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An efficient scheme for the description of long-mean-free-path particle transport at a kinetic level has been
extended to a case where particle distributions are highly anisotropic: implantation of ions into a solid. The
method calculates the scattering rate of particles throughout a region and obtains the particle distribution from
the scattering rate. The scattering rate is found by using a numerical form of a propagator to solve an integral
equation. The propagator is the probability that a particle that scattered in a cell has its next scatter in any other
cell of the mesh. The main focus of this work is the way this propagator can be computed efficiently and
accurately for an arbitrary angular distribution of scattered particles as compared to other computer models.
The method is illustrated in application to implantation of dopants into silif8h063-651X96)08507-§

PACS numbdps): 02.70—c, 05.20.Dd, 68.55.Ln

I. INTRODUCTION II. TRANSITION-MATRIX DESCRIPTION
OF PARTICLE MOTION

In this paper we describe an efficient, nonstatistical nu- In this section we describe the numerical scheme used in
merical technique for calculation of particle distribution this work. The procedure is fully kinetic and is equivalent to
functions. The method is applicable for an arbitrarily varyingsolving the Boltzmann equation in terms of the information it
mean free path in situations where individual particle motionprovides. However, instead of calculating the distribution
between collisions does not involve nonlinear interactiongunction directly as in Ref[4], we find in each phase-space
between the particles themselves. The present work extendell the scattering rate or, more precisely, the distribution of
an earlier method to the case where the particle distributioparticles that scattered in that cell of the numerical mesh.
function is highly anisotropic. The method used here to findThe total distribution in the cell consists of particles that
the depth profile of the implanted ions from the ion distribu-scattered there and particles passing through the cell that
tion at the surface is referred to as a “transition-matrix” scattered elsewhere. Once the distribution of scattered par-
(TM) technique. The techniques presented allow detailedjcles is known, the total distribution can easily be found
spatially resolved predictions of the dopant profile to be obfrom it. There are two advantages to finding the distribution
tained, efficiently enough to be used to optimize the implan-of scattered particles first.
tation system design. (i) The scheme updates the distribution iteratively by cal-

The implantation of energetic ions into a solid has in theculating successive scattering rates in all the cells of the
past been described by Monte Carfl@a—3] or Fokker- ~mesh.(The procedure described in this version of the TM
Planck—Boltzmanri4,5] calculations of the ion trajectories method does not follow the time dependence in detail, there-
in the solid. In this paper we employ a nonstatisticalfore) Each iteration takes the distribution of scattered par-
transition-matrix 6—8] description of the ion motion that is ficles from each cell and advances it to the next cells where
much more efficient than Monte Carlo methods in multipleScattering occurs, for all the particles. The procedure em-
dimensions where statistical fluctuations in peripheral areaBlOyS very large steps since each “step” corresponds to the
(ie., low-dopant-concentration regionsan be a severe motion between successive 'coII|f5|ons. Th|§ is very efficient
problem[3]. While the TM method can be considered an and red_uces the numerlcal dlffus!on by minimizing the num-
extension to conventional Fokker-Planck—Boltzmann meth-beerstr:]c times the particle scattering rate Is replaced on the
pds, Itis more e}ccurate n multlplg dimensions. _The metho (i) If (as is often the casehe angular distribution of
involves numerically solving an integral equation for the

tteri te of particl d for th lar distributi cattered particles in each cell can be stored using a simpler
scattering rate of particles and for the angular distribution o epresentation than can the full distribution function of all

i , fhe particles in the cell, the storage requirements are reduced

up a numerical “propagator’{or kerne}, which we call the by a very large factor.

transition-matrix, which is compact, accurate, and can be” |, this TM method we calculate the number of particles

used efficiently. The input to the calculation in the solid is scattering and their angular distribution in each phase space

the ion Ve|OCity distribution at all pOintS along the surface. Ce” Of the mesh_ The phase Space Considered here inc|udes
The TM description of the ion motion in the solid is out- the three spatial dimensions and the kinetic energy of the ion

lined in Sec. II. In Sec. Ill we describe the setting up of theas a fourth variable. We first describe the physical processes

TM in more detail. The results of calculations are then giverof ion implantation and then how the TM describes it nu-

in Sec. IV for a set of implantation conditions, where calcu-merically.

lated doping profiles and spatial distributions are presented. The physical process of ion implantation can be under-
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54 TRANSPORT OF IONS DURING ION IMPLANTATION 939

stood as a series of individual events. First an ion travels " b
some distance in spacehich we call a “ballistic” move-
men) before undergoing a nuclear collision with an atom in
the solid. Both the direction and the distance the ion travels
depend on the initial velocity. On average the ion will travel
a mean free path, which depends on its initial velocity.
Once the ion suffers a nuclear collision, its velocity changes
in both direction and magnitude. Eventually, after numerous
“generations” of ballistic moves followed by nuclear colli-
sions, the ion’s kinetic energy is lost and the ion comes to
rest somewhere inside the solid. | d
In the TM method the above physical picture is imple-
mented on a numerical mesh. The first part of this mesh is a
Cartesian mesh in three dimensions, which divides the solid
into small volumes. Each volume cell, denoted djy con-
tains another mesh. This mesh is a discretization of the ion’s
kinetic energyE’. Each cell of this mesh has an average
energyE’ and widthdE' associated with it. For each spatial ~ FIG. 1. Schematic showing the redistribution of particles suffer-
cell ¢’ and for eachE’ the scattering rate of ions is com- ing a scatter then traveling from cellto cellsb—e.
puted. Furthermore, an average velod#§’(c',E’) of the
ions is also computetsee below: collision. We then have an expression for the scattering rate
We will now outline how the scattering raté¥c’,E’)  after allowance for nuclear collisions:
are iterated on the mesh. Let us consider a spatiattelhd
a group of ions at energy’. This group of ions scatters at a R(c,E)=2 Teo(E,E")R(c,E") 2
rate R(c’,E’) and has an angular distribution E'
f(0,¢4,c",E"). 1(0,4,c",E") is the probability that an ion for all spatial cellsc.
with energyE’ that last scattered in cell’ is moving in a In earlier work[6—8] we definedR to be a scattering rate
direction within the rangep to ¢+A¢ andf to §+A6 (the  per second. In this worR is the number scattering at each
method used to compufeis described in Sec. Il A#=0is  generation, so at, say, the third iteration of E@s.and (2)
along the Cartesiam axis (which is defined to be normal to we find the total number of scatters at the third generation of
the target surfageand ¢ is measured from the Cartesian scatters in a certain cell.
axis. In this section we described the physical process of ion
For givenf(6,¢,c’,E") we need to know the probability implantation and how the TM method calculates scattering
that an ion will next scatter in celt. The ballistic TM  rates. In the next section we will describe how the TMs are
Tralc;c',E',T) is exactly this probability. The rate of ions generated and incorporate another physical pro¢eles-
with energyE’ scattering in celc having come fronc’ is  tronic stopping into the TM method.
Tralc;c’,E',f)R(c',E"). The total scattering rate in cedl

e

is the sum over all spatial cells lll. GENERATION OF TRANSITION MATRICES
" — =Y - In this section we first describe how the the angular dis-
R(e.E") ; Toalci¢",E"HR(CT,ED). @ tribution f of ions is calculated and how the TMs are gener-

ated. Detailed descriptions for nuclear collisions, ballistic

One important feature of the way we construct the ballismotion, and electronic drag TMs are given. We finish this
tic TM, which is explained in Sec. Ill C, is that we only need section with a schematic of the TM algorithm. We stress that
to store a three-dimensional array to obtay,. the physical model presented here is a simplified approxima-

The use of Eq(1) is illustrated in Fig. 1. The scattering tion. More complicated kernels for each of the propagators
rate in the cellc can be thought of as being produced by could be used. However, the main purpose of this paper is to
particles scattering in all the celts, some of which subse- illustrate the method. Accordingly, such extensions will be
quently scatter irc. For example, suppose a certain agll  incorporated at a later time.
has a scattering rate &(c’,E') and 1% of these particles
have their next scatter in cetl (i.e., the probability of the
next scatter being o is 0.0). Then the contribution of the
scattering inc’ to the scattering inc is given by 0.01 The problem of finding the angular distribution of a group
R(c’,E’). When the contributions from all celts are com-  Of ions that have the same energy in a spatial calan be
bined, as in Eq(1), we get the total scattering rate in cell thought of as being in two parts. First we recognize that all
C. of the ions which scatter in the cell carry with them some
spatial cell, the ion energies are adjusted due to nuclear coR average, through some andE,E’), which depends
lisions. Another TM, the *“collision” transition matrix ©ON the initial and final energies. We can calculate the average
T(E,E’), is the probability that an ion with energy velocity V4'(c’,E’) carried in by particles that scatter in the
E'+=dE'/2 will have a final energfe = dE/2 after a nuclear cell ¢ from all other cells with ions at enerdy’ using

A. Calculation of the angular distribution
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A A [2E’
S ThalC, ', E', f)R(c’,E")[XCcOospSind+ ysingsing+ xcosd] IR
1

R(C'E/) i) (3)

V¥ (c,E')=

whereM , is the mass of the ion andp( 6) are the spherical angles subtended by a line fromaeib c. Once in cellc, the
ions suffer a nuclear collisio..o(E,E") gives the probability of the final energy after the collision beigdE/2. For each
final energy, an average cosine of the angle scattered through can be found; the angB(BeHEYQ (see below By a simple
average over the ensemble, one finds

. E
e Teo E,E')R(C,E")cog O (E,E" )]V (c,E") £
Va'(c,E)=

R(c,E) ' @

From V9 (c,E) we can construct(, 6,c,E). However, we a=0.885%,(Z22%+ 737~ 12 9
first construct the angular distribution in another set of coor-
dinatesg(#,c,E), where §=0 points in the direction of anday is the Bohr radius. They introduce the parameter

Var(c,E). We choose the functional form g’(né,c,E) to be

t T2 (10
- = _8 1
(6,c,E) =P 3|V 9 (5) v
9(6,c,E)==| 1+ ——co
2 VZE/My whereT is the energy transferred from the ion to the target.
_ _ - . The nuclear scattering cross section may then be written us-

for 0<é@<m if [3V“'(c,E)|<y2E/M,, otherwise ing the approximate, one-parameter version

9(0,c,E)= ;,V[cos'é— cos,] (6) Ndo(T)= b1 i;mh(t”z) (1)

w (1—cos,)? y 2t

for 0< 6<6,=arcco§3|V?"|/\2E/M,—2] and zero other- where the functior is of the form

wise. The ak?ov»e;rforms conserv_e probablll_ty and glve_ the h(tY2) = N gtY2 M 1+ (21t ™) 1] e, (12
correct velocityV®'(c,E). Onceg is found, simple coordi-
hate rotations to obtairf(#,6,c,E) can be dongwhere iy \o=2.54,m=0.25, andy=0.475[4] in the simulations
0 (¢)=0 is along the Cartesian (x) axis]. reported here.

For each group of ions with enerdy =dE’/2, we need
B. Transition matrix for nuclear collisions the probability of a final energy after the atomic scatter:

We now describe the physical model used in the construcl co(E,E). The probability of an ion with initial energy
tion of the transition matrices. We start with the straightfor-E' Scattering to a range of final energy* dE/2 is propor-
ward collision matrixT . We stress that the physical mod- tional to the cross section
els used to construct the TMs in this and the next two N
subsections are somewha? arbitrary 'and can egsny be Tco|(E,E')°<f 1d0(-|-), (13)
changed to a more sophisticated physical description. The To
purpose is to illuminate the procedure of the TM approach,
not necessarily the physical model used. whereT, ;=E'—(ExdE/2).

We choose a model described by Lindhatdal. [9] and Unfortunately, asT, approaches zerd,., goes to infin-
Firsov[10], where the nuclear scattering cross section mayty. This represents very-small-angle scattering. A lower
be written using the approximate one-parameter expressiofimit Tg" is imposed to avoid this problem. Since the energy
They first define reduced energy and length parameters  transferred is related to the scattering angléy

M, a

T=yE'sir?(0/2), (14)
M, +M, Z,Z,€2 E ™

e=¢g.E=

this is equivalent to resolving nuclear scattering angles above
p=px=[Nma2y]x, (8) a certain limit. Since the algorithm described here has a fixed
angular resolution, a typical angular cell width is used in the
whereE is the initial ion energyM,, is the target masg;  above equation to find the minimum energy transferred.
(Z,) is the ion (targe} atomic number,e is the electron Typical angular widths give/E’ ~2%.
charge, N is the number density of the target, For each initial energye’, Eq. (13) is integrated over
y=4M;M,/(M;+M,)?, a is the screening radius each valid final energy celt = dE/2 to find each component
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FIG. 2. Two-dimensional schematic showing “final” Cartesian whereAA is the cross-sectional area of the part of the Car-
cells overlapped by the “beam” from a particular initial point. tesjan cellc that is inside the beam starting @t defined by
Since the initial cell is not a point, the beam comes from a source ofs, to ¢+d¢ and 6 to 9+d@. AA is perpendicular to that
finite extent so the overlap of the beam with any Cartesian cell ifyagm at constant. The dependence &fA andh on ¢ and
obtained by integrating over all points in the initial cefl.is the ¢’ is only through the differences in their Cartesian coordi-
final kinetic energy remaining at that radius after having undergon(?]ates dr is the mean distance traveled down the beam in
losses due to electronic stopping and small-angle nuclear scatteringmssi'ng the Cartesian cel. is the total distance traveled

from the initial cellc’, \ is the mean free path for the energy
E’, and AQ is the solid angle of the beam, defined by
AQ=sinadéd¢. Although Eq.(16) gives a good estimate if
dr is small compared ta, a better estimate is

of T.o(E,E"). The “total” cross section for large-angle
nuclear scattering at enerd/ is then

V!

E!
E(E’)Ef _da(T). (15
o L ;{ —AAdr ) a7
—exp == |-
The constant of proportionality fofl, is then simply MEDAQr

1/3(E"). The small-angle nuclegr scattering tha_lt we have The quantitya(l, ¢, 0)=AAdr/AQr? is an average over
neglected is accounted for as a viscous drag which does ngie Cartesian cell and is obtained by dividing the beam and

change the ions direction, only their spesee below. the Cartesian cells into subbeams and subcells and summing
over these. This quantity can be stored and later divided by
C. Transition matrix for the ballistic move N(E"). The last part ofT,, involves computing\(E).
We now describe the ballistc propagator NME') is given by
Talc,c’,E’,f), which is the probability of an ion’s next 1
scatter being in cellc, given it last scattered in cell MEN)= ) (18)
E’'+=dE’ and has an angular distributidnin c’. T, de- NZ(E')

ends not only on the spatial cells but on the energy of the , . . .
i%ns (through i/he mean ?ree path) and the angular %)i/stri- whereX.(E') was computed in constructirigsg and is given

bution in cell¢’. However, we do not need to construct by Eq. (15). o
. In  summary, the set of quantitiesa(l,d,6)
Tpa €xplicitly, as we shall see.

) AR o : .. =AAdr/AQr? are all we need to store to firit,,. They
entla:rlrStI,Et(i(ri?gé(I:I CI,E :;rgl\r{r?osvitr?e iﬁrgbt?:;;yggﬁaéoegsbwme can be computed once and stored for a given spatial and
S he%i}::al angles to ¢+de gnd 0 t0 0+dd. Once v)\//e angular mesh. Even in three-dimensional space, this geo-

P 9 S¢. ] etrical part ofT,, can be stored compactly and can be used
know the number in the beam, we can take that number an

distribute it among the Cartesian cells overlapped by the . & variable). This approach consfrains us to think in
. 9 PP Y NSerms of traveling along beams outward from the initial cell.
beam(Figs. 2 and R

The energy dependence B, stems from the mean free We first decide on which “beam” to follow and then we

, gy dep al . ftravel out along it. This restriction is acceptable since it al-

path A\(E’). For each beam corresponding to a range o
. : lows T, to be stored compactly.

(¢,0), we store a list of Cartesian cells whose volumes over-
lap with the beam. This list treats as being at the origin.
The Ith member of the list is atx(l),y(l),z(l)) relative to
the position ofc’. The number of ions placed in each of Large-angle nuclear scattering is not the only way for an
these Cartesian cells is the number left in the beam multiion to lose its kinetic energy. In addition, as the ion travels

plied byh(l,¢,6,E"), the fraction of which scatter, given by through the target, the electron gas can produce a viscous

D. Electronic stopping and small-angle nuclear scattering
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drag. We now describe how this TM,, IS constructed. }

. L. Input initial parameters ‘
We then describe how small-angle nuclear scattefivigich

can also be thought of as a viscous driagncluded with this l
™. no New spatial or spherical ‘
We start with expressions similar to those of Lindhard mes}i
et al. [9] and Firsov[10]. The expressions used to calculate ly
the energy loss due to electronic stopping of ions are Generate geometric part
of Ty, and store
dE,=dLNS (19 )
and read geometric part of T, |
Se(E) =S =KEY, (20) I
Generate TM’s:
wheredL is the path length$, is called the stopping power, T Tele
g=1/2, andk is given by i
1 . 2127/622 start at highest E
k= =T (21 Find the fons 1
channeled move ionst?next scatiter \fia Tpq and
The expression can be integrated to give the change of en- land tfmd ﬁ;al adjust energies via T )
ergy AE given that the ion traveled a distante SR © l
Tadc,c’,E,E’) gives the probability that, due to electron chan } collide jons at E }
drag, the ion will drop down to a “final” energ¥ in each T I
cell c it crosses given that it Ia_ls_t _scattereq in cll Wlth compute f ‘ any ions left at E?
energyE’. Since we know the initial and “final” Cartesian and Vy, I
cells, we know the average length traveleahd therefore we next lower E at no
can find the “final” energy. By tabulating this we can use it E=0?
to find E and\ (E) at all points along the ion’s trajectory, for !
use with the ballistic transition matrix. Sum Rehan (¢) and R(c,E=0) and print

As described previously, small-angle nuclear scattering
can also be considered to be simply a viscous drag term. The FIG. 4. Flow chart illustrating the logic flow of the transition-

energy loss due to traveling a short distadd¢ds given by matrix method.

o calculating them in the beginning of the simulation.
dE= Ndlfo Tdo(T). (22) The ini?ial “pulse” of ior?s is a?llowed to enter the simu-
lation region, typically in a well-defined direction and en-
For each beam described Ty, the above equation is nu- ergy. The TMT,,, in conjunction withT .., is used to find
merically integrated from each initial cell to each final Car-the next cell in which the ion will have a large-angle scatter.
tesian cell. We note that as the integration is carried ouThe TM T, then describes, for each spatial and energy cell,
along the trajectory, the energy of the ion is changing nothe distribution to final energy cells. In each spatial cell in
only due to small-angle nuclear scattering but also due tevhich there are ions, if there are ions in the initial energy
electronic drag. These energy losses change the lower boueell, the angular distributiofi is computed and the process is
of the integral. It is important to include this effect while one iterated again starting with the TW,,. Otherwise the next
is computing the energy loss due to small-angle nuclear scatewer energy cell is iterated. Eventually, the last energy cell
tering. The corresponding energy loss is added to that whictvill be emptied and the spatial distribution of the ions is
is already included i ge. found from the density in the zero energy cell at all spatial
locations.

E. Algorithmic flow of the TM approach

. . . IV. RESULTS AND DISCUSSION
In the previous subsections we have described each TM

and the way each is constructed. We will now briefly outline In this section we present results obtained from the TM
the algorithmic flow of the method. method. We have simulated a boron-ion beam incident onto
Figure 4 gives the simulation flow chart. The code firsta silicon target. In all the simulations, the beam is tilted 7°
reads in the user defined input parameters, which define tifeom the z axis (which is defined to be the normal to the
spatial and energy regions of interest. The program thesurface of the targgtand in thexz plane. The beam strikes
checks to see if the corresponding TM,, has been com- the surface ak=y=z=0. The spatial mesh consists of 41
puted already for this set of input data. If not, control iscells inz, 15 cells in bothx andy, 20 cells in each spherical
passed to a separate module that calculates the appropriategle & and ¢, and 100 energy cells. The number of cells
T »a and stores it permanently. Ondg, is found or calcu- was varied and this set was found to be both accurate and
lated, the other TMsT.,; and T are computed according efficient.
to the spatial and energy meshes. While these TMs could Figure 5 compares the TM results to experimental results
also be stored, there is not a large computational overhead i@s given in Ref[4]) for a 100-keV boron-ion beam injected
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FIG. 5. Boron-ion concentration for a 100-keV injected beam into amorphous siligoBoron-ion concentration as a function of
squares, experiment; line, TNb)—(d) Contour plots of the boron-ion concentration as a function of two spatial variables with the third being
integrated(summed over. Contours are 0.003 16, 0.01, 0.0316, 0.1, 0.316, and 0.95 of the maximum value.

into amorphous silicon. Figure(® is obtained by summing silicon surfacg is also along the crystallin€l11l) axis. We
over x andy to obtain a depth profile of the boron-ion con- have included 13 planar and 26 axial channels for this cal-
centration. Both experimental and TM results are shown andulation. We have used the procedure described by Gibbons
exhibit good agreement. Figureghb-5(d) are contour plots and co-worker$4] for the critical angles, planar widths, and

of the boron-ion concentration as a function of two spatialfinal ion distribution in the channel. We do stress, as in Ref.
variables, the third being summed over. In Figéc)sand  [4], that when channeling is incorporated, it is important to
5(d), the peak in the ion concentration is not centered at thallow only ions that suffer large-angle nuclear scattering to
x origin due to the small but nonzero incident angle of the

beam. 102!

As the boron ions enter the silicon, the mean free path is
quite large so few ions suffer large energy losses initially. As
the ions move farther in, electronic drag and small-angle
nuclear scattering slow the ions until the mean free path de-
creases dramatically. Once this happens, the vast majority of
the ions suffer large-angle nuclear scatigig. 5 and come
to rest near the peak of the depth profile.

Next, we vary the mass of injected ions. Figures 6 and 7
compare the computed and experimental depth profiles for
injected 160-keV phosphorus and 355-keV arsenic, respec-
tively. For the heavy ion arsenic, experimental res{d§]
for electronic stopping suggest that Eg1) is inaccurate by
a factor of nearly 2. Accordingly, the stopping coefficient in 10170
Eq. (21) was multiplied by an estimated correction of 0.6 in
this case. Again, we see good agreement between the TM
and experimental results. FIG. 6. Phosphorous-ion concentration for a 160-keV injected

Finally, a 85-keV boron-ion beam is injected into a crys-beam into amorphous silicon as a function mfsquares, experi-
talline silicon target. In this case, theeaxis (normal of the  ment; line, TM.

1070
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3000
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54
vious that channeled ions contribute to the tail of the concen-
tration after the peak in the depth profile. Figuréb)88(d)

are the corresponding contour plots. The inclusion of chan-
nels allows the ions to penetrate further into the solid in
preferred directions.

The computational requirements of the TM method de-
pend strongly on the size of the mesh used and, to a lesser
extent, the amount of large-angle scattering. For the results
presented here, typical CPU time on a dedicated Hewlett-
Packard 715/80 workstation is about IHalf of that if the
symmetries of the model problems presented here were utili-
tized). An equivalent computation using Monte CarMC)
methodq 3] is reported to take 25-100 h.

Before concluding, a few remarks will be made about the
similarities and differences between the TM method and ex-
isting techniques. While Boltzmann transport techniques are

FIG. 7. Arsenic-ion concentration for a 355-keV injected beamtypically efficient, the implentation of these methog@sg.,
into amorphous silicon as a function ofsquares, experiment; line, Ref. [4]) in three dimensions would lead to unacceptable

TM.

numerical diffusion during the process in which the ions’
trajectories are integrated in space. The TM method over-

channel; otherwise excessive channeling can occur due to tlitemes this problem because it allows the ions to proceed

finite size of the angular mesh.

from one nuclear scatter to the next directly. In this way, the

Figure 8a) shows the depth profile for the boron-ion con- TM method is more similar to MC methods. The key advan-
centration. Experimental results and results of an amorphousge to the TM method over the MC method is that instead of
calculation and a channeling calculation are shown. It is obfollowing discrete particles, the TM follows, in essence, a
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density of ions. Therefore all possible trajectorfe®ighted  tion, one can use it to run a very large and detailed simula-
by their corresponding probabilitiegre incorporated into tion on a relatively small computer. However, it is possible
the TM, thereby eliminating statistical fluctuations. to derive the same information from this approach as one

In summary, we have presented a method of modeling ioRvould with a full blown solution of the Boltzmann equation.
implantation based on long-mean-free-path particle kinetics,

which is highly efficient, accurate, and uses compact matri-
ces to store the “propagator” needed for the calculation.

Since the method only requires storage of scattering rates
and the relatively simple angular distributions of scattered This work was supported in part by the National Science
particles in each cell, rather than the full distribution func- Foundation, Grant No. ECD-8721545.
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