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We introduce a simple topological classification for the solitary-wave solutions of the coupled equations
describingx (2) parametric waveguides. Both temporal and spatial cases are studied. Simultaneous solitary-
wave solutions at two different frequencies, which we term ‘‘simultons,’’ are shown to exist using topological
arguments. In each case, families of general one-parameter simultons are given numerically. Each family
consists of both fundamental and higher-order simultons of a topological or nontopological nature. There are
several possible ways to combine dispersions at different frequencies. Thus there are more possible ways of
maintaining temporal simultons in 111 space-time than for purely spatial simultons in two space dimensions.
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PACS number~s!: 42.65.Tg, 42.65.Ky

I. INTRODUCTION

Solitary-wave solutions to the basic coupled equations de-
scribing thex (2) nonlinearity for equal group velocities, but
including dispersion or diffraction, have been studied by
many authors@1–18#. These results have shown that the two
coupled partial differential equations have a wide range of
solitary-wave solutions. The published solutions can be cast
into three categories. The first is that the dynamics of an
optical field traveling through ax (2) medium can be de-
scribed by a nonlinear Schro¨dinger equation when there is
large phase mismatching@2,6,7#. The second is that there are
a few special cases of analytic solutions, found under strict
phase-matching conditions@4,5,7–10#, which we term ‘‘si-
multons.’’ Finally, there are simulton solutions found nu-
merically @11–18#, which extend the analytic cases into ad-
ditional parameter regimes. The purpose of this paper is to
introduce a systematic topological classification of all pos-
sible solitary-wave solutions. We include all cases presently
known to exist, and demonstrate the existence of solutions
that were previously unknown.

The equations that result when stationary conditions are
applied are not integrable. In fact, they are closely related to
those of the He´non-Heiles chaotic Hamiltonian@19#, which
clearly has no general analytic solution. Despite this general
lack of integrability, the equations have at least one inte-
grable subspace, in which well-behaved and integrable solu-
tions emerge. These do not have all the classical soliton
properties — in particular, they are not invariant under col-
lisions @7#. Despite this, the solutions can have excellent nu-
merical stability, as demonstrated by numerical experiments
at relatively low intensities. Chaotic behavior is also possible
at higher intensities.

There are a number of interesting and unique features of
this system of equations. Most significantly, they describe a
novel type of nonlinear device — the parametric waveguide.
This type of waveguide is potentially able to support very
large nonlinearities when compared to the usual nonlinear
refractive index devices. The reason for this is very simple
— the parametric nonlinearity involves anE2 as opposed to
an E3 nonlinearity. For this reason, it is typically a much
stronger effect relative to the usual nonlinear refractive in-
dex, at low field intensities. Thus, we can anticipate a num-

ber of new types of solitonlike interactions being experimen-
tally available at much lower field intensities than
previously. Such strong nonlinearity has already been ob-
served experimentally in self-phase modulation by DeSalvo
et al. @20# and self-diffraction by Danieliuset al. @21#. Nitti
et al. @22# have obtained an increase of several orders of
magnitude of the effectivex (3) with an organic crystal of
2-~a-methylbenzylamino!-5-nitropiridine ~MBA-NP!.

These experimental results have stimulated more theoreti-
cal work on possible general simulton solutions. Solutions
have been proven to exist numerically without satisfying
strict phase-matching conditions@11–18#. However, al-
though these general numerical solutions have greatly im-
proved our understanding of this nonlinear system, the ques-
tions of whether all these solutions are complete, and how to
classify them still remains unanswered. We are particularly
interested here in temporal~111!-dimensional simultons,
which can occur under a variety of conditions that are not
possible for spatial cases. This question of general classifi-
cation is especially important in view of the large number of
solutions that are presently known.

One method of obtaining analytic solutions involves sub-
stituting an ansatz into the basic equations. It is impossible
that all solutions can be found by using this method, due to
the lack of integrability of the basic equations. Numerical
solutions were also found by shooting methods, with the
boundary conditions determined by preassuming the form of
a solution. A complete and systematic way of finding simul-
ton solutions is clearly needed, since the technique should
not involvea priori assumptions.

In order to understand and classify the possible solitonlike
or stationary-wave solutions, we introduce a topological
classification. This allows an analysis of the equations with-
out knowing the exact analytic solution — which is essential
in view of the lack of integrability. Nevertheless, the topo-
logical technique can rule out those parameter values which
are clearlyunableto support solitary waves. Next, a numeri-
cal integration of the steady-state equation provides us with
topologically acceptable candidate simultons, which exist for
ranges of parameter values where no currently known ana-
lytic solutions occur. Finally, we determine the stability of
the solution using a numerical solution of the complete par-
tial differential equation, starting with a perturbed input,
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close to the candidate simulton. The numerical analysis of
the stability of these simultons is complex and lengthy, and
will therefore be treated in a subsequent paper.

This topological method has proven to be very effective
for both finding simulton solutions and providing explana-
tions for the origins of these solutions. In this paper, we
simplify the basic coupled equations to eight one-parameter
equations. A simple mechanical analog can be applied to
these equations. Using this analog, we can show by topologi-
cal arguments that four cases do not have solitary-wave so-
lutions. Using the topological method, all known solutions
can then be classified into categories. In addition to these
known solutions, we can also find other dark, bright, and
hybrid type solitary-wave solutions for arbitrary phase-
matching conditions. These solutions generally extend the
known solutions into different regimes of dispersion and
phase matching, thus relaxing the requirements for obtaining
them experimentally.

We also demonstrate this topological method for finding
two- and three-dimensional spatial simulton solutions. In ad-
dition to these previously known fundamental solutions
@23,24,17#, other general higher-order simultons representing
the excited state of the fundamental solutions have also been
found by this method.

Multiple-frequency solitary waves are found in resonant
atomic interactions as well. This was originally suggested by
Konopnicki et al. @25–27#, Drummond@28#, and, more re-
cently, Grobeet al. @29# and Eberlyet al. @30#. These solu-
tions in a sense complement the parametric solitary waves
treated here. The difference is that the cases studied here
never involve resonant atomic excitation, and therefore have
very low losses and fast response time, as is usual in nonlin-
ear optical systems of this type.

In summary, the case of parametric simultons is interest-
ing due to the relatively low losses and the possible techno-
logical applications inherent in these compact solid-state de-
vices, as well as in the rich variety of new solutions.

II. SIMPLIFICATION OF THE BASIC COUPLED
EQUATIONS

We wish to treat the case of a time-dependent wave
propagating in a one-dimensional, dispersive, parametric
waveguide. The same equations, with some restrictions to
the parameters, also can be used to treat a continuous wave
~cw!, propagating in a two-dimensional waveguide, or a
three-dimensional medium with a transverse translational
symmetry.

Based on the published model@5#, we write the one-
dimensional basic equation describing the cascadedx (2)

parametric waveguide in the form
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where kn9 is the dispersion at thenth frequency, i.e., the
derivative d2k/dv2 calculated at the pointk5kn . Here,
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where u( i )(x) refers to normalized transverse-mode func-
tions. The fieldsf1 andf2 are, respectively, the complex
envelopes of the first and second harmonics, in units defined
so thatuf i u2 is the photon flux of thei th field. In this equa-
tion, it is assumed that the group velocitiesv i5dv/dk of the
two fields match at the carrier frequency, to optimize simul-
ton formation. For the convenience of comparison with other
solitary-wave systems, we introduce characteristic scales of
distancez0 and timet0 as well as photon numberpi @31,32#:

z5z0j, ~3a!

t5t0t, ~3b!

p15uk19k29/~4t0
3x2!u, ~3c!

p25u~k19!2/~4t0
3x2!u, ~3d!

wheret05Auk19z0u/2. The value oft0 can be estimated from
the ratio of a given pulse duration to that of the normalized
simulton solution. Together with the dispersions andx (2) of
the experimental material, values ofz0 and pi then can be
determined. We will give an example in a subsequent sec-
tion.

Using the variable transformation

f15uquAU k29k19 UV1e
iqz/x, ~4a!

f252sgn~k19!uquV2e
i2qz/x, ~4b!

we obtain the following dimensionless equations:
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where

j5qz, ~6a!

s15sgn~k19k29!, ~6b!

s252sgn~k19q!, ~6c!

s352sgn@k19~2q2b!#, ~6d!

s5uk19/k29u, ~6e!

r5us~2q2b!/qu. ~6f!

54 897SIMULTANEOUS SOLITARY-WAVE SOLUTIONS IN A . . .



Here we letuqu5z0 , so there are two possible forms of
scaled equations to consider for every distance scale. These
correspond to inputs with nonlinear phase shifts of opposite
signs. Physically, this is due to the fact that ax (2) medium is
not inversion symmetric. It is sensitive to the relative phase
of the two input fields. Different relative phases will give rise
to different phase shifts, generating distinct possible types of
soliton. For this reason, the scaled equation used here in-
cludes a scale parameterq with arbitrary sign. Otherwise,
uqu51/z0 is simply the inverse distance scale parameter.

The most general solutions written in polar variable form
can be represented as

Vi5v i~j,t!eiu i ~j,t!, i51,2, ~7!

wherev i andu i are real.
Substituting these trial solutions into the above equations

and using the stationary condition, for waves whose enve-
lope function does not change under propagation,

]v i
]j

50, i51,2, ~8!

we have

1
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]

]t S v12 ]u
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]j

1s3r D50. ~9d!

These equations can be greatly simplified if we assume
u15K1j andu25K2j, whereK1 andK2 are constant. This
additional constraint means that we must now exclude the
possibility of spatially chirped solutions, whose phase depen-
dence is not just a linear function ofj. If these did provide
new solutions, they would form a new class of simultons.

Hence, Eqs.~9a! and ~9c! become

sin~u222u1!50, ~10!

which givesu252u16np,nPN.
The above result has a very important physical meaning,

that the average wave number of the second harmonic must
be twice the average wave number of the first harmonic in
order to get stationary solutions. It also shows that changing
the phase with the restrictionu i5Kij, i51,2, will not
change the form of the equation, except for the value ofq.
Without losing generality, we therefore takeu i50 for sim-
plicity. We note thatq, as introduced here, is effectively a
nonlinear phase shift of the solution. Its value is determined

implicitly by the initial conditions of the wave equation, and
obviously depends on the intensity and duration of the input
envelope function.

Equations~9b! and ~9d! now become

]2v1
]t2

1v1v22s2v150, ~11a!

s1
]2v2
]t2

1 1
2 v1

22s3rv250. ~11b!

The above equations significantly simplify the analysis
for simulton solutions, sincev i are real. Since each of
s1 ,s2 , and s3 can have either sign, there are eight distinct
cases to be examined.

III. SIMULTON SOLUTIONS

The system given by Eq.~11! has a simple mechanical
analog. The above equations can be read as the equations of
motion of a virtual particle with unit mass in a potential,
although the sign of the mass can change, depending on the
coordinate. The trajectory of the virtual particle then corre-
sponds to a pair of stationary solutions. Such mechanical
analogies to static solutions have been pointed out by many
people@33–36#. The new feature of the present equations is
the possible anisotropy of the mass, which leads to new types
of solution. The Hamiltonian of this system can therefore be
written as

H5 1
2 p1

21
s1
2
p2
21 1

2 v1
2v22

s2
2
v1
22

s3
2

rv2
2 , ~12!

wherep15 v̇1 andp25s1v̇2 .
The potential is given as

V5 1
2 v1

2v22
s2
2
v1
22

s3
2

rv2
2 . ~13!

However, this is not a normal Hamiltonian system be-
cause the particle may have a negative kinetic energy in the
v2 direction ifs1,0. We are only interested here in solutions
which behave as isolated solitary waves, leaving the question
of stability for later determination. We call such solutions
simultons. Hence the following boundary conditions must be
satisfied:

d~n!v1
dt

50,
d~n!v2
dt

50, t57`, n51,2, . . . .

~14!

Thus the particle must stay at one of the points at which
the above condition is satisfied. These points are called criti-
cal points. If a critical point is a simulton boundary, it must
be unstable, otherwise a perturbation will produce periodic
solutions. There are two types of simulton solutions, topo-
logical and nontopological, which start and end at nonoscil-
lating critical points. Topological solutions have different
boundary conditions fort56`. Hence a potential possess-
ing topological solutions must have at least two critical
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points. Such a solution corresponds to a trajectory of the
particle that connects two critical points. We call such a path
a type-1 path.

Nontopological solutions have the same boundary condi-
tions fort56`, so the particle must be able to return to the
starting critical point. Hence the path of the particle forms a
loop. We call this path a type-2 path. The path may be a
reversible curve that connects the critical point and a point in
the potential at whichdv i /dt50, i51,2, but d(n)v i /dtn

Þ0, n52,3, . . . , i51,2. Such a path is a special case of a
type-2 path. We call it a type-3 path.

At any one of these critical points, the gradient of the
potential must be zero. Hence, critical points must satisfy

v1v22s2v150, ~15a!

1
2 v1

22s3rv250. ~15b!

Three critical points are found at (0,0) and
(6A2s2s3r,s2). Note that only one critical point exists at
(0,0) whens2s3,0. We have studied cases withs2s3,0
and found no possible type-2 or type-3 paths, which elimi-
nates the possibility of simulton solutions. Thus simulton
solutions can only occur ifs25s3 . We therefore have de-
creased the number of different cases from eight to four.

The system described by Eq.~11! is a Hamiltonian sys-
tem. Hence the total energy is conserved. A particle that
starts from (0,0) has energy ofH50. A particle that starts

from (6A2r,s2) has an energy ofH52s2
1
2 r. Since the

energy at (0,0) is different from those of the other two~un-
less r50), it is impossible for a particle starting from
(0,0) to reach one of the other points with its speed ap-
proaching zero, or vice versa.

The remaining task is to find all possible simulton paths.
The motion of the virtual particle can be very complex in the
potential. A novel feature of this problem is the existence of
paths for a particle whose mass has different signs in differ-
ent coordinates. An effective approach to overcome this
problem is to consider Eq.~11! as Newtonian acceleration
equations with acceleration field given by

FW 5@s2v12v1v2 ,s1s2rv22s1
1
2v1

2#. ~16!

There are four different acceleration fields corresponding
to different signs ofs1 and s2 , with s2s3.0. We define a
‘‘case vector,’’ case(s1 ,s2), for convenience of discussion.

There are many advantages of drawing acceleration fields.
Most importantly, it allows a classification of all critical
points without actually solving the equation. It can also give
qualitative predictions about the form of simulton solutions
and their existence over a range of parameters. We now pro-
ceed to show more details.

Linearized around a critical point, the above Newtonian
system can be written in the form

v̈W5AvW , ~17!

whereA is a real 232 matrix.
Obviously, the solutions to Eq.~17! can be written in the

form vW 5(n51,2cWne
bnt. We findbn56Al1,2 wherel1,2 are

the eigenvalues ofA. SinceA is a 232 matrix,l1,2 are just
solutions of a quadratic withl11l2 real. Hence the cases
are

l1,2,0, ~18a!

l1.0, l2,0, ~18b!

l1,2.0, ~18c!

l1,25a6 ib, ~18d!

corresponding to four different cases ofb being of the form

6 ix, 6 iy , ~19a!

6x, 6 iy , ~19b!

6x, 6y, ~19c!

x6 iy , 2x6 iy . ~19d!

Due to the relationship between the values ofl and the
values ofb, we can classify the end points of solutions of
the Newtonian equation simply from the form of its accel-
eration field. The first case, describing a stable point, only
leads to stable periodic solutions with no corresponding si-
multon solutions. All the other cases lead to unstable critical
points, which can therefore correspond to simultons. When
we have an unstable critical point with accelerations pointing
outward, its solutions are always unstable. If we have a
saddle point in the acceleration field, then the solution can
only be unstable or periodic. If an acceleration field has a
spiral structure, then the solution also takes similar spiral
forms with an infinite number of unstable paths. The eigen-
values ofA can be easily found:

l15s2 , l25s1s2r ~20!

for an equation linearized around point (0,0) and

l1,25~s1s2r6Ar218s1r!/2 ~21!

for an equation linearized around (6A2r,s2).
When a particle on a simulton path approaches an ordi-

nary critical point~a point with real eigenvalues!, its speed
approaches zero ast→6`. In order to achieve this, the
acceleration must have one component along the path of the
particle. Therefore simulton solutions are possible only if the
acceleration field has at least one acceleration line pointing
outward. If the accelerations have constant direction near a
critical point, then the trajectory of the particle, near the
point, becomes a straight line and is the same as the accel-
eration lines near the point.

The behavior of a particle around a complex critical point
~a point with complex eigenvalues! becomes very compli-
cated and interesting. Even if a complex point has accelera-
tions pointing in, it still has unstable paths. Since the whole
process is always symmetric in the time domain, a particle
can always follow these paths back with its speed also ap-
proaching zero. Thus any type of spiral field of acceleration
vectors can lead to unstable paths.
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An acceleration field can also provide information about
the range of possible trajectories of a particle, since a particle
is able to come back to its starting point only if it encounters
an opposing acceleration. Therefore, without actually solving
the original equations, the acceleration field can indicate the
existence of simulton solutions, their forms, and the ranges
of their parameters. Under these guidelines, numerical simul-
ton solutions can then be found systematically, using stan-
dard numerical techniques.

Using the above techniques, we first consider the simplest
case,r50, with the acceleration field being of the form

FW 5@~s2v12v1v2!,2s1
1
2v1

2#. ~22!

The system does not have any simulton solutions, because

the acceleration alongv2 (2s1
1
2 v1

2), never changes its sign
under any situation. Hence the particle will never be able to
return to its starting point. Therefore, no simulton solutions
are possible.

We next consider different cases separately according to
the signs ofs1 ands2 .

A. case„1,1…

1. Fundamental simultons

In this case, as shown in Fig. 1, the acceleration field has
three critical points. Among them, the points (6A2r,1) are
saddle points. The acceleration field in the unstable direction
of the saddle points does not allow a return path to a critical
point. Therefore no simulton solution is possible if a particle
starts from one of these saddle points. Another critical point
is at (0,0), with acceleration vectors pointing to all directions
evenly. There are an infinite number of possible paths pass-
ing this point. In the upper left and upper right in Fig. 1,
there are accelerations pointing to (0,0). The simplest pos-
sible case is that a particle starts from (0,0) and then goes to
upper left or upper right and then returns, forming a nonto-
pological simulton. The system has a normal Hamiltonian
and it can be described by the following equations of motion:

v̈11v1v22v150, ~23a!

v̈21
1
2 v1

22rv250. ~23b!

We find, at the starting point, thatH (0,0)50. Hence, at all
times,

H5 1
2 p1

21 1
2 p2

21 1
2 v1

2v22
1
2 v1

22 1
2 rv2

250. ~24!

The motion of a particle starting from (0,0) is therefore
confined by the boundary given by

1
2 v1

2v22
1
2 v1

22 1
2 rv2

250, ~25!

which gives

v156A r

~v221!
v2 . ~26!

These two boundaries are shown as heavy curves in Fig. 1.
We now are able to prove the existence of nontopological

or type-3 simultons, using the acceleration field with the aid
of the above results. A type-3 path is symmetric with time,
and the energy is conserved. A particle on this path must
have coordinates satisfying the above equation, with velocity
equal to zero att50. It then returns along the same path. All
accelerations along the upper part of the boundary have com-
ponents pointing upward while those along the lower part of
the boundary have components pointing downward. If a par-
ticle is along the upper part of the boundary, it will pass over
(0,0). If it is along the bottom part of the boundary, it will
pass under (0,0). Since the boundary is continuous, there
must be a point along the boundary from which a particle can
approach (0,0) ast→6`. Changing the value ofr only
changes the position of the boundary, but will not change the
topological structure of the acceleration field: the eigenval-
ues ofA always take the same form for this case. In other
words, we can always find positions along the boundary such
that the path will pass over (0,0) or under (0,0). Therefore
such solutions always exist for any nonzero value ofr. Note
that r is always positive by definition.

In order to find the path, we assumev15v1(v2). Hence,

v̈15v19~ v̇2!
21v18v̈2 , ~27!

wherev185]v1 /]v2 . Combining Eq.~24! with Eq. ~23! we
have

v1~12v2!5v19
v1
21rv2

22v1
2v2

~v18!211
1v18~rv22

1
2v1

2!. ~28!

The simplest path is a straight line. Inserting the form
v15rv2 , wherer is a constant, into the above equation, we
find that r5A2 providing

r51. ~29!

Substituting these conditions into Eq.~23!, we have

v̈21v2
22v250, ~30!

which is integrable. The solutions to Eqs.~23! are given as

FIG. 1. Acceleration field for case(1,1) at r51, including the
boundary~heavy line! at E50, and a phase-space projection of its
fundamental simulton solution ~light line!:
v156@3/(2)1/2# sech2(t/2), v25(3/2)sech2(t/2).
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v156
3A2
2

sech2S t

2D , ~31a!

v25
3

2
sech2S t

2D . ~31b!

This pair of solutions was found by Werner and Drum-
mond @5# and others@1,8#. Note the conditionr51 is
equivalent to the phase-matching condition, as appeared in
@5#.

As we proved above, there is always a simulton solution
regardless of the value ofr. Since Eq.~28! is generally
nonintegrable for arbitrary values ofr, general analytic so-
lutions are not easily available. However, based on the argu-
ments given above about the acceleration field, it is trivial to
obtain general solutions numerically. We simply choose a
point along the boundary, Eq.~26!, as the boundary condi-
tion and then integrate Eq.~23! numerically by trial and er-
ror. Solutions with errors below 10210 can easily be obtained
using this standard shooting technique.

We have obtained a whole range of numerical simulton
solutions for many values ofr.0. Paths corresponding to
different values ofr with valuesr50.1, 0.5, 1.0, 3.0, and
10.0 are shown in Fig. 2~a!. These paths can be regarded as
‘‘phase projections’’ of the four-dimensional phase space of
this system onto the two-dimensionalv1-v2 plane. Simulton
profiles are shown in Fig. 2~b! and Fig. 2~c!. Similar results
of these fundamental simulton solutions were reported by
Buryak and Kivshar@11,18# and Torneret al. @13,14#. From
Fig. 2~a!, we can see that whenr51 the path is a straight
line which agrees with the analytical solution. We can think
of these paths balancing between upward accelerations and
downward accelerations. Whenr.1, upward accelerations
are generally higher than downward accelerations, so paths
bend slightly upward to reach a balance. Whenr,1, down-
ward accelerations are bigger and paths therefore bend
slightly downward.

To observe these temporal simultons experimentally, the
following conditions must be satisfied:~1! a suitable wave-
guide with strong second order nonlinearity must be used;
~2! the group velocities of the two harmonics must be
matched;~3! most importantly, the material must be highly
dispersive in order to verify the formation of simultons. The
last condition is currently the most difficult one. Among the
known optical materials, organic materials have been re-
ported to be most dispersive@22#. Even if such a material is
used, its dispersion ('1ps2/m! together with a 100 fs laser
pulse only implies a dispersive scale length on the order of
1cm @9#. As an example, we consider a waveguide made of
LiNbO3. We use the following values:x (2)511.9 pm/V
@37# and wavelength of the first harmonicl51.06 mm. Sup-
poseb50 and s51/2, we then haver51. Assuming a
dispersionk19 of 0.1 ps2/m, a pulse width~defined as full
width at 1/e intensity! of 100 fs, and a waveguide area of
100 mm2, we find thatx'431028 s1/2m21. The charac-
teristic scale values aret0'30 fs, z0'2 cm, p1'13105

photons per pulse, andp2'53104 photons per pulse. For a
1 GHz repetition rate, this corresponds to an average power
of the order of 1024–1025 W, with a peak power around 1

W. These figures demonstrate the low power levels possible
in soliton formation with ax (2) waveguide, relative to a
x (3) waveguide.

2. Higher-order simultons

A virtual particle can also be reflected from one side of
the boundary and reach the other side. It can then either
approach the point (0,0) or be reflected again. This process
can repeat as many times as possible, which introduces a
whole family of higher-order simulton solutions. We identify
each higher-order simulton solution of this type as

FIG. 2. Fundamental simulton solutions for case(1,1). ~a!
Phase-space projections wherer50.1 ~solid line!, 0.5~dashed line!,
1.0 ~dash-dot line!, 3.0 ~dotted line!, and 10.0~dash-dash-dot-dot
line!; ~b! simulton time evolution ofv1; ~c! simulton time evolution
of v2 .

54 901SIMULTANEOUS SOLITARY-WAVE SOLUTIONS IN A . . .



v i
n , i51,2, n50,1,2,. . . ,`, wheren is how many times

the virtual particle is reflected from the boundaries after it
starts from the point~0,0!. Whenn→`, we then have a pair
of nonlinear periodic solutions. Clearly,n51 gives the ordi-
nary one-peak simulton solutions. Such a multipeak simulton
hasn peaks.

To show the above bouncing process, paths ofr50.6
with two peaks andr50.2 with five peaks are shown as Fig.
3~a!. Numerical solutions forv1 and v2 are shown in Fig.
3~b! and Fig. 3~c!, respectively. The amplitudes of these so-
lutions increase asr increases.

B. case„1,2…

The system now takes the form

v̈11v1v21v150, ~32a!

v̈21
1
2 v1

21rv250. ~32b!

The acceleration field of this system is shown as Fig. 4.
First, we note that its topological structure is independent

of the value ofr, asA never changes its form regardless of
the value ofr. The eigenvalues around point (0,0) are al-
ways negative and these around point (6A2r,21) always
have different signs. Point (0,0) is stable and hence no si-
multon solution is possible if a particle starts from this point.
The other two critical points at (6A2r,21) are saddle
points.

Second, the system is a normal Hamiltonian system, as all
‘‘masses’’ are positive (s1.0). The Hamiltonian of a par-
ticle that starts from either one of these two points is1

2 r. As
a result, the motion of the particle is confined in the area
surrounded by

v25
v1
22r

r
, ~33a!

v2521. ~33b!

The boundary which passes through the two saddle points
is shown in Fig. 4 in heavy lines. Since these two points are
saddle points as shown in Fig. 4, only two paths pass through
each of them. One path is stable. The other is unstable, being
of the form

v257Ar

2
v1 ~34!

near the saddle points.
After being perturbed toward the confined area, a virtual

particle will keep its motion inside the area. The particle will
stop only if it reaches the other saddle point or returns to the
starting saddle point. Note that the unstable path passing
each one of the saddle points is unique for every value of
r. In some cases, whenr takes a particular value, the paths

FIG. 3. Higher-order simulton solutions for case~1,1!. In order
to avoid overlap, we choose different values ofr for different or-
ders: the solutionn52 hasr50.6 ~solid line! and the solution
n55 hasr50.2 ~dotted line!. ~a! Phase-space projections;~b! si-
multon time evolution ofv1; ~c! simulton time evolution ofv2 .

FIG. 4. Acceleration field for case(1,2) at r51 including the
boundary~heavy line! atE5r/2, and the phase-space projection of
the solution ~light line!: v156(2)1/2@(3/2) sech2(t/2)21#,
v25(3/2)sech2(t/2)21.
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of the virtual particle become simulton paths of both topo-
logical and nontopological nature. As a result, these paths
form a family of discrete simulton solutions, as pointed out
by Buryak and Kivshar@15#.

The simplest form of these paths is a straight line. The
unstable paths passing these two saddle points can be written
as

v257Ar

2
v1 . ~35!

Now the path equation becomes

2v1~11v2!5v19
2v1

22rv2
22v1

2v2
~v18!211

2v18~rv21
1
2v1

2!.

~36!

Substitutingv15A2/rv2 into the above equation we find
r51. This is a straight line that passes (0,0) and
(A2,21). Equation~32b! becomes

v̈21v2
21v250. ~37!

Shifting to (2A2,21), we haveV5v211, so the above
equation becomes

V̈1V22V50. ~38!

We have solved this equation in the previous case and the
solution is

V5
3

2
sech2S t

2D . ~39!

Hence, we have solutions

v156A2F32sech2S t

2D21G , ~40a!

v25
3

2
sech2S t

2D21. ~40b!

The above solutions were found previously@9,8,10# as a
novel type of dark simultons. However, because the particle
starts from either one of these two saddle points, the corre-
sponding simulton solutions appear with a bright cw back-
ground, v156A2,v251. However, the continuous wave
~cw! background is not stable due to modulational instability,
as both the dispersions take the same sign@38,39,15#. Thus,
although there exists a family of discrete simulton solutions,
they are all unstable due to the same modulational instability.
We therefore do not analyze this case further.

C. case„2,1…

One of the important features of this system is that
s1521 — with one direction of the mass tensor effectively
negative, the system is no longer a normal Hamiltonian sys-
tem. Compared with the previous two cases, the motion of a
virtual particle is no longer confined by boundaries. This has
obviously increased the variety of simultons of this case, as
there are more possibilities of forming different simulton
paths.

The acceleration field shown in Fig. 5 reveals three un-

stable critical points. Since they have distinct values of the
Hamiltonian, we then have two categories of simulton solu-
tions: ~1! simultons associated with the saddle point (0,0)
and ~2! simultons associated with the other two points at
(6A2r,1).

1. Simultons associated with point (0,0)

The critical point (0,0) is a saddle point for any value of
r, as the eigenvalues around it always take different signs. It
only has one unstable path along thev250 axis near (0,0)
for each value ofr, as shown in the acceleration field. It is
obvious that only nontopological simulton solutions~type 2
and type 3! are possible. Since the path is unique to each
value of r, the path depends solely upon the value ofr.
Varying the value ofr gives a whole range of paths.

After leaving (0,0), a particle will go upward due to the
upward accelerations along thev250 axis. Its direction of
motion will be bent toward the axisv150 because of accel-
erations pointing towardv150. Its path will be bent further
due to downward accelerations near the vertical axis. There
are three possibilities when the particle crosses the axis
v150: ~1! p250; ~2! p2,0; ~3! p2.0. The first possibility
indicates a type-2 path, as the acceleration field is always
symmetric with the axisv150. In the second situation, the
path of the particle will follow the spiral structure of the
acceleration field. This does not allow a return or closed
path. Hence no simulton is possible. In the last case, the
particle will encounter opposite accelerations when it is
moving upward — a type-3 path is possible. If the particle
does not meet the requirement of forming a type-3 path, it
can still cross the axisv150 again with the same three pos-
sibilities as it met before. The process is then repeated and
can be repeated for as many times as possible. The existence
of these simulton solutions can therefore be proved, as the
change of the orientation of the path is continuous whenr
changes. The above process also suggests that these simul-
tons can be classified by the number of peaks ofv1 , i.e.,
v i
(n) ,n52,3, . . . . For example, a simulton of this category

with two peaks can be identified asv i
(2) .

Based on the above knowledge of this case, each simulton
can be solved numerically by using a modified shooting

FIG. 5. Acceleration field for case(2,1) at r52 including the
boundary~heavy line! at E50, and the phase-space projection of
the solution ~light line!: v156(2)1/2sech(t) tanh(t),
v256sech2(t).
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method. Whenr52, there is a type-2 path, av i
(2) solution.

This solution, first found analytically by Werner and Drum-
mond @5#, takes the form

v1566A2sech~t!tanh~t!, ~41a!

v256sech2~t!. ~41b!

Solution v i
(3) is obtained whenr'1.03. Other simultons

with more peaks are found at smaller values ofr.

Numerically generated paths of these simultons at
n52,3,4, and 5 are shown in Fig. 6~a!. Some typical simul-
ton profiles are shown in Fig. 6~a! and Fig. 6~b!.

2. Simultons associated with points (6(2r)1/2,1)

Simultons associated with points (6A2r,1) will appear
with a bright cw background because of the nonzero values
of these two points. Therefore these solutions must satisfy
the modulational stability conditions published in our previ-
ous paper@38#. One of the necessary stability conditions is
r<2 for this case. Within such a range, the eigenvalues
around these two points always take complex values, and
hence the topological structure of the acceleration field is
invariant for r<2. Although all accelerations point toward
these two points, they are unstable critical points. As we
proved previously, unstable paths exist with spiral structures
even for inward-spiraling acceleration fields. The actual si-
multons hence would appear with oscillating tails. From the
acceleration field, we can see that both type-1 and type-3
paths are possible. Type-2 paths may be possible. However,
no type-2 paths were found during numerical scanning
within possible ranges. Again, due to the symmetry of the
acceleration field, higher-order type-1 and type-3 paths exist.
Similar approaches to the previous cases are adopted for
finding these simultons. A type-1 path connecting these two
spiral points is symmetric about the vertical axisv150.
Therefore there must be a point along the axis at which
v̇250. The position of the point can be then found numeri-
cally by trial and error. Since there are an infinite number of
paths connecting these two points, we can always find such
simulton solutions for any value ofr,2. Note that the par-
ticle can cross the axisv150 as many times as possible;
points with v̇250 can also be found at higher values of
v2 , which correspond to different higher-order simulton so-
lutions. Using the shooting technique, we then can generate a
whole family of higher-order type-1 simultons.

A type-3 path always has a turning point at which
v̇ i50. Such a point must be along the boundary

FIG. 6. Simultons associated with~0,0! for case(2,1). ~a!
Phase-space projections ofv i

(2) ~solid line!, v i
(3) ~dashed line!,

v i
(4) ~dash-dotted line!, and v i

(5) ~dotted line!; ~b! simulton time
evolutions ofv1

(4) ~dash-dotted line! and v1
(5) ~dotted line!; ~c! si-

multon time evolutions ofv2
(4) ~dash-dotted line! and v2

(5) ~dotted
line!.

FIG. 7. Acceleration field for case(2,1) at r51 including the
boundary~heavy line! at E52r/2 ~the boundaryv25v1

2/r21 is
labeled with 2 and the boundaryv251 is labeled with 1!, and the
phase-space projection of a fundamental type-1 simulton solution
~light solid line! and a fundamental type-3 simulton solution~light
dotted line!.
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v25
v1
2

r
21, ~42a!

v251. ~42b!

The boundary Eq.~42b! is marked with a ‘‘1’’ and the
boundary Eq.~42a! is marked with a ‘‘2’’ in Fig. 7. For a
classical particle, these boundaries act as potential barriers. A
classical particle cannot go across these boundaries. How-
ever, a particle in this case has the interesting property that

its mass is negative along one spatial direction. Meeting with
these two boundaries, the particle will either return or go
over with nonzero speed. Higher-order type-3 simultons can
therefore occur.

Because of the novel feature of the particle, and the pres-
ence of these two boundaries, a rich family of simulton so-
lutions exists. A particle that starts from one of these critical
points can cross the two boundariesor return to the starting
point or approach the other point. In short, any combination

FIG. 8. Fundamental simultons associated with„6(2r)1/2,1… for
case(2,1) at r51. Solution 1a~dashed line!; solution 1b~solid
line!; solution 3a~dash-dot line!; solution 3b~dotted line!; solution
3c ~dash-dot-dot-dot line!. ~a! Fundamental phase-space projec-
tions; ~b! simulton time evolutions ofv1; ~c! simulton time evolu-
tions of v2 ~note that solutions 1a and 3a overlap!.

FIG. 9. Three simple higher-order simultons associated with
„6(2r)1/2,1… for case(2,1) at r51. Solution 1ah~solid line!; so-
lution 1bh~dashed line!; solution 3ah~dotted line!. ~a! Fundamental
phase-space projections~the inset is a close-up of phase projections
nearv150); ~b! simulton time evolutions ofv1; ~c! simulton time
evolutions ofv2 ~note that solutions 1ah and 3ah overlap!.
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of these two boundaries with these two critical points would
produce a simulton solution.

Some examples of the simplest fundamental and higher-
order paths of both type 1 and type 3 atr51 are shown in
Fig. 8~a! and Fig. 9~a!. Path 1b connects these two critical
points directly. It represents the simplest type-1 solution for
this case. Path 1bh is a higher-order type-1 path than path 1b.
Path 1a is also a type-1 path but with the particle being
reflected back from boundary 2. Note that the particle can be
reflected between boundary 1 and 2 more than once, forming
higher-order paths. Path 1ah is a higher-order path than path
1a. Path 3a is the simplest type-3 path connecting boundary
2. This path does not cross the axisv150, so the resulting
simulton only has one peak. Path 3ah is a higher-order type-3
path reflected by both boundaries 1 and 2. Path 3c is the
simplest type-3 path connecting one of the critical points and
boundary 1. Path 3b is the second simplest path similar to
path 3a. There are more complicated higher-order simultons
for each fundamental simulton. Here, we only show the sim-
plest for the sake of simplicity.

D. case„2,2…

The acceleration field is shown in Fig. 10. It has a saddle
point at (0,0) with one stable path and one unstable path
leading to (0,6`). There are no opposite accelerations
pointing back to (0,0) along the unstable path. Obviously, no
simulton solutions are possible if a virtual particle starts from
(0,0). Point (0,0) is always a saddle point, as eigenvalues
around this point take different signs for any value ofr.

Hence, only simultons associated with the other two un-
stable critical points at (6A2r,21) can exist. Due to the
nonzero values of these two points, these simultons will also
appear with cw bright backgrounds. One of the necessary
modulational stability conditions for simultons associated
with (6A2r,21) is r>2 for this case@38,15#. This condi-
tion has been confirmed by Buryak and Kivshar’s numerical
simulations@15#. Under this condition, we find that eigenval-
ues are all complex forr,8. Hence the acceleration field
appear with spiral accelerations around these two points.
Their corresponding simultons therefore have oscillation
tails. Whenr.8, these eigenvalues become real and posi-

tive. The spiral structures disappear. However, these two
points are still unstable. Simulton solutions still exist except
their tails no longer oscillate, as observed by Buryak and
Kivshar @15#.

The system again is not a normal Hamiltonian system as
s1 is negative. Therefore these two boundaries,

v2512
v1
2

r
, ~43a!

v2521, ~43b!

FIG. 10. Acceleration field for case(2,2) at r52 together
with the boundary ~heavy line! at E52r/2 ~the boundary
v2512v1

2/r is labeled with 2 and the boundaryv2521 is labeled
with 1!, and a fundamental type-1 solution~light line!.

FIG. 11. Fundamental simultons of case(2,2) at r52, includ-
ing ~1! type-1 solution connecting both critical points~solid line!,
~2! type-3 solution connecting boundary 1~dashed line!, and ~3!
type-3 solution connecting boundary 2~dotted line!. ~a! Phase-
space projections~the inset is a close-up of phase-space projections
near point„(2r)1/2,1…; ~b! simulton time evolutions ofv1; ~c! si-
multon time evolutions ofv2 .
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given by substitutingv̇15 v̇250 into the Hamiltonian, can
be crossed by a virtual particle. The boundary Eq.~43b! is
marked with a ‘‘1’’ and the boundary Eq.~43a! is marked
with a ‘‘2’’ in Fig. 10.

1. Fundamental simultons

Similarly to the previous case, a particle that starts from
one of these two points will take a spiral path with the same

FIG. 12. Higher-order simultons of case(2,2). ~a! Phase-space projections of simulton~1!, a type-1 solution reflected twice by
boundary 2;~b! phase-space projections of simulton~2!, a type-1 solution reflected twice by boundary 1~the inset shows a close-up of
phase-space projections near point„(2r)1/2,21…); ~c! phase-space projections of simulton~3!, a type-3 solution reflected by both boundary
1 and 2~the inset shows a close-up of phase-space projections near point„2(2r)1/2,21…); ~d! phase-space projections of simulton~4!, a
type-3 solution reflected three times by boundary 2;~e! higher-order simulton time evolutions of simulton~1!; ~f! higher-order simulton time
evolutions of simulton~2!; ~g! higher-order simulton time evolutions of simulton~3!; ~h! higher-order simulton time evolutions of simulton
~4! (v1 , solid line;v2 , dotted line!.
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helicity as the acceleration field around the point ifr,8.
Without losing generality, we may analyze a particle that
starts from point (2A2r,21). After leaving this point, the
particle can go upward and cross the boundary given by Eq.
~43a!, or go downward and cross the boundary given by Eq.
~43b!. However, there are no opposite accelerations along
these two boundaries whenv1,0. Type-3 paths hence are
impossible within the areav1,0. Since there are an infinite
number of unstable paths connected to point (2A2r,21),
we can always find paths leading to the areav1.0. Once a
particle crosses overv150, it then can form two different
type-3 paths,~1! associated with the boundary 2, Eq.~43a!,
and ~2! associated with boundary 1, Eq.~43b!. The particle
can also approach the other point (A2r,21), forming a
type-1 path. Numerical solutions are shown in Fig. 11. These
simultons were known known previously@15#. These three
types of simulton form a family of fundamental solutions.

2. Higher-order simultons

Similarly to the previous case, combinations among these
boundaries and critical points result in higher order type-1
and type-3 simultons. Some simple higher-order simultons
are the following.

~1! Simulton ~1!, shown in Fig. 12~a!, is a type-1 path
connecting the two critical points and the boundary 2, Eq.
~43a!.

~2! Simulton ~2!, shown in Fig. 12~b!, is a type-1 path
connecting the two critical points with the boundary 1, Eq.
~43b!.

~3! Simulton ~3!, shown in Fig. 12~c!, is a type-3 path
connecting one of the two critical points with both the
boundaries 1 and 2.

~4! Simulton ~4!, shown in Fig. 12~d!, is a type-3 path
connecting one of the two critical points with the boundary 2
only. Obviously, a similar type-3 path connecting one of the
two critical points with the boundary 1 only also exists.

The corresponding simulton time-evolutions are shown in
Figs. 12~e!–12~h!.

IV. SIMULTON SOLUTIONS TO SPATIAL EQUATIONS

A. One-dimensional simultons

The spatial equations have the same forms as temporal
equations. They can be written as@9,13#:

i
]v1
]j

1
]2v1
]r 2

1v1* v22v150, ~44a!

is
]v2
]j

1
]2v2
]r 2

1 1
2 v1

22rv250, ~44b!

wheres5k2 /k1 , r5(2b1dk)s/b, and j5bz. Here,k1
and k2 are wave numbers along thez direction, dk is the
wave-vector mismatch, andb is a measure of the effective
linear phase mismatch between both waves. In realistic cases
s'2 @17#.

As r.0, the solutions to spatial equations simply are so-
lutions of case(1,1).

B. Spatial simultons in higher dimensions

Based on previous publications@17,40,23#, the basic
equations written inn11 dimensions,n52,3, can be written
as:

i
]v1
]z

1¹2v12v11v1* v250, ~45a!

is
]v2
]z

1¹2v22rv21
1
2v1

250, ~45b!

where r and s have the same definition as for the one-
dimensional equations.

One seeks radially symmetric solutions to the above equa-
tions. Substituting the ansatz

v i5v i~r !, i51,2, ~46!

into the above equations gives

FIG. 12 ~Continued!.
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FIG. 13. Higher-dimensional spatial simultons wherer50.3 ~solid line!, 0.5 ~dashed line!, 1.0 ~dash-dotted line!, and 3.0~dotted line!.
~a! Phase-space projections for~211!-dimensional spatial simultons;~b! phase-space projections for~311!-dimensional spatial simultons;
~c! fundamental~211!-dimensional spatial simulton radial dependence ofv1; ~d! fundamental~211!-dimensional spatial simulton radial
dependence ofv2; ~e! fundamental~311!-dimensional spatial simulton radial dependence ofv1; ~f! fundamental~311!-dimensional spatial
simulton radial dependence ofv2 .
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i
]v1
]z

1
]2v1
]r 2

1
~n21!

r

dv1
dr

2v11v1* v250, ~47a!

is
]v2
]z

1
]2v2
]r 2

1
~n21!

r

dv2
dr

2rv21
1
2 v1

250. ~47b!

Compared with the equations of case(1,1), the above
equations take the same forms except with two extra ‘‘fric-
tional terms’’ @41#, @(n21)/r #(dvm /dr). Obviously, spatial
simulton solutions must satisfy the following boundary con-
ditions:

dv i
dr

50 atr50, i51,2. ~48!

This condition is necessary so that these two ‘‘frictional
terms’’ do not become singular atr50. Following the argu-
ments for the existing of simulton solutions of case(1,1),
one can easily prove that there exists a family of simulton
solutions for arbitrary values ofr. These solutions were
found recently by many people@23,17,42# and were ob-
served by Torruellaset al. @43# experimentally. Compared
with the simultons of case(1,1), these spatial simultons
usually have higher amplitudes in order to compensate for
the energy loss of the virtual particle due to the presence of
‘‘friction.’’ The path also becomes a straight line atr51.
Approximate solutions were found by Hayata and Koshiba
@40# for n-dimensional wave equations, although the case of
n.3 appears to be inapplicable to optical systems. The cor-
responding exact numerical result for fundamental simultons
is given below. Paths for different values ofr are shown in
Fig. 13~a! and Fig. 13~b!. These paths also bend slightly
upward forr,0 and bend slightly downward forr.0. The
topological structure in this case is nearly identical to that in
the one-dimensional case(1,1), previously discussed. We
therefore conclude that there also exists a new family of
higher-order spatial simultons corresponding to the odd-
number-peak simultons previously studied in case(1,1).
Due to the boundary condition Eq.~48!, the even-number-
peak simultons in case(1,1) have no correspondence in the
spatial case. Paths of these higher-order spatial simultons are
shown in Fig. 14~a!. Their profiles are shown in Fig. 14~b!
and Fig. 14~c!. The numerical method involved in finding
these spatial simultons is a combination of the standard
shooting method and a routine of searching for the correct
initial energy. These solutions can be thought of as behaving
like classical ‘‘excited states’’ or ‘‘resonances,’’ although
they are probably not stable.

V. CONCLUSIONS

The basic equations which describe thex (2) cascaded
nonlinearity in the presence of dispersion or diffraction have
remained unsolved for almost 20 years. Previous methods of
obtaining solitary solutions were unable to to find all pos-
sible solutions. In this paper, instead of using complex math-
ematical analysis, we have used simple topological argu-
ments combined with numerical integration to prove the
existence of simulton solutions. Compared with traditional
methods, such as inverse scattering or inserting an ansatz,
this method has been proved to be a much more efficient
technique of finding solutions. This method may also be ap-

plied to other, similar, vector systems.
We have confirmed that the system is a one-parameter

system by transforming the basic equation into eight sets of
one-parameter equations. The number of possible cases has
then been reduced to four based on topological arguments.
General numerical solutions are then found by studying the
corresponding acceleration fields, and integrating the rel-
evant equations

In case(1,1), general solutions for arbitrary values of
r have been found. The previous known analytical solution
for this case is a special case withr51 ~known as the phase-
matching condition! of the general solutions. This is encour-
aging for experiments, as the strict phase-matching condition
no longer necessarily has to be satisfied and only low power

FIG. 14. Higher-order~211!-dimensional~solid line! and ~3
11!-dimensional spatial~dotted line! simultons at r50.5. ~a!
Phase-space projection;~b! v1; ~c! v2.
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is required. These solutions were also found numerically by
Buryak and Kivshar@11,18# and Torneret al. @13,12#, thus
verifying our numerical algorithm. It is interesting to note
that higher-order simultons with multiple peaks exist when
r,1.

Simultons exist only for discrete values ofr in case
(1,2). One analytical simulton known previously corre-
sponds to a special case,r51. The whole family of simul-
tons in this case is known to be unstable due to the modula-
tional instability resulting from their cw backgrounds@38#.

The case(2,1) has a rich family of simulton solutions
because of the novel features provided by the system. The
virtual particle with negative mass along one spatial direc-
tion can cross a potential boundary. This behavior is differ-
ent from that of a classical particle with positive mass inde-
pendent of spatial direction. It hence introduces complexity
but also interesting features to the system. All solutions are
generally classified into two categories according to the criti-
cal point with which they associate. Simultons associated
with point (0,0) are found only for discrete values ofr. We
again find that a previous known analytical simulton corre-
sponds to a special case atr52. Associated with the other
two spiral critical points, general topological and nontopo-

logical simultons with many varieties exist for continuous
values of 0,r<2. Higher-order simultons also exist for
each type of simulton. Numerical investigation of the stabili-
ties of these simultons is currently being carried out. All
general solutions of this case were unknown before.

For case(2,2), both topological and nontopological si-
multons exist for arbitrary values ofr.2 because of the
modulational stability condition. Similarly to the previous
case, higher-order simultons exist for each type of simulton.
Solutions of this case were known previously@15,16#.

Finally, we briefly discuss spatial equations with the to-
pological method that we have developed. General spatial
simultons for higher-dimensional systems exist. The funda-
mental solutions in two dimensions have been experimen-
tally observed already@43#. We also find an additional fam-
ily of higher-order spatial simultons.

In conclusion, these simulton solutions have revealed
some interesting properties of this dynamical system de-
scribed by coupled nonlinear partial differential equations.
While the simultons themselves may have potential applica-
tions in communications and optical logic gates, they also
pose fundamental challenges for the better understanding of
vector nonlinear wave equations.
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