]N~aW ,t !

]t
5E dbW $ iV~aW ,bW !2K~aW ,bW !%N~bW ,t !. ~27!

It is also possible to show that the slow approximation@9# is
equivalent to the statement that the conditional probability
satisfies the Chapman-Kolmogorov equation.

Therefore, to obtain the Chapman-Kolmogorov equation
from Liouville’s equation it is necessary to make three as-
sumptions. First, imposing the condition that the initial phase
distribution function satisfy Eq.~26!, which means that the

randommness assumption is used; second, that the stochastic
processAW (G,t)5aW (t) is a slow one, which is valid only
within certain time scales; and third, that the dynamic pro-
cess is stationary for such time scales. These last conditions
may be seen to be equivalent to the repeated randomness
assumption.

As a final remark we wish to state that the results pre-
sented here may be used to establish a bridge between the
usual repeated randomness assumption and the information
theory. This is accomplished in terms of a principle called
the principle of operational compatibility@10#, relying upon
Mackey’s formalism of the dynamical origin of increasing
entropy@11#. Also, it is possible to establish the relationship
between van Kampen’s point of view for nonequilibrium sta-
tistical mechanics with a Nicolis’s theory for conservative
dynamical systems@12#. This will be discussed elsewhere.
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