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Simultaneous solitary-wave solutions in a nonlinear parametric waveguide
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We introduce a simple topological classification for the solitary-wave solutions of the coupled equations
describingy® parametric waveguides. Both temporal and spatial cases are studied. Simultaneous solitary-
wave solutions at two different frequencies, which we term “simultons,” are shown to exist using topological
arguments. In each case, families of general one-parameter simultons are given numerically. Each family
consists of both fundamental and higher-order simultons of a topological or nontopological nature. There are
several possible ways to combine dispersions at different frequencies. Thus there are more possible ways of
maintaining temporal simultons in+1l space-time than for purely spatial simultons in two space dimensions.
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[. INTRODUCTION ber of new types of solitonlike interactions being experimen-
tally available at much lower field intensities than

Solitary-wave solutions to the basic coupled equations depreviously. Such strong nonlinearity has already been ob-
scribing they(® nonlinearity for equal group velocities, but served experimentally in self-phase modulation by DeSalvo
including dispersion or diffraction, have been studied byet al.[20] and self-diffraction by Danieliust al. [21]. Nitti
many author$1-18]. These results have shown that the twoet al. [22] have obtained an increase of several orders of
coupled partial differential equations have a wide range ofmagnitude of the effective(®) with an organic crystal of
solitary-wave solutions. The published solutions can be caf2-(a-methylbenzylaminpg5-nitropiridine (MBA-NP).
into three categories. The first is that the dynamics of an These experimental results have stimulated more theoreti-
optical field traveling through g medium can be de- cal work on possible general simulton solutions. Solutions
scribed by a nonlinear Schdimger equation when there is have been proven to exist numerically without satisfying
large phase mismatching,6,7]. The second is that there are strict phase-matching conditiongl1-1§. However, al-

a few special cases of analytic solutions, found under stricthough these general numerical solutions have greatly im-
phase-matching condition#,5,7—1Q, which we term “si-  proved our understanding of this nonlinear system, the ques-
multons.” Finally, there are simulton solutions found nu- tions of whether all these solutions are complete, and how to
merically [11-18, which extend the analytic cases into ad- classify them still remains unanswered. We are particularly
ditional parameter regimes. The purpose of this paper is tinterested here in tempordll+1)-dimensional simultons,
introduce a systematic topological classification of all pos-which can occur under a variety of conditions that are not
sible solitary-wave solutions. We include all cases presentlypossible for spatial cases. This question of general classifi-
known to exist, and demonstrate the existence of solutionsation is especially important in view of the large number of
that were previously unknown. solutions that are presently known.

The equations that result when stationary conditions are One method of obtaining analytic solutions involves sub-
applied are not integrable. In fact, they are closely related tatituting an ansatz into the basic equations. It is impossible
those of the Heon-Heiles chaotic Hamiltoniafl9], which  that all solutions can be found by using this method, due to
clearly has no general analytic solution. Despite this generahe lack of integrability of the basic equations. Numerical
lack of integrability, the equations have at least one intesolutions were also found by shooting methods, with the
grable subspace, in which well-behaved and integrable sollboundary conditions determined by preassuming the form of
tions emerge. These do not have all the classical solitoa solution. A complete and systematic way of finding simul-
properties — in particular, they are not invariant under col-ton solutions is clearly needed, since the technique should
lisions[7]. Despite this, the solutions can have excellent nunot involvea priori assumptions.
merical stability, as demonstrated by numerical experiments In order to understand and classify the possible solitonlike
at relatively low intensities. Chaotic behavior is also possibleor stationary-wave solutions, we introduce a topological
at higher intensities. classification. This allows an analysis of the equations with-

There are a number of interesting and unique features afut knowing the exact analytic solution — which is essential
this system of equations. Most significantly, they describe an view of the lack of integrability. Nevertheless, the topo-
novel type of nonlinear device — the parametric waveguidelogical technique can rule out those parameter values which
This type of waveguide is potentially able to support veryare clearlyunableto support solitary waves. Next, a humeri-
large nonlinearities when compared to the usual nonlineacal integration of the steady-state equation provides us with
refractive index devices. The reason for this is very simpletopologically acceptable candidate simultons, which exist for
— the parametric nonlinearity involves &t as opposed to ranges of parameter values where no currently known ana-
an E® nonlinearity. For this reason, it is typically a much lytic solutions occur. Finally, we determine the stability of
stronger effect relative to the usual nonlinear refractive inthe solution using a numerical solution of the complete par-
dex, at low field intensities. Thus, we can anticipate a numtial differential equation, starting with a perturbed input,
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close to the candidate simulton. The numerical analysis oB=k{?—2k{" wherek{" andk{?) are wave numbers of the
the stability of these simultons is complex and lengthy, andirst and second harmonic, while the nonlinearjtys given

will therefore be treated in a subsequent paper. as
This topological method has proven to be very effective
for both finding simulton solutions and providing explana- eox PKGY (mkD\ 2 o
tions for the origins of these solutions. In this paper, we ~ X=—_—| 5 fd x[uP ()17 [uP@(x)]*,
simplify the basic coupled equations to eight one-parameter )

equations. A simple mechanical analog can be applied to

these equations. Using this analog, we can show by topologivhere u(’(x) refers to normalized transverse-mode func-
cal arguments that four cases do not have solitary-wave s@ions. The fields¢, and ¢, are, respectively, the complex
lutions. Using the topological method, all known solutions envelopes of the first and second harmonics, in units defined
can then be classified into categories. In addition to theseg that|¢i|2 is the photon flux of théth field. In this equa-
known solutions, we can also find other dark, bright, andion, it is assumed that the group velocitigs- dw/dk of the
hybrid type solitary-wave solutions for arbitrary phase-two fields match at the carrier frequency, to optimize simul-
matching conditions. These solutions generally extend theon formation. For the convenience of comparison with other
known solutions into different regimes of dispersion andsolitary-wave systems, we introduce characteristic scales of

phase matching, thus relaxing the requirements for obtaininglistancez, and timet, as well as photon numbex [31,32:
them experimentally.

We also demonstrate this topological method for finding z=2y¢, (33
two- and three-dimensional spatial simulton solutions. In ad-
dition to these previously known fundamental solutions t=ty, (3b
[23,24,11, other general higher-order simultons representing
the excited state of the fundamental solutions have also been p1=|K7k3/ (4t5x?)], (39
found by this method.

Multiple-frequency solitary waves are found in resonant p2:|(k'l')2/(4tgx2)|, (3d)

atomic interactions as well. This was originally suggested by

Konopnicki et al. [25-27, Drummond|[28], and, more re-  \yheret,= v/|K;z,|/2. The value ot, can be estimated from
cently, Grobeet al. [29] and Eberlyet al. [30]. These solu-  the ratio of a given pulse duration to that of the normalized

tions in a sense cor.nplement.the parametric soIitary WaveSimylton solution. Together with the dispersions el of
treated here. The difference is that the cases studied he{ﬁe experimental material, values f and p; then can be
] I

never involve resonant atomic excitation, and therefore haVSetermined We will give an example in a subsequent sec-
very low losses and fast response time, as is usual in nonlir;,
ear optical systems of this type.

. . Using the variable transformation
In summary, the case of parametric simultons is interest-

ing due to the relatively low losses and the possible techno- 0 _
logical applications inherent in these compact solid-state de- é1=1q| ’ 21,y (4a)
vices, as well as in the rich variety of new solutions. k1
=—sgnk!)|q|V.e'29% y, 4b
II. SIMPLIFICATION OF THE BASIC COUPLED ¢2 griky)lal Vo€ x (“4b)
EQUATIONS we obtain the following dimensionless equations:
We wish to treat the case of a time-dependent wave N. PV
propagating in a one-dimensional, dispersive, parametric i32_1+_21+\/*1<v2_32\/1:o, (5a)
waveguide. The same equations, with some restrictions to 2 T
the parameters, also can be used to treat a continuous wave v 2y
(cw), propagating in a two-dimensional waveguide, or a . 2 IV, 1\,2_ _
three-dimensional medium with a transverse translational 1S20 G TSt 2 Vi~ s3pV2=0, (5b)
symmetry.
Based on the published modg$], we write the one- where
dimensional basic equation describing the cascag€d
parametric waveguide in the form §=qz (69)
g k] 92 _ i . s1=sgr(kik3), (6b)
_ _|._ J— =
5z 2 2| 1T Ix a1, (1a )
S;= —sgrkiq), (60)
& |k’2, &2 I)( 2 Sa= — " _
220 S 3= —sgriki(29-B)1, (6d)
(az+ 2 ot? "3>¢2 > 91, (1b)
o=|k]/K|, (6e)

where k; is the dispersion at thath frequency, i.e., the
derivative d’k/dw? calculated at the poink=k,. Here, p=|a(29-B)/q|. (6f)



898 H. HE, M. J. WERNER, AND P. D. DRUMMOND 54
Here we let|/q|=2z,, so there are two possible forms of implicitly by the initial conditions of the wave equation, and
scaled equations to consider for every distance scale. Thesbviously depends on the intensity and duration of the input

correspond to inputs with nonlinear phase shifts of oppositenvelope function.

signs. Physically, this is due to the fact thag¢@ medium is Equations(9b) and (9d) now become
not inversion symmetric. It is sensitive to the relative phase
of the two input fields. Different relative phases will give rise v, _
to different phase shifts, generating distinct possible types of 972 +0102 =S, =0, (113
soliton. For this reason, the scaled equation used here in-
cludes a scale parametgrwith arbitrary sign. Otherwise, 920
. . . . 2
|g| = 1/z, is simply the inverse distance scale parameter. s15 7zt 3 vi—szpv,=0. (11b

The most general solutions written in polar variable form

can be represented as The above equations significantly simplify the analysis

=vi(& relbEn  j=12 7) for simulton solutions, sincey; are real. Since each of
$1,S», andsg can have either sign, there are eight distinct
wherev; and 6; are real. cases to be examined.

Substituting these trial solutions into the above equations
and using the stationary condition, for waves whose enve- I1l. SIMULTON SOLUTIONS

lope function does not change under propagation, ) ) )
The system given by Eq11) has a simple mechanical

;i . analog. The above equations can be read as the equations of
ﬁg =0, i=1.2, (8) motion of a virtual particle with unit mass in a potential,
although the sign of the mass can change, depending on the
we have coordinate. The trajectory of the virtual particle then corre-

sponds to a pair of stationary solutions. Such mechanical
) analogies to static solutions have been pointed out by many
+v1v,8in(62—26,) =0, (98 people[33—36. The new feature of the present equations is
the possible anisotropy of the mass, which leads to new types
of solution. The Hamiltonian of this system can therefore be
=0, written as
(9b) s

2 S3
—2p1+ pz"'zvivz Evi_gl)vgy (12

1 J 2(9_0
1(97

Ul (97'

(921)1 (901 (901
W+01U2C05(02_201)_Ul W —SyUq 6_54‘1

S, 4 a6
2 (2 2)+ Lu2sin(20,— 6,)=0, (9¢)

v2 or

v2 T wherep;=v, andp,=s,05.

v 90 The potential is given as
2 1 2 2

+ = a— — JE—
Sigzt e v1C08 260, — 6,) S102< (97_> s, s,
V= %Uivz—jvi— jpvg- (13

a6,
1)2(520' J9E +S3p =0. (gd)

However, this is not a normal Hamiltonian system be-
gause the particle may have a negative kinetic energy in the
v, direction ifs;<0. We are only interested here in solutions
gvhlch behave as isolated solitary waves, leaving the question
of stability for later determination. We call such solutions

simultons. Hence the following boundary conditions must be

These equations can be greatly simplified if we assum
0,=K,¢ and 8,=K,¢, whereK; andK, are constant. This
additional constraint means that we must now exclude th
possibility of spatially chirped solutions, whose phase depen*
dence is not just a linear function gf If these did provide

new solutions, they would form a new class of simultons. Satisfied:
Hence, Egs(9a) and(9c) become o 4,
sin(6,—26,)=0, (10) 4 0 g, =0 7t=F», n=12,....

(14
which gives#,=26,;*nm,neN.

The above result has a very important physical meaning, Thus the particle must stay at one of the points at which
that the average wave number of the second harmonic mu#ite above condition is satisfied. These points are called criti-
be twice the average wave number of the first harmonic ircal points. If a critical point is a simulton boundary, it must
order to get stationary solutions. It also shows that changinge unstable, otherwise a perturbation will produce periodic
the phase with the restrictio®,=K;&, i=1,2, will not solutions. There are two types of simulton solutions, topo-
change the form of the equation, except for the valug.of logical and nontopological, which start and end at nonoscil-
Without losing generality, we therefore takke=0 for sim-  lating critical points. Topological solutions have different
plicity. We note thatg, as introduced here, is effectively a boundary conditions fot= *%. Hence a potential possess-
nonlinear phase shift of the solution. Its value is determinedng topological solutions must have at least two critical
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points. Such a solution corresponds to a trajectory of thehe eigenvalues oA. SinceA is a 2X2 matrix,\, , are just
particle that connects two critical points. We call such a pathsolutions of a quadratic with ;+\, real. Hence the cases
a type-1 path. are
Nontopological solutions have the same boundary condi-
tions for 7=+, so the particle must be able to return to the A12<0, (183
starting critical point. Hence the path of the particle forms a
loop. We call this path a type-2 path. The path may be a N>0, \,<0, (18b
reversible curve that connects the critical point and a point in
the potential at whichdv;/d7=0, i=1,2, butd™y;/d+" A1 >0, (180
#0, n=2,3,..., i=1,2. Such a path is a special case of a
type-2 path. We call it a type-3 path. N ,=azxib, (18d
At any one of these critical points, the gradient of the
potential must be zero. Hence, critical points must satisfy corresponding to four different cases @feing of the form

v1v2— S =0, (159 *ix, =iy, (199
3 v3—s3pv,=0. (15b) X, iy, (195
X, *y, (199

Three critical points are found at (0,0) and
(£V2s,83p,5,). Note that only one critical point exists at
(0,0) whens,s3<<0. We have studied cases witf)s;<<0
and found no possible type-2 or type-3 paths, which elimi-  pye to the relationship between the values\oéind the
nates the possibility of simulton solutions. Thus simulton,,5,es of 8, we can classify the end points of solutions of
solutions can only occur is,=s;. We therefore have de- e Newtonian equation simply from the form of its accel-
creased the number of different cases from eight to four.  gration field. The first case, describing a stable point, only

The system described by E(L1) is a Hamiltonian sys- |eads to stable periodic solutions with no corresponding si-
tem. Hence the total energy is conserved. A particle thagiton solutions. All the other cases lead to unstable critical
starts from (0,0) has energy éf=0. A particle that starts points, which can therefore correspond to simultons. When
from (= 2p,s,) has an energy oH=—s, % p. Since the we have an unstable critical point with accelerations pointing
energy at (0,0) is different from those of the other tum-  outward, its solutions are always unstable. If we have a
less p=0), it is impossible for a particle starting from saddle point in the acceleration field, then the solution can
(0,0) to reach one of the other points with its speed aponly be unstable or periodic. If an acceleration field has a
proaching zero, or vice versa. spiral structure, then the solution also takes similar spiral

The remaining task is to find all possible simulton paths.forms with an infinite number of unstable paths. The eigen-
The motion of the virtual particle can be very complex in thevalues ofA can be easily found:
potential. A novel feature of this problem is the existence of
paths for a particle whose mass has different signs in differ- N1=S3, Ap=S1Spp (20
ent coordinates. An effective approach to overcome this o . ]
problem is to consider Eq11) as Newtonian acceleration for an equation linearized around point (0,0) and

equations with acceleration field given b
| : g N12=(S1Sp % \p°+851p)/2 (21)

for an equation linearized around:(/2p,s,).

When a particle on a simulton path approaches an ordi-
ry critical point(a point with real eigenvalugsits speed
approaches zero as— *o. In order to achieve this, the
acceleration must have one component along the path of the
‘?iarticle. Therefore simulton solutions are possible only if the
acceleration field has at least one acceleration line pointing

p0|n|f£;s ;’.V'thom éi.c?.Ja”y sglwrtl%r;[hef eq“atf'oﬁ- It I(t:an alslot_g'veoutward. If the accelerations have constant direction near a
quaiitative predictions about the form of SImulton SOIULONS ¢ jtjc, point, then the trajectory of the particle, near the

and their existence over arange of parameters. We now pr?)'oint, becomes a straight line and is the same as the accel-
ceed to show more details.

Li ed d tical point. the ab Newtoni eration lines near the point.
In€arized around a critical point, the above Newtonian g pehayior of a particle around a complex critical point
system can be written in the form

(a point with complex eigenvalugdecomes very compli-

X*iy, —xzxiy. (190

F=[S,01—v102,51S2pv2— S1303]. (16)

There are four different acceleration fields correspondinq1
. . ) . a
to different signs ofs; ands,, with s,5;>0. We define a
“case vector,” cases,;,S,), for convenience of discussion.
There are many advantages of drawing acceleration field
Most importantly, it allows a classification of all critical

- - cated and interesting. Even if a complex point has accelera-

v=Auv, 17 tions pointing in, it still has unstable paths. Since the whole

process is always symmetric in the time domain, a particle

whereA is a real 2<2 matrix. can always follow these paths back with its speed also ap-

Obviously, the solutions to Eq17) can be written in the  proaching zero. Thus any type of spiral field of acceleration
formv==,_1 £,€"". We find 8,= = N1, Wherex;,are  vectors can lead to unstable paths.



900 H. HE, M. J. WERNER, AND P. D. DRUMMOND 54

N [I - i}z"’%vi_pl)zzo. (23b)
' -
L
: \ -~ We find, at the starting point, thét o= 0. Hence, at all
1 - times,
1 -
o i 27 H=1p2+ 1p2+ Lp2y,— Lo2— 1pp2=0.  (24)
Ry N . =32P1T 2P 2V 02— 2V~ 3 pU=0.
I
\ /
S, : ', . l‘ 1‘ The motion of a particle starting from (0,0) is therefore
11l iy NEYRRN confined by the boundary given by
o_///// Fm N N
;::j:”"/l\‘\:::::: 1.2 _ 1.2 1 2_0 25)
S Sl s sl NSNS NN 2UU27 2017 2 PUTY, (
///I//////|\\\\\\I\\\
-2 0 2 which gives
Vi
— . : P
FIG. 1. Acceleration field for case{(,+) atp=1, including the vi=% \/( _1)02. (26)
boundary(heavy ling at E=0, and a phase-space projection of its v2
fundamental simulton solution (light line): . N
v1=*[3/(2)"?] secR(7/2), v,=(3/2)sech(7/2). These two boundaries are shown as heavy curves in Fig. 1.

We now are able to prove the existence of nontopological

An acceleration field can also provide information aboutO! tyPe-3 simultons, using the acceleration field with the aid
the range of possible trajectories of a particle, since a particl@ the above results. A type-3 path is symmetric with time,
is able to come back to its starting point only if it encounters@"d the energy is conserved. A particle on this path must
an opposing acceleration. Therefore, without actually solving'@ve coordinates satisfying the above equation, with velocity
the original equations, the acceleration field can indicate th€9ual to zero at=0. It then returns along the same path. All
existence of simulton solutions, their forms, and the range&ccelerations along the upper part of the boundary have com-
of their parameters. Under these guidelines, numerical simufOnents pointing upward while those along the lower part of
ton solutions can then be found systematically, using stant€ Poundary have components pointing downward. If a par-
dard numerical techniques. ticle is alpr!g the upper part of the boundary, it will pass over

Using the above techniques, we first consider the simpled0,0)- If it is along the bottom part of the boundary, it will

case,p=0, with the acceleration field being of the form ~ Pass under (0,0). Since the boundary is continuous, there
must be a point along the boundary from which a particle can

F=[(Spv1—v102),—S1503]. (22)  approach (0,0) ag— . Changing the va'llue op only
changes the position of the boundary, but will not change the
The system does not have any simulton solutions, becaugepological structure of the acceleration field: the eigenval-
the acceleration along, (—s; & v?), never changes its sign U€S ofA always take the same form for this case. In other
under any situation. Hence the particle will never be able td/rds, we can always find positions along the boundary such
return to its starting point. Therefore, no simulton solutionsthat the path will pass over (0,0) or under (0,0). Therefore

are possible. such solutions always exist for any nonzero valug oNote
We next consider different cases separately according t§1atp 1S always positive by definition.

the signs ofs; ands,. In order to find the path, we assurng=v,(v,). Hence,

A. casd+,+) 01=07(02) %+ v 10y, (27)

1. Fundamental simultons wherev;=dv,/dv,. Combining Eq.(24) with Eq. (23) we

In this case, as shown in Fig. 1, the acceleration field ha8aVe

three critical points. Among them, the points @,1) are

saddle points. The acceleration field in the unstable direction (1, )=y
of the saddle points does not allow a return path to a critical
point. Therefore no simulton solution is possible if a particle
starts from one of these saddle points. Another critical poinffhe simplest path is a straight line. Inserting the form
is at (0,0), with acceleration vectors pointing to all directionsv1="rv,, Wherer is a constant, into the above equation, we
evenly. There are an infinite number of possible paths pasdind thatr =2 providing

ing this point. In the upper left and upper right in Fig. 1,

there are accelerations pointing to (0,0). The simplest pos- p=1. (29)
sible case is that a particle starts from (0,0) and then goes to o N )

upper left or upper right and then returns, forming a nonto-Substituting these conditions into E@3), we have

pological simulton. The system has a normal Hamiltonian . )

and it can be described by the following equations of motion: votvy—v2=0, (30

2, 2 2
vt pL;— UV,

+v] —1v?). (28
(vi)2+1 vl(pUZ 2Ul) ( )

v1+vv—v1=0, (23a which is integrable. The solutions to Eq23) are given as
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v1= i%zsecr’r( %) , (31a | | ;
3 T
u2=§secﬁ< f) ) (31b

This pair of solutions was found by Werner and Drum-
mond [5] and others[1,8]. Note the conditionp=1 is
equivalent to the phase-matching condition, as appeared in
[5].

As we proved above, there is always a simulton solution
regardless of the value @f. Since Eq.(28) is generally
nonintegrable for arbitrary values pf general analytic so-
lutions are not easily available. However, based on the argu-
ments given above about the acceleration field, it is trivial to
obtain general solutions numerically. We simply choose a
point along the boundary, E¢26), as the boundary condi-
tion and then integrate E¢23) numerically by trial and er-
ror. Solutions with errors below 16° can easily be obtained
using this standard shooting technique.

We have obtained a whole range of numerical simulton
solutions for many values gé>0. Paths corresponding to
different values ofp with valuesp=0.1, 0.5, 1.0, 3.0, and
10.0 are shown in Fig.(2). These paths can be regarded as
“phase projections” of the four-dimensional phase space of
this system onto the two-dimensional-v, plane. Simulton
profiles are shown in Fig.(B) and Fig. Zc). Similar results
of these fundamental simulton solutions were reported by
Buryak and Kivshaf11,18 and Torneret al.[13,14. From
Fig. 2(a), we can see that whep=1 the path is a straight
line which agrees with the analytical solution. We can think
of these paths balancing between upward accelerations and
downward accelerations. Wheyt>1, upward accelerations
are generally higher than downward accelerations, so paths
bend slightly upward to reach a balance. Whenl, down-
ward accelerations are bigger and paths therefore bend
slightly downward.

To observe these temporal simultons experimentally, the
following conditions must be satisfiedl) a suitable wave-
guide with strong second order nonlinearity must be used;
(2) the group velocities of the two harmonics must be
matched;(3) most importantly, the material must be highly
dispersive in order to verify the formation of simultons. The Phase-space projections where0.1 (solid lin). 0.5 (dashed ling

last condition is currently the most difficult one. Among the ; . o ot ling, 3.0 (dotted fing, and 10.0(dash-dash-dot-dot
known optical materials, organic materials have been re:

ported to be most dispersiye2]. Even if such a material is line); (b) simulton time evolution ob ;; (c) simulton time evolution
used, its dispersion~1ps/m) together with a 100 fs laser vz

pulse only implies a dispersive scale length on the order of

1cm[9]. As an example, we consider a waveguide made ofy. These figures demonstrate the low power levels possible
LiNbO;. We use the following valuesy®=11.9 pm/V  in soliton formation with ay‘? waveguide, relative to a
[37] and wavelength of the first harmonic=1.06 um. Sup- 5 waveguide.

pose =0 and o=1/2, we then havep=1. Assuming a

dispersionk; of 0.1 p$/m, a pulse width(defined as full 2. Higher-order simultons

width at 1k intensity of 100 fs, and a waveguide area of A virtual particle can also be reflected from one side of
100 um?, we find thaty~4x10 8 s¥2m~1. The charac- the boundary and reach the other side. It can then either
teristic scale values arg~30 fs, zy~2 cm, p;~1X10°>  approach the point (0,0) or be reflected again. This process
photons per pulse, ang,~5X 10* photons per pulse. For a can repeat as many times as possible, which introduces a
1 GHz repetition rate, this corresponds to an average powavhole family of higher-order simulton solutions. We identify
of the order of 10°-10"° W, with a peak power around 1 each higher-order simulton solution of this type as

FIG. 2. Fundamental simulton solutions for case(). (a)
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FIG. 3. Higher-order simulton solutions for cése+). In order
to avoid overlap, we choose different valuespofor different or-
ders: the solutiom=2 hasp=0.6 (solid linel and the solution
n=5 hasp=0.2 (dotted ling. (a) Phase-space projectiond) si-
multon time evolution ob ;; (c) simulton time evolution ob,.

vi', i=1,2, n=0,1,2,... %, wheren is how many times
the virtual particle is reflected from the boundaries after it
starts from the point0,0). Whenn—o, we then have a pair
of nonlinear periodic solutions. Clearly=1 gives the ordi-
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FIG. 4. Acceleration field for case(,—) atp=1 including the
boundary(heavy ling atE=p/2, and the phase-space projection of
the solution (light line): v,==*(2)Y9(3/2) sech(r/2)—1],
v,=(3/2)sech(/2)—1.

B. casé+,—)

The system now takes the form

(329
(32b

l.).1+U]_U2+U]_:0,
U+ 302+ pu,=0.

The acceleration field of this system is shown as Fig. 4.

First, we note that its topological structure is independent
of the value ofp, asA never changes its form regardless of
the value ofp. The eigenvalues around point (0,0) are al-
ways negative and these around point\(2p,—1) always
have different signs. Point (0,0) is stable and hence no si-
multon solution is possible if a particle starts from this point.
The other two critical points at#\2p,—1) are saddle
points.

Second, the system is a normal Hamiltonian system, as all
“masses” are positive §;>0). The Hamiltonian of a par-
ticle that starts from either one of these two points js As
a result, the motion of the particle is confined in the area
surrounded by

(339

(33b)

The boundary which passes through the two saddle points
is shown in Fig. 4 in heavy lines. Since these two points are
saddle points as shown in Fig. 4, only two paths pass through
each of them. One path is stable. The other is unstable, being

of the form
= \/E
Vo= + 201

(34

nary one-peak simulton solutions. Such a multipeak simultomear the saddle points.

hasn peaks.

To show the above bouncing process, pathsef0.6
with two peaks angh= 0.2 with five peaks are shown as Fig.
3(a). Numerical solutions fow, andv, are shown in Fig.
3(b) and Fig. 3c), respectively. The amplitudes of these so-
lutions increase ag increases.

After being perturbed toward the confined area, a virtual
particle will keep its motion inside the area. The particle will
stop only if it reaches the other saddle point or returns to the
starting saddle point. Note that the unstable path passing
each one of the saddle points is unique for every value of
p. In some cases, whentakes a particular value, the paths
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of the virtual particle become simulton paths of both topo- w

logical and nontopological nature. As a result, these paths

form a family of discrete simulton solutions, as pointed out

by Buryak and Kivshaf15]. °r
The simplest form of these paths is a straight line. The

unstable paths passing these two saddle points can be written .

as ~

>

U2=1 \/gl)l. (35) N

Now the path equation becomes

P4 IR
-~ TN e b e e i i e i e e a
R

2 2_.2
TU1T pUT U2
(v)?+1

i
! 1.2 1 1
—v1(pvat3v7). Y 2 o 5

(36)

_Ul(1+U2):U§[

P . . . FIG. 5. Acceleration field for case(,+) at p=2 including the
Substitutingv ;= +2/pv, into the above equation we find . 9
LI . . bound h I tE=0 d the phase- il f
p=1. This is a straight line that passes (0,0) and oundary(heavy fing a » aNnd e prasespace projection o

(\2.—1). Equation(32b) becomes the  solution (light line): v;=6(2)"%sechf) tanh(r),

v,=6sech(7).
. 2 _
vatvytv,=0. (37 stable critical points. Since they have distinct values of the

Hamiltonian, we then have two categories of simulton solu-

Shifting to (~y2,—1), we haveV=uv,+1, so the above ions: (1) simultons associated with the saddle point (0,0)

equation becomes and (2) simultons associated with the other two points at
V+V2-V=0. @3 (£V2p.1).
We have solved this equation in the previous case and the 1. Simultons associated with point (0,0)
solution is The critical point (0,0) is a saddle point for any value of
3 , p, as the eigenvalues around it always take different signs. It
V=—secﬁ( _)_ (399  only has one unstable path along the=0 axis near (0,0)
2 2 for each value op, as shown in the acceleration field. It is
. obvious that only nontopological simulton solutiofigpe 2
Hence, we have solutions and type 3 are possible. Since the path is unique to each
3 r value of p, the path depends solely upon the valuepof
vi=+42 Esecﬁ E) - 1}, (409  Varying the value ofp gives a whole range of paths.

After leaving (0,0), a particle will go upward due to the

3 r upward accelerations along the=0 axis. Its direction of

v 22556Cﬁ<§) -1 (40p  motion will be bent toward the axis; =0 because of accel-
erations pointing toward,=0. Its path will be bent further

The above solutions were found previouf®8,1J as a due to downward accelerations near the vertical axis. There
P ’ are three possibilities when the particle crosses the axis

novel type of dark simultons. However, because the particle _ . . ) . -

) ) 01=0: (1) p»=0; (2) p,<0; (3) p»>0. The first possibility
starts from either one of these two saddle points, the corre-.. : ; :
sponding simulton solutions appear with apbright ow back_|nd|cates a type-2 path, as the acceleration field is always

. symmetric with the axis;=0. In the second situation, the
ground, v, == y2,0,=1. However, the continuous Wave (o, of the particle will follow the spiral structure of the
(cw) backgroupd IS not stable due to modulational InSt""b'I'ty'acceleration field. This does not allow a return or closed
as both the d'SPeTS'O”S tak_e the same 5@_’39’15' Thus_, path. Hence no simulton is possible. In the last case, the
although there exists a family of discrete simulton solutions

th I table due to th dulational inst b_I_t)particle will encounter opposite accelerations when it is
ey are all unstable due to the same modulational Instabil moving upwad — a type-3 path is possible. If the particle
We therefore do not analyze this case further.

does not meet the requirement of forming a type-3 path, it
can still cross the axis,; =0 again with the same three pos-
C. cas¢—,+) sibilities as it met before. The process is then repeated and
One of the important features of this system is thatcan be rep_eated for as many times as possible. The existence
s;=—1 — with one direction of the mass tensor effectively Of these S|multon solu_’uons can theref_ore bel proved, as the
negative, the system is no longer a normal Hamiltonian syschange of the orientation of the path is continuous when
tem. Compared with the previous two cases, the motion of £hanges. The above process also suggests that these simul-
virtual particle is no longer confined by boundaries. This hagons can be classified by the number of peaks of i.e.,
obviously increased the variety of simultons of this case, ag\” .n=23,. ... Forexample, a simulton of this category
there are more possibilities of forming different simulton with two peaks can be identified a$2).
paths. Based on the above knowledge of this case, each simulton
The acceleration field shown in Fig. 5 reveals three uncan be solved numerically by using a modified shooting
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FIG. 6. Simultons associated wittD,0) for case(-,+). (a)
Phase-space projections of? (solid line), v® (dashed ling
v{¥ (dash-dotted ling and v(® (dotted ling; (b) simulton time
evolutions ofv{* (dash-dotted lineandv{> (dotted ling; (c) si-
multon time evolutions ob$? (dash-dotted lineandv$> (dotted
line).

method. Wherp=2, there is a type-2 path, &2 solution.
This solution, first found analytically by Werner and Drum-
mond|[5], takes the form

v1=t6\/§seci(lr)tanr(r), (419

v,=6sech(7). (41b)

Solution v(® is obtained wherp~1.03. Other simultons
with more peaks are found at smaller valuegpof
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FIG. 7. Acceleration field for case(,+) atp=1 including the
boundary(heavy ling at E=— p/2 (the boundarw,=v2/p—1 is
labeled with 2 and the boundamy=1 is labeled with ], and the
phase-space projection of a fundamental type-1 simulton solution
(light solid line) and a fundamental type-3 simulton solutigight
dotted ling.

Numerically generated paths of these simultons at
n=2,3,4, and 5 are shown in Fig(#. Some typical simul-
ton profiles are shown in Fig.(& and Fig. @b).

2. Simultons associated with pointst(2p)¥2 1)

Simultons associated with pointst(\/Z,l) will appear
with a bright cw background because of the nonzero values
of these two points. Therefore these solutions must satisfy
the modulational stability conditions published in our previ-
ous paperf38]. One of the necessary stability conditions is
p=<2 for this case. Within such a range, the eigenvalues
around these two points always take complex values, and
hence the topological structure of the acceleration field is
invariant for p<2. Although all accelerations point toward
these two points, they are unstable critical points. As we
proved previously, unstable paths exist with spiral structures
even for inward-spiraling acceleration fields. The actual si-
multons hence would appear with oscillating tails. From the
acceleration field, we can see that both type-1 and type-3
paths are possible. Type-2 paths may be possible. However,
no type-2 paths were found during numerical scanning
within possible ranges. Again, due to the symmetry of the
acceleration field, higher-order type-1 and type-3 paths exist.
Similar approaches to the previous cases are adopted for
finding these simultons. A type-1 path connecting these two
spiral points is symmetric about the vertical axig=0.
Therefore there must be a point along the axis at which
v,=0. The position of the point can be then found numeri-
cally by trial and error. Since there are an infinite number of
paths connecting these two points, we can always find such
simulton solutions for any value gf<2. Note that the par-
ticle can cross the axis;=0 as many times as possible;
points with v,=0 can also be found at higher values of
v,, which correspond to different higher-order simulton so-
lutions. Using the shooting technique, we then can generate a
whole family of higher-order type-1 simultons.

A type-3 path always has a turning point at which
v;=0. Such a point must be along the boundary
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FIG. 9. Three simple higher-order simultons associated with
(=(2p)*21) for caset-,+) at p=1. Solution 1lahsolid line); so-
lution 1bh(dashed ling solution 3ah(dotted ling. (a) Fundamental
phase-space projectiofthe inset is a close-up of phase projections
nearv,=0); (b) simulton time evolutions of;; (¢) simulton time
evolutions ofv, (note that solutions 1ah and 3ah ovejlap

FIG. 8. Fundamental simultons associated with(2p)*/2 1) for
case(-,+) at p=1. Solution la(dashed ling solution 1b(solid
line); solution 3a(dash-dot ling solution 3b(dotted ling; solution
3c (dash-dot-dot-dot line (@) Fundamental phase-space projec-
tions; (b) simulton time evolutions of ;; (c) simulton time evolu-
tions ofv, (note that solutions 1a and 3a oveplap

2
0222 -1, (4239  its mass is negative along one spatial direction. Meeting with
p these two boundaries, the particle will either return or go
v,=1. (42p)  over with nonzero speed. Higher-order type-3 simultons can
therefore occur.
The boundary Eq(42b) is marked with a “1” and the Because of the novel feature of the particle, and the pres-

boundary Eq(42g is marked with a “2” in Fig. 7. For a ence of these two boundaries, a rich family of simulton so-
classical particle, these boundaries act as potential barriers. laitions exists. A particle that starts from one of these critical
classical particle cannot go across these boundaries. Hoypoints can cross the two boundar@sreturn to the starting

ever, a particle in this case has the interesting property thgioint or approach the other point. In short, any combination
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FIG. 10. Acceleration field for case(,—) at p=2 together
with the boundary (heavy ling at E=—p/2 (the boundary
v,= 1—v§/p is labeled with 2 and the boundasy= —1 is labeled
with 1), and a fundamental type-1 solutidlight line).

of these two boundaries with these two critical points would
produce a simulton solution.

Some examples of the simplest fundamental and higher-
order paths of both type 1 and type 3@t 1 are shown in
Fig. 8@ and Fig. 9a). Path 1b connects these two critical
points directly. It represents the simplest type-1 solution for
this case. Path 1bh is a higher-order type-1 path than path 1b.
Path la is also a type-1 path but with the particle being
reflected back from boundary 2. Note that the particle can be
reflected between boundary 1 and 2 more than once, forming O T T T T
higher-order paths. Path 1ah is a higher-order path than path
la. Path 3a is the simplest type-3 path connecting boundary
2. This path does not cross the axis=0, so the resulting
simulton only has one peak. Path 3ah is a higher-order type-3
path reflected by both boundaries 1 and 2. Path 3c is the
simplest type-3 path connecting one of the critical points and
boundary 1. Path 3b is the second simplest path similar to
path 3a. There are more complicated higher-order simultons
for each fundamental simulton. Here, we only show the sim-
plest for the sake of simplicity.

D. cas€—,—) L L L L L

The acceleration field is shown in Fig. 10. It has a saddle () T
point at (0,0) with one stable path and one unstable path _ ,
leading to (0x). There are no opposite accelerations, F'G-11. Fundamental simultons of case(-) atp=2, includ-
pointing back to (0,0) along the unstable path. Obviously, nd"9 (1) type-1 splutlon connecting both critical pow_(lsohd line),
simulton solutions are possible if a virtual particle starts from(z) type-3 S(.)lunon connecting boundary(maShgd ling; and (3)
(0,0). Point (0,0) is always a saddle point, as eigenvaluet pe-3 SOl.u“o.n connecting boundary (@otted ling. () Pha}se_.
around this point take different signs for any valuepof bace p_rOJectuorlghe.mset > a Close-_Up of pha_se-spacg projections

Hence, only simultons associated with the other two unso! point(2p)” %.1); (b) simulton time evolutions oby; (¢} si

’ multon time evolutions ob .

stable critical points at=\2p,—1) can exist. Due to the
nonzero values of these two points, these simultons will alséve. The spiral structures disappear. However, these two
appear with cw br|ght backgrounds_ One of the necessarpomts a}re still unstable. Simulton solutions still exist except
modulational stability conditions for simultons associatedtheir tails no longer oscillate, as observed by Buryak and
with (+2p,— 1) is p=2 for this casd38,15. This condi- Kivshar[15]. - .
tion has been confirmed by Buryak and Kivshar’s numerical The system again Is not a normal Hamlltqnlan system as
simulationg 15]. Under this condition, we find that eigenval- s, is negative. Therefore these two boundaries,
ues are all complex fop<<8. Hence the acceleration field v%
appear with spiral accelerations around these two points. vp=1-—, (439
Their corresponding simultons therefore have oscillation P
tails. Whenp>8, these eigenvalues become real and posi- v,=—1, (43b
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FIG. 12. Higher-order simultons of case(—). (a) Phase-space projections of simult@h), a type-1 solution reflected twice by
boundary 2;(b) phase-space projections of simult(®), a type-1 solution reflected twice by boundar(the inset shows a close-up of
phase-space projections near pdiftp)*? —1)); (c) phase-space projections of simult®, a type-3 solution reflected by both boundary
1 and 2(the inset shows a close-up of phase-space projections near(pdi#p)*?, —1)); (d) phase-space projections of simulteh, a
type-3 solution reflected three times by boundarye? higher-order simulton time evolutions of simult¢h; (f) higher-order simulton time
evolutions of simultor(2); (g) higher-order simulton time evolutions of simult@®); (h) higher-order simulton time evolutions of simulton
(4) (vq, solid line;v,, dotted line.

given by substituting);=v,=0 into the Hamiltonian, can 1. Fundamental simultons
be crossed by a virtual particle. The boundary Etgb) is
marked with a “1” and the boundary Edq43a is marked Similarly to the previous case, a particle that starts from

with a “2” in Fig. 10. one of these two points will take a spiral path with the same
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FIG. 12 (Continued.

helicity as the acceleration field around the poinp#8. V. SIMULTON SOLUTIONS TO SPATIAL EQUATIONS
Without losing generality, we may analyze a particle that
starts from point ¢ 2p,—1). After leaving this point, the _ )
particle can go upward and cross the boundary given by Eq. '€ spatial equations have the same forms as temporal
(433, or go downward and cross the boundary given by Eq_equatlons. They can be written 5 13]:
(43b). However, there are no opposite accelerations along vy oy

these two boundaries whan <0. Type-3 paths hence are ia_§+ W-I—vaz—vl:O, (443
impossible within the area;<0. Since there are an infinite

number of unstable paths connected to pointy@p,— 1), 5

we can always find paths leading to the avgze 0. Once a iU%JF MJF 102~ pv,=0, (44D
particle crosses over;=0, it then can form two different gg  or

type-3 paths(1) associated with the boundary 2, E¢33),

and (2) associated with boundary 1, E@3b). The particle ~Whereo=kz/ky, p=(28+ 6k)o/B, and = pBz. Here, k,

can also approach the other poin{2p,—1), forming a andk, are wave numbers a!ong tredirection, ok is the
type-1 path. Numerical solutions are shown in Fig. 11. Thes ave-vector m!smatch, and is a measure of the ef_fef:twe
simultons were known known previous{5]. These three Inear phase mismatch between both waves. In realistic cases

types of simulton form a family of fundamental solutions. o~2[17] . . . .
As p>0, the solutions to spatial equations simply are so-

lutions of casef, +).

A. One-dimensional simultons

2. Higher-order simultons

. . o B. ial simul in higher di i
Similarly to the previous case, combinations among these Spatia ?Imuwns 'r_] '9 er dimensions _
boundaries and critical points result in higher order type-1 Based on previous publicationgl7,40,23, the basic
and type-3 simultons. Some simple higher-order simultongduations written im+ 1 dimensionsn=2,3, can be written

are the following. as:
(1) Simulton (1), shown in Fig. 12a), is a type-1 path Py

connecting the two critical points and the boundary 2, Eqg. iﬁ—1+V2U1—U1+ viv,=0, (459

(433 z

(2) Simulton (2), shown in Fig. 1%b), is a type-1 path
connecting the two critical points with the boundary 1, Eq.
(43b).

(3) Simulton (3), shown in Fig. 1%), is a type-3 path
connecting one of the two critical points with both the where p and o have the same definition as for the one-
boundaries 1 and 2. dimensional equations.

(4) Simulton (4), shown in Fig. 1), is a type-3 path One seeks radially symmetric solutions to the above equa-
connecting one of the two critical points with the boundary 2tions. Substituting the ansatz
only. Obviously, a similar type-3 path connecting one of the
two critical points with the boundary 1 only also exists. vi=vi(r), =12, (46)

The corresponding simulton time-evolutions are shown in
Figs. 12e)-12h). into the above equations gives

Jv
ia’a—zz-l-Vzvz—pvﬁ—%vi:O, (45D)
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FIG. 13. Higher-dimensional spatial simultons where0.3 (solid line), 0.5 (dashed ling 1.0 (dash-dotted ling and 3.0(dotted ling.
(a) Phase-space projections f@+1)-dimensional spatial simultongb) phase-space projections f(8+1)-dimensional spatial simultons;
(c) fundamental2+1)-dimensional spatial simulton radial dependence gf (d) fundamental2+1)-dimensional spatial simulton radial
dependence af ,; (e) fundamental3+1)-dimensional spatial simulton radial dependence ©f(f) fundamental3+1)-dimensional spatial
simulton radial dependence of.
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v, % n—1) dv © T T
ié,—zl—Fa?l-‘r(r—)d—rl—l)l‘thvzzo, (473
v, % n—1) dv ©@r T
iaé)—j—i—wg—}—( ; )d—rz—pvz-i-%v%:O. (47b
Compared with the equations of casg(), the above S ]
equations take the same forms except with two extra “fric-
tional terms”[41], [(n—1)/r](dv,/dr). Obviously, spatial
simulton solutions must satisfy the following boundary con- T i
ditions:
dUi . o 1
Wzo atr=0, i=1,2. (48 5 10
(a) V1
This condition is necessary so that these two “frictional =) , , : :

terms” do not become singular at=0. Following the argu-
ments for the existing of simulton solutions of case-),
one can easily prove that there exists a family of simulton

solutions for arbitrary values op. These solutions were

found recently by many peoplg3,17,43 and were ob- ©
served by Torruellat al. [43] experimentally. Compared
with the simultons of case(,+), these spatial simultons
usually have higher amplitudes in order to compensate for
the energy loss of the virtual particle due to the presence of
“friction.” The path also becomes a straight line at=1.
Approximate solutions were found by Hayata and Koshiba -
[40] for n-dimensional wave equations, although the case of : . . :
n>3 appears to be inapplicable to optical systems. The cor- (b) r
responding exact numerical result for fundamental simultons
is given below. Paths for different values pfare shown in
Fig. 13a) and Fig. 18b). These paths also bend slightly
upward forp<<O and bend slightly downward fgr>0. The © | .
topological structure in this case is nearly identical to that in k
the one-dimensional case(+), previously discussed. We ©
therefore conclude that there also exists a new family of
higher-order spatial simultons corresponding to the odd-
number-peak simultons previously studied in casgef).

Due to the boundary condition E¢48), the even-number-
peak simultons in case{(,+) have no correspondence in the
spatial case. Paths of these higher-order spatial simultons are
shown in Fig. 14a). Their profiles are shown in Fig. 1)

and Fig. 14c). The numerical method involved in finding
these spatial simultons is a combination of the standard
shooting method and a routine of searching for the correct
initial energy. These solutions can be thought of as behaving
like classical “excited states” or ‘“resonances,” although
they are probably not stable.

10

Vo

10
(¢} r

FIG. 14. Higher-order(2+1)-dimensional(solid line) and (3
1)-dimensional spatial(dotted ling simultons atp=0.5. (a)
Phase-space projectioth) v,; (c) v,.

plied to other, similar, vector systems.
V. CONCLUSIONS We have confirmed that the system is a one-parameter
system by transforming the basic equation into eight sets of
The basic equations which describe th€) cascaded one-parameter equations. The number of possible cases has
nonlinearity in the presence of dispersion or diffraction havethen been reduced to four based on topological arguments.
remained unsolved for almost 20 years. Previous methods dseneral numerical solutions are then found by studying the
obtaining solitary solutions were unable to to find all pos-corresponding acceleration fields, and integrating the rel-
sible solutions. In this paper, instead of using complex mathevant equations
ematical analysis, we have used simple topological argu- In case(+,+), general solutions for arbitrary values of
ments combined with numerical integration to prove thep have been found. The previous known analytical solution
existence of simulton solutions. Compared with traditionalfor this case is a special case wjik 1 (known as the phase-
methods, such as inverse scattering or inserting an ansatnatching conditionof the general solutions. This is encour-
this method has been proved to be a much more efficieraging for experiments, as the strict phase-matching condition
technique of finding solutions. This method may also be apno longer necessarily has to be satisfied and only low power
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is required. These solutions were also found numerically byogical simultons with many varieties exist for continuous
Buryak and Kivshaf11,18 and Torneret al. [13,12, thus  values of O<p=2. Higher-order simultons also exist for
verifying our numerical algorithm. It is interesting to note each type of simulton. Numerical investigation of the stabili-
that higher-order simultons with multiple peaks exist whenties of these simultons is currently being carried out. All
p<1. general solutions of this case were unknown before.

Simultons exist only for discrete values of in case For case{-,—), both topological and nontopological si-
(+,—). One analytical simulton known previously corre- multons exist for arbitrary values gf>2 because of the
sponds to a special casges=1. The whole family of simul- modulational stability condition. Similarly to the previous
tons in this case is known to be unstable due to the modulazase, higher-order simultons exist for each type of simulton.
tional instability resulting from their cw backgroun{i3s]. Solutions of this case were known previoufhb,16.

The case(-,+) has a rich family of simulton solutions Finally, we briefly discuss spatial equations with the to-
because of the novel features provided by the system. Theological method that we have developed. General spatial
virtual particle with negative mass along one spatial direcssimultons for higher-dimensional systems exist. The funda-
tion can cross a potential boundary. This behavior is differ-mental solutions in two dimensions have been experimen-
ent from that of a classical particle with positive mass inde-ally observed alreadj43]. We also find an additional fam-
pendent of spatial direction. It hence introduces complexityily of higher-order spatial simultons.
but also interesting features to the system. All solutions are In conclusion, these simulton solutions have revealed
generally classified into two categories according to the critisome interesting properties of this dynamical system de-
cal point with which they associate. Simultons associatedgcribed by coupled nonlinear partial differential equations.
with point (0,0) are found only for discrete values@fWe  While the simultons themselves may have potential applica-
again find that a previous known analytical simulton corre-tions in communications and optical logic gates, they also
sponds to a special case @t 2. Associated with the other pose fundamental challenges for the better understanding of
two spiral critical points, general topological and nontopo-vector nonlinear wave equations.
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