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Nonsmoothness, indeterminacy, and friction in two-dimensional arrays of rigid particles
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An algorithm is proposed to simulate regular arrays of perfectly rigid particles with exact Coulomb’s law of
friction. Relying on this approach, we explore the problems of indeterminacy and dissipation in granular
systems. When driven by a basal plane moving at a constant acceleration, a “steady state” is achieved where
contact forces and angular accelerations of all particles stay constant in time. This state shows a well-defined
organization of particle rotations and contact forces. When the driving speed is kept constant, the dissipation
rate decreases dynamically to reach its minimum in the steady state. The global frictional behavior of the
system can be described in terms of an effective coefficient of friction and an effective inertia.
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[. INTRODUCTION explicitly analyzed, regular arrays of particles should be ex-
amined in the first place. Such studies can provide insight
Contact forces in dry granular systems imply two com-into the behavior of disordered granular systems. In this pa-
mon basic features: steric exclusion and frictional couplingsper, we consider regular arrays of rigid disks confined by two
Steric exclusion means that particles cannot interpenetratfiat walls and a basal plane moving with a constant horizon-
The process of gain and loss of contacts in the medium anthl velocity or acceleration. It is important to emphasize the
the possibility of lasting contacts to be sliding or nonsliding, point that, unlike lattice models, a regular array of rigid disks
are highly nonlinear interactions which directly influence thehas no fixed underlying network. Thus starting from a regu-
macroscopic mechanical behavior of the sysfém5|. lar geometry the particles can move and the system may
In the case ofperfectly rigid particles withCoulombian evolve to a disordered configuration. Nonetheless, geometri-
friction law, these nonlinearities take a “nonsmooth” form cal order can still be preserved for some regions in the space
[6—8]. This means, the contact force and the relative disof mechanical parameters. In our model, the relevant param-
placement at a contact between two particles belong to aters are driving acceleration and confining presdtine
continuous set of acceptable values which can not be reprgressure applied on the uppermost layer of particlesthis
sented as a function of any of the two variabJ8% Thus, investigation, where the confining pressure is set to zero, we
while for elastic contacts the interparticle force at each conhave kept driving accelerations low enough to avoid particle
tact is given locally as a function of the relative displace-displacements. Hence the internal degrees of freedom are
ment, the actual values of contact forces in nonsmooth correduced to particle rotations. As we shall see below, even
ditions are determined only when all kinematic constraints inthough the particles stay in permaney@ometricalcontact
the whole system are explicitly taken into account. with each other, not all such contacts are force transmitting.
The analytical study of the effects of these nonlinear andMoreover, during the evolution of the system some nontrans-
nonsmooth interactions on the global behavior of granulamitting contacts may turn transmitting and vice versa.
systems in deformation is complexified furthermore by two We have set up an original algorithm to simulate this
specific features of these systengpological disorderand  system under nonsmooth conditions. The contact laws and
particle rotations As a result of topological disorder, a par- their implementation in the program are discussed in Sec. Il.
ticle can have contacts oriented in any direction, and thé his algorithm provides a vectorial representation of “con-
positions and orientations of contacts are not correlated. Otact states.” Each contact in the medium is force transmitting
the other hand, rotations of particles and the possibility of theor nontransmitting, sliding or nonsliding. In the most general
friction force to be more or less “mobilized{(i.e., accepts case, the system of equations has a unique solution for the
values up to a certain limit where it is “fully mobilized” contact states, determined at the same time as the contact
allow for rolling and thus low-dissipative deformation modesforces and the angular accelerations of particles. However, in
for the system. These aspects are absent from the standadme conditions in statics or in dynamics, the system of
continuum theory and motivate much of the recent interest irequations becomes indeterminate. In contrast with other
the discrete approach to the mechanics of granular systensimulation methods of granular systems, this algorithm al-
[1,10-14. lows for a quantitative study of this property, to which Sec.
The complexity resulting from geometrical disorder sug-Ill is devoted.
gests that, if the influence of nonlinear interactions is to be Our simulations show that the system achieves a “steady
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solid box we would solve the two equations to getas a
function of the driving force and the coefficient of friction.
However, in the case of a box filled with particles, the inter-
face between the box and the plane is an array of particles.
Some contacts with the plane can be “nonsliditigéreatfter,
NS) and the movement of the plane induces rotations or
displacements of the particles in the box, resulting in a bulk
dissipation. In these conditions, although E21) still holds
for the center of mass of the system, it is @opriori clear
how the global friction force is related to the particle-plane
coefficient of friction and other parameters of the system.
Moreover, in the most general casg, should depend on the
acceleration as well, in which case the inertia of the system
could be different from the mass of the system as soon as this
dependence is taken into the equation of dynamics. Through
this model, we address in fact the central problem raised
about granular materials: In what respect are granular sys-
tems different from solids? What are the mechanisms that
FIG. 1. A schematic representation of the model. The plane is ifelate the global frictionfand dissipationto the friction at
contact with the first layer of particles. The distance between théndividual contacts?
two rigid walls is fixed. The key to the analysis is in the organization of the rota-
tions of particles in the system. We consider here the simple
state,” which means that the angulaccelerationsof all  situation of regular arrays of particles, where rotation pat-
particles stay constant in time. In this state, rotation modegerns are easier to recognize. Since NS contacts occur very
give rise to well-defined patterns in the medium. The steadyrequently in the system, it is important to incorporate the
state and the evolution of the system in terms of the globafriction law as accurately as possible. We will consider the
friction on the basal plane and dissipation rate are studied iBxactCoulomb’s law of friction, which is generally regular-
Sec. IV. Some results can be immediately generalized to diszed in other simulation methods. Moreover, since steric ex-
ordered systems. Emphasis is put on “effective inertia” andclusion seems to dominate the behavior of granular materials
the influence of particle rotations on dissipation. A summaryin most realistic situation$1—-3], we will implement per-

of the most important results is presented in Sec. V. fectly rigid particles. The mechanical parameters are the
particle-particle, particle-plane, and particle-wall coefficients
Il. THE MODEL AND GOVERNING EQUATIONS of friction and the applied forc&l on the box or the accel-

erationy of the center of mass. All units can be normalized
A. The model with respect to the natural quantities of the system. These are
Let us consider a regular array of equal-size disks conthe weight and diameter of one particle and the acceleration
fined by two vertical flat “walls” and a plane moving hori- of gravity.
zontally. Figure 1 shows this geometry with a triangular ar-
rangement of particles. We assume that the particles, the
walls, and the plane aggerfectly rigid The distance between
the two walls is a fixed geometrical parameter which defines Let p be the number of particles arw the number of
the width of the “box.” The plane exerts forces on the par- contacts. In two dimensions we have Bormal and friction
ticles directly in contact with it. The sum of these friction forces to be determined, as well ap accelerationgcorre-
forces is the “global friction force,”F of the plane on the sponding to 2 linear degrees of freedom and 1 angular
system. The box, with particles in it, can be considered as &lence the total number of unknowns ip382c. On the
single object moving on the plane. L&t be a horizontal other hand, the number of equations of dynamicspis Bhus
driving force applied on the box. The equation of motion for 2c more equations are needed in order to solve the problem.

B. Contact laws

the center of mass of the whole system is written as These equations are given by the interaction laws and, typi-
cally, we should have two equations for each contact. For the
N—Fy=mgy, (2.))  nonsmooth problem we consider in this paper, these laws are

) . Signorini’s condition and Coulomb’s friction law, as de-
wherem, is the total mass of the system anpds the hori- ¢ riped below.

zontal acceleration of the center of mass. If the box were a
solid closed objectwith no particles in it and with a closed 1. Signorini’s condition
bottom), then this equation could be ideally supplemented by

the friction law for the sliding contact between the box and SiNceé we consider perfectly rigid particles, the normal
plane contact forces are not given by local elastic displacements.

The contact law is then reduced topare “unilaterality”
Fg=tgMgg, (2.2 condition shown by a graph on Fig(&. This graph, known

as “Signorini's condition” in the context of nonsmooth me-
whereg is the acceleration of gravity and, is the coeffi-  chanics, expresses simply that a contact force can be nonzero
cient of friction between the solid and the plane. Thus for aonly if there is a geometrical contact and it can have arbi-
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The highly constraining nature of Signorini’'s condition
Rij (a) appears only wheq a dynemic system of particles is coneid—
ered, i.e., when either discontinuous changes of velocities
take place due to collisions or stable contacts tend to become
dij unstable due to a nonzero relative normal acceleration. The
regular systems we consider in this paper involve no colli-
sions and all contacts are stable. Let us distinguish contacts
where the relative normal acceleratiﬁﬁ'i'l} is zero from the
other contacts. Then, we can immediately write Signorini’'s
condition for the relative normal accelerations

».'9{]=o and R;;=0
dij:03 “n (25)
9;;=0 and R;=0,

¢
¥y The difference between E¢R.4) and Eq.(2.5) is in the point
that the latter is a set of alternative equations fordizeamic
LR variablesR;; and ﬂi”j . These equations can be supplemented
i . .
to the equations of dynamics to solve for the forces and
accelerations. There are two alternatives:
(1) 9;=0 and R;=0: In this case, the equation
FIG. 2. The graphs ofa) Signorini’s condition(b) Coulomb’s 15‘“ 0 is supplemented to the equations of dynamics, from
law of friction. R;; andS; are, respectively, the normal and tangen- WhICh the value oR;; can be calculated. If this value satis-

tial components of the contact force between the partickesd j; fies the Correspondlng mequallfyj =0, then the solution is
d;; is the interstice and}IJ is the tangential relative velocityy is acceptable.
the coefficient of friction. (2) Rij=0 and {9” =0: In this case, the equation

=0 should be supplemented to the equations of dynam-
|cs from which the value of}“ is calculated. If the corre-
sponding mequallty‘}, =0is satlsfled the solution is accept-

trarily high values to satisfy the condition of nonlnterpen
etrability [6—8]. It is written as

dj=0=R;;=0 able. Otherwise, we should turn to the other alternative.
2.3 In this way, in dynamics the initial inequalities expressing
the conditions of unilateral contacts have been replaced by a
djj>0=R;;=0, set of alternative equatioribilateral conditions In the case

of regular systems, the two alternatives correspond to force-

where d;; is the distance between the borders of the tworransmitting(T) and nontransmittingNT) contacts, respec-
particlesi andj (the intersticg andR;; is the normal com- tjvely. This process of searching for the mechanically accept-
ponent of the contact force. able solution has to be applied simultaneously to all contacts

Signorini’s condition isnonsmoottin the sense that none in the system. As we shall see below, except for pathological
of the two variablesl andR is a function of the other one. configurations, the solution for normal forces, accelerations,
The normal force and the interstice belong to a continuougnd normal state€T or NT) of contacts is unique.
set of acceptable values. We may distinguish, however, be-
tween “stable” and “unstable” contacts. When at a given 2. Coulomb’s law of friction
instant of evolution of the system two particles keep touch-
ing each other, the contact is stable. In other words, for
stable contact not only the interstice, but also the relativ
normal velocity is zero. On the other hand, if the interstice i
zero but the relative normal velocity is positiyparticles

A friction law is a relation between the friction force and
he relative tangential velocity at the contact between two
articles. The graph of this relation for Coulomb’s law is

shown on Fig. th). In two dimensions, it is written as

going apart from each othetthen the contact is unstable and 9 =0=Sie[— R, uR:]
the reaction force is necessarily zero. In this way, Signorini's . ) e
condition takes the following form in terms of the interstice ﬁ-t->0=>Sn = —uRy, (2.6)

and the relative normal velocity:
t
L L= -
9;=0 andR;=0 Fj<0=5=uR;j,
¥9;=0 and R;=0, where 9;; is the relative tangential velocity at the contact
ij between the particles and j, and §; is the tangential
dj;j>0=R;;=0, component of the contact force. Here again, we have a non-
smooth condition and the two variablé% andS;; belong to
where 1‘}{‘] is the relative normal velocity between particles a continuous set of acceptable values. In static equilibrium,

i andj. where all relative velocities are zefon the vertical branch
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of Coulomb’s graph Coulomb’s law results indeed in an C. Governing equations
indeterminate state of forcésee Sec. Il). In the same way,

The algorithm we propose for the simulation of perfectl
for a given set of friction forces at the sliding limion the g Prop b y

, ; ) rigid particles with frictional couplings is directly inspired by
horizontal branches of Coulomb’s graphthe relative tan- o reformulation of contact laws in terms of alternative
gential velocities are not uniquely determined. equations. In order to solve the system, the alternative con-

This local indeterminacy is, however, removed as S00n aggrations are to be tested successively until the solution is
Coulomb’s law is associated with the equations of dynamicsg nq This has to be done simultaneously for all contacts.
There we have to distinguish the contacts where the relative \ye \write the equations of dynamics for a given set of

tangential velocityremainsequal to zero from those where .qniact states. Each contact is either sliding or nonsliding

this is not the case. In other words, there are contacts Wher(gls) force-transmitting or nontransmitting\T). For a NT
the relative tangential velocity is equal to zero and ContaCt%onté\ct (i), we simply write

where both the relative tangential velocity and acceleration

are equal to zero. Only the latter actually stays a nonsliding R;;=0. (2.9
(NS) contact. Thus at each NS contagt there are three
different alternatives: For a transmitting contact, the relative normal acceleration is

(1) ﬂ}j =0: In this case, the contact stays NS. The fric-set to zero. From the equations of dynamics, this implies the
tion force §; has to be in Coulomb's limits following equation for the forces acting on the two particles
[ —uRjj,«R;;]. Here we have an equation and an inequality.i andj in contact:

When the equatiorﬂitj =0 is supplemented to the equations

of dynamics, we get the value &; and we can check for iE R LSt

the inequality. If the inequality is satisfied as well, then wem, < (RikMik - Nij + Sictike- M)
have the solution. Otherwise, the force necessary to keep the

contact NS exceeds the highest possible value, i.e., the con- 1

tact starts to slide and we have to switch to one of the two - ﬁ;l: (Rjinj - nij + S5t - njj)
other alternatives.

(2) 9>0: Inthis case, the contact becomes sliding. So, ~_ (F™ F™ (1) Q2 2.9
we have to se§; = — uR;; following the sign convention of m; m i RN U .

Fig. 2(b). Here again we have an equation and an inequality.

We supplement the equations of dynamics by this equationyherem; andr; are the mass and radius of particjaespec-

from which we calculate?}; among others, and we check for tively, andF®™'is an external force applied on parti¢leThe

the inequality. If the inequality is not satisfied, then we turnjocal frame is represented by the two unitary vectgsand

to another alternative. t;; . The angular velocity of the contact nornaj; is zero for
3 19}J-<O: This is similar to the second case, the corre-a regular array. The two indicds and| represent the par-

sponding equation being; = «R;; . In this way, Coulomb’s ticles in contact with andj, respectively.

law in its most general formulation, takes the following If a contact is sliding, we have the equation

form:

Sj=—sgn 9 uR; . (2.10
"‘9}1 =0 and S; e[~ uRij,uR;] If it was NS but becomes sliding, the equation is similar
ﬁ}j=0:> '3%20 and Sij:_/LRij (2.7 't
,ﬁ;fjso and Sij:/'LRIJ! SiJ:_Sgr(ﬁ”)MRI] (211)
and when it stays NS, the relative tangential acceleration is
ﬁitj >0=S;=— uRy, zero and we get the following equation:

1
- RoNu- t:+S, -t
ﬁ}j<o:>SijZMRij- m;k: (Rikchik tl] Siktik t|])

1 r? i
We recall that in most numerical simulations of granular _HZ (RJI”JI'tij+SiItJI'tii)+T,zk: Sik+|__§|: Sj
systems ‘“regularized” forms of Signorini’s condition and ) ' '
Coulomb’s law are implemented. Thus, the vertical branches |:§-‘><t |:J.e><t
of the graphs are replaced by straight lines with finite slopes = —(WI - m, ) tj (212

which can either be adjusted in order to optimize computa-

tion or to model an elastic contact law. A “contact model It is interesting to separate the terms in E@9) and(2.12)

is, indeed, necessary when the phenomena of the Contafct . T L .
N X or which k=] andl=i, which leads to

scale(small time intervals and deformations as compared to

the sizes of particles and interstice and the characteristic time 1

of successive events in the mediyrsuch as the propagation ﬁlnj z(

R + N
of sound, are to be considered. m; m

-+ —|Rjj+A] (2.13
i i
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1 1 r? or?

qt _ j t
19”-— ﬁ_‘_mjdl—r_‘_ﬁ S]+A|J . (214} (a) Rij ///" Sij (b)
. ) . /// n —] :U'Rij ot
These are the equations of dynamics formulated in the local P L i
frame, whereA|] andA}j denote the contributions from other 7 e
contacts and external forces. Actually these terms are respon- _~~ _,_,_/——""“Rij

sible for the nonlocal character of the problem.
All together, Egs.(2.8) or (2.9 and (2.10, (2.11), or

(2.12 define a system of linear equations for the forggs (©) Sy Sy ()
andS; , written shortly as s Ryy "
- ] /J‘Rz] ot o = luRZ] ot
Mx=Db. (2.15 vy By
The vectorx consists of the unknown contact forces while HEy nly) -u, Ry
s £lgj

the matrix M contains mainly information on geometry
(angles between local frameand states of contacts. The
right hand sideb is built of the external and inertial forces. FIG. 3. (@) and(b). The equations of dynamidsf. Egs.(2.13

The angular accelerations of particles are computed fromnd (2.14] projected on the local frame, attached to a contact be-
contact forces for the set of contact states. However, thesgeen two particles, are shown @fashedl straight lines with posi-
forces and accelerations should fuffill the inequaliti@) tive finite slopes. These cut Coulomb’s and Signorini's graphs at a
and (2.7) set by contact laws. If this is not the case for all single point.(c) In static equilibrium, the slope is formally infinite
contacts, then a new set of contact states has to be tried. Thince d]; is kept zero and the intersection with the two graphs is
choice of the alternative set of states is guided naturally bynultiple valued.(d) When a friction law involving static and dy-
the states of those contacts where the inequalities are natmic thresholds is considered, the solution is no more unique.
satisfied. This process is iterated until the solution is found.

The evolution of a granular system in nonsmooth condi-cal constraints at the origin of indeterminacy and we discuss
tions is characterized by discontinuities in velocitidse to  possible solutions to the problem.
collisions or in accelerations and contact fordésie to Cou-
lombian friction. In regular systems only friction can induce
“jumps” of forces and accelerations whenever an “event”
occurs(vanishing of the relative tangential velocity on a con-  In dynamics, the local nonsmoothness in the friction law
tach. The event can be located on a single contact. Neverdoes not by itself result in indeterminacy. The general argu-
theless, it may cause some NS contacts to become sliding &tent in favor of uniqueness of the solution in a dynamic
some T contacts to change to N&nd vice verspat the same ~ System of particles is shown in Fig(l8. For each contact,
time. the friction force satisfies Coulomb’s graph. On the other

In the simulations we present in this article, the motion ishand, the equation of dynamics stated in the local frame
“smooth” between two successive events. The algorithmattached to a contact, turns out to be a straight line with a
determines the exact moment of each event. The new valudiite positive slopgcf. Egs.(2.13 and (2.14]. The inter-
of variables are calculated at this moment according to th&ection between this line and Coulomb’s graph is a single
iterative scheme of testing alternative equations. Then thgoint which gives a unique value for the friction force at that
system is evolved again. The convergence to the solutiogontact. In statics, the relative tangential acceleration is zero
takes place only in a few iterations, unless the system o@nd the straight line representing the equation of dynamics in
equations is indeterminate, in which case a particular soluthe local frame is simply a vertical line going through the
tion has to be found. origin. This line covers the whole vertical branch of Cou-
lomb’s graph and, thus, the friction force at the contact stays
indeterminatg Fig. 3(c)].

The same argument applies also to Signorini’s griasee

Indeterminacy of the state of forces arises in the analysifig. 3(@]. From this it becomes clear that uniqueness of the
of structures composed of rigid elements. It is shown that, irsolution is also due to the form of the basic Coulomb’s law.
many problems, the number of forces to be determined i§or instance, if besides the dynamic coefficient of friction a
greater that the number of equations of static equilibrium angtatic threshold is introduced into this graph, then there can
the constraints. Such indeterminacies are, however, removdi two solutions for each contact at the same time and the
by supplementing the equilibrium equations with additionalactual value of the friction force depends on the history of
equations pertaining to the displacements of the structurthe systenjFig. 3(d)].

[15]. In static equilibrium, we never have enough equations to
In this section, we study the indeterminacy arising insolve the system of equations. leandp be the number of
regular arrays of rigid particles. We begin with a generalcontacts and the number of particles in a granular system,

introduction to the problem. Then, we show how the techrespectively. There arec2forces to be determinetthe ac-
nigues of “singular value decomposition” can be used in ourcelerations are set to zgraBut we have p equations of
simulations to determine the degree of indeterminacy and thequilibrium. Since in a disordered medium the mean number
contacts contributing to it. Finally, we identify the geometri- of contacts is about two times that of partic[d$], the total

A. Uniqueness and indeterminacy

IIl. INDETERMINATE STATES
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FIG. 4. Four different solutions for the normal
contact forces in a triangular assembly. The
(©) widths of intercenter segments are proportional to
the corresponding contact forces. Particles have
different angular velocitiegpositive and nega-
tive). They are kept the same in the four configu-
rations.
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number of forces to be determined ip.4in this way, there singularity, otherwise the states of some contacts can be

are p undetermined forces in the system. In other words, inchanged in order to set up a new contact matrix. Figure 4

static equilibrium, half of the friction forces are undeter- shows four different solutions of forces for the same system

mined. with the same boundary conditions. In this example, the tan-
We note that this is ®dulk indeterminacyfor the degree gential contact states are set to be sliding at all contacts and

of indeterminacy is of the same order of magnitude as thenly normal contact states change.

size of the system. One important implication of this situa- We have used the “singular value decompositiqg®VD)

tion is that the indeterminacy cannot be removed just byto study the singularities of the contact mafrix’]. Based on

controlling forces on the boundary, whose contribution to thea general theorem of linear algebra, SVD allows to decom-

total indeterminacy is only proportional to the total surfacepose the matriM as follows:

of the boundary in terms of the number of particles. It is then )

an interesting and highly nontrivial question to know how M=U-[diagw;)]- V', 3.1

the friction forces are distributed inside a disordered granular

system, in particular in the limit of macroscopic “failure. whereU andV are two orthogonal matrices and the elements

w;; (the singular valugsare positive or zero. The columns

i of U such thatw;;#0 form an orthonormal set of basis
The contact matriM, introduced in Sec. Il, contains all vectors that span the range of the matvix The columng

the information about the states and orientations of contact®f V such thaw;; =0 form an orthonormal basis for the null

If this matrix is singular, then the system of equations isspace.

indeterminate and the dimension of the null space gives the What is the connection between the basis of the null

degree of singularity. One solution, among an infinite num-space, obtained explicitly from the SVD, and contact states?

ber of solutions, can be singled out by setting mechanicalljEach linea of the contact matrix corresponds to an equation

acceptable values of as many contact forces as the degreeiofplying the contact labeled. Let {€"} be the unitary or-

B. Singular value decomposition
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pendently of other particles, we can conclude that the degree
of singularity resulting from these geometrical constraints in
@¢© the bulk is one per particle. This is in agreement with Eq.
@@ (3.3 obtained from our simulations. Moreover, in our vecto-
rial representation of the states of contacts through the con-
&) b tact matrix, to each group of 12 contacts defined by one
(b) particle and its six neighbors corresponds one basis vector of
the null space. For particles in contact with the rigid walls of
(c) the frame, an analogous study yields the corresponding con-
tribution to the total singularity. This contribution is only

proportional to the total surface of the boundary.
m In the rectangular assembly, according to E13), there
(d)

(a)

is one degree of singularity per row. In fact, each row is
(e) limited by two rigid walls[Fig. 5d)]. Given the distance
between the two walls, which is an integer multiple of one
. . I . . particle diameter, existence and the exact position of one
FIG. 5. leferent bas_lc structures contributing to the mdeterml-con,[act can be predicted from the positions of all the other
nacy of solutions resulting from the normal contact stdgsand . L . .
(d) or from the tangential contact statéb), (c), and(e)]. cpntacts |n.each row. This S|tuat|qn results in one degree of
singularity in the system of equations for each row. Hence
the set of lateral contacts in each row represents a basis vec-
tor of the null space. This configuration of particles forming
a row in contact with the two walls exists also in the trian-
gular arrangement and contributes to the total singularity.
Another source of singularities of the contact matrix is the
@ B configuration of tangential contact states. In this case, only
e v=0 forall B, 32 nonsliding(NS) contacts can result in redundancy. For slid-

where{V#} is a basis of the null space. To each basis vectol"d contacts the contact equation is local, that is the friction

of the null space corresponds a group of contacts contribufOrce is given as a function of the normal force at the same
ing by one degree to the total degeneracy of equations. ~ contact, so that it cannot be a linear combination of equations

Let us first consider the normal contact state, which set§Ssociated with other contacts. Hence the maximum degree
the state of a given contact to be T or NT. The singularities®f Singularity happens when a maximum number of contacts
can arise only from transmitting contacts. Indeed, from theéd’® NS. This is particularly the case when the rotation ve-
point of view of equations a NT contact does not “exist,” Iocme; of.aII particles are zero. Then the degree of degen-
since for such a contact the two components of the conta@racy is given by
force are both zero. On the other hand, the maximum number
of singularities can occur in a system whose contacts are all

thonormal basis. 18" is orthogonal to the null space, then
the contacte does not contribute to the singularity of the
matrix M. In other words, the condition for a contagtnot
to contribute to the singularity is written as

2L,Ly—2L,—L,+2 triangular

transmitting. We have studied the number of singularities v LiLy+Ly rectangular. 349
due to the normal contact state in triangular and rectangular
arrays. The number of singularities is given by Geometrically, each loop of a minimal number of particles

) contributes by one degree to the total degeneracy. The basic
_JLxby—2Ly+2  triangular 39  configuration for the rectangular lattice is a loop of four par-
n— Ly rectangular, 33 ticles shown in Fig. &). If three of the contacts are NS, then
the fourth contact is necessarily NS. Since each particle is
wherel, is the number of rows andl, is the number of common to four loops of four particles, the degree of singu-
particles in a row(in the triangular cask, is the number of larity is one per particle for the rectangular array. This is in
particles in rows which are in contact with the two walls of agreement with Eq(3.4), where the bulk term is almost
the frame. equal to the number of particles. In the case of triangular
We note that in the triangular assembly, the degree ohrrays, the same argument applies for a loop of three par-
singularity has a bulk term which is of the same order ofticles[where rotation is generically frustrated, cf. Figch.
magnitude as the number of particles in the system. This is Blere six loops belong to each particle, while each loop in
specific feature of the triangular arrangement. Indeed, let uirn is shared by three particles. This results in two degrees
consider the six neighboring particles of a given particle inof singularity per particle in agreement with E§.4).
the medium. These particles form a regular hexagon around For the tangential contact state too, the contacts with the
the central particléFig. 5a)]. Each particle of this hexagon boundary may contribute to the total singularity. Figure 6
has one contact with the central particle and two contactshows the initial angular velocities of an array of seven par-
with its lateral neighbors. However there is one degree oficles on a flat plane. The angular velocities are also shown at
redundancy in the preceding statement. Because, given abme stage of evolution of the system, where the system of
contacts of the particles in the hexagon with the central parequations is indeterminate due to the rotation mode of par-
ticle and five lateral contacts, the existence and position oficles. Indeed, some particles are rotating alternatively in two
the last lateral contact can be geometrically predicted. Sincepposite directions. Those rotating in the positive direction
this argument applies to each particle in the medium indefthe same direction as the linear motion of the partjctee
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than the maximum degree of indeterminacy. Depending on

04 ‘ ‘ the angular velocities of particles, still more contacts could
IS o a initial be NT in this configuration.

03 e o ——e final ] As emphasized above, in nonsmooth conditions, an ac-
| ceptable solution implies all kinematic constraints in the

02 | \\ ] whole assembly to be taken into account. A practical conse-
.8 \ quence of this property is that the preparation of a pile is
0.1 & \\ ] always a collective operation even when a step-by-step pro-

| /ﬂ\\ /’\\ cedure is used. Starting with one grain and adding grains one

00 //\\/‘\\(/ N //i/‘\l\\ | by one according to a \_Nell-defined p(ocedure, dqes not nec-

’ ki | / Thaee A N e§§ar|ly lead to a_packlng of _the desweq properties. The ad-
' } dition of each grain can modify the configuration or contact

—0.1 0 2 4 6 states obtained in the preceding steps. This is more particu-

larly the case at macroscopic instability thresholds, where
big events can be triggered by the addition of one grain. This
nonlocality is manifest in two characteristics of the distribu-
FIG. 6. Rotation velocities of seven particles moving on a planetjon of forces inside a granular medium: strong-force paths
The initial random distribution of velocities evolves to a particular and arching. Both of these phenomena can be observed in
indeterminate mode. All quantities are normalized with respect tq=jg. 4 obtained fromrandomdistributions of normal contact
the weight and radius of one particle and the acceleration of gravitygtates. Along such structures, a small modification of the
The particle-particle and particle-plane coefficients of friction aregiate of one contact can result in long-range reorganization of
both 0.3. contact states.
. . L The geometrical property at the origin of bulk indetermi-
ﬁ,lgocr:rl,ltlggtsn\,tniﬁ lzp:.szgﬁnrr}gdgiég“gi da;?gpatomgurnacy du_e to normal contact states _is irrelevant to real granu-
- S . .lar media, where particles have different shapes and sizes.
origin of indeterminacy of the system, although the system Srhis seems to be usually true for tangential contact states
not in static equilibrium. This particular mode happenstoo For example, a loop containing an even number of NS,
V\{henevgr the plane-particle coefficient of friction is suffi- coﬁtacts implies I”IO redundant information. Indeed, since the
C|e|rt1t:3s/ rr:?pho.rtant here to emphasize the point that Ex4) sizes of particles_ are different and they can move, th_e fact
. that all contacts in the loop are NS provides the new infor-

gives the maximum numb_er of s_mgul_arltles In statics. In dy'mation that at least two particles are moving. However, the
namics, the number of singularities is always smaller. The

I S indeterminacy due to tangential contact states is still relevant
loop of four contacts remains in any case the basic indepe

dent representation of the basis vectors of the null space. To_disordered granular systems in static equilibrium and

. ) Lo probably, for some configurations, in dynamics. This is the
B o Ug st mportan singulty and, a5 mentoned i Sec. 1 A
. guiarity y q P concerns half of the contacts inside the medium in static
a particular basis of the null space. Other more comple>é o
. . uilibrium.
structures can be chosen instead. In other words, the basis of
the null space can be set up differently. Each basis singles

out a different set of contact configurations. IV. EVOLUTION OF CONTACT STATES

The evolution of a granular system in nonsmooth condi-
C. Particular solutions tions is essentially that of contact states. Contact forces, an-
In Sec. Il B, we have identified the geometrical and ki- gular accelerations, an_d dissipation _rate undergo a discon-
nematic constraints giving rise to indeterminate states in twdNUoUs change every time a contact in the medium changes
dimensions. The singularities can be removed by choosing 4§ State. Relying on the numerical scheme described above,
many sliding and nontransmitting contacts as possible. Th&€ have studied some aspects of the evolution for rather
restriction on the number of such contacts comes from theMall systems of particles.
mechanical acceptability of the states. In fact, a random
choice of contact states leads most of the time to unaccept-
able situations. These are situations where the evolution of
the system would result in interpenetration of particles or in  Our simulations show that, for a given linear acceleration
a friction force incompatible with Coulomb’s law. of the box with respect to the basal plane, the whole system
An example of a mechanically acceptable solutionachieves asteady statavhere the relative tangent accelera-
(among an infinite number of other solutigris the triangu-  tion at every contact has the same sign as the the relative
lar assembly is the one where all transmitting contacts aréangent velocity, or both are zero. In the steady state, the
sliding and all lateral contact¢contact normals oriented angular accelerations of all particles and the contact forces
horizontally) are NT. This could be the physical solution for stay constant in time, since the contact states can no more
contact states when the whole system is vertically comevolve. What is more, this state is independent of the initial
pressed. The total number of Ilateral contacts isangular velocities of particles. Figure 7 shows the angular
N;=L.L,—L,/2, where the number of rows is taken to be accelerations of particles in a rectangular array at three dif-
even. The total number of lateral NT contacts is thus greateferent stages of evolution. Figure 8 shows angular accelera-

A. Self-organization and modes
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distinguish modes 2 and 3. Mode 3 governs the rotations
along columns.

An analytical study of the origin of these modes in a
one-dimensional array can be found in Ref$8,19. In
mode 1, the friction force between the particles and the plane
is progressively mobilized along the rdwsee Fig. &)]. For
the last particle in mode 1, the friction force with the plane is
fully mobilized and these contacts cannot keep their NS
states. There begins mode 2, where the particles are sliding
and rotating at the same time. However, the angular accel-
eration decreases until, for the first particle in mode 3, it
becomes negative. From this point, the particles rotate alter-
natively in positive and negative directions or do not rotate at
all. In the particular case where the driving acceleration is set
to zero(see below, we observe the same patterns of rota-
tions, except that mode 2 disappears and mode 3 is domi-
nant.

Experiments on granular media show the existence of a
“mesoscopic” length scale in between the system size and
the size of the particle20]. However, the mechanisms be-
hind these length scales are not well known. Our results sug-
gest one possible mechanism for the appearance of mesos-
copic scales: a progressive mobilization of friction forces
inside the medium up to the sliding limit.

B. Global friction

FIG. 7. Angular accelerations of particles at three stages of evo- A relevant macroscopic quantity is the “global coefficient
lution of a rectangular array. The final stage is the steady stateof friction” w4 on the plane. This is the ratio of the total
where the accelerations do not evolve any more. The whole systefftiction force on the plane to the total weight of the particles.
has a translational acceleration of 0.1 g to the left with respect to thets time evolution is shown in Fig. 10 for a rectangular array
plane. The interparticle and particle-plane coefficients of frictionof particles starting with four different initial conditions. Its
are 0.1 and 0.2, respectively. The coefficient of friction with the steady-state value is independent of the initial conditions and
walls is zero. depends only on the mechanical parameters of the system.

. - . The global steady-state friction forég, on the plane var-
tions, normal forces, and friction forces in the steady state foi g y & P

¢ | . ith tant lerati es with the linear acceleration of the system as shown in
g;egc angular array moving with a constant acceieration o ig. 11. It increases linearly witlr when the latter is small.

: . . After a nonlinear transition, the dependence again becomes
The interesting feature of the steady state is the well

defined 2 f il ; d valentl linear with a different slopgnamely, zerp In these linear

theelr::%ntgzzgirgaztzg?g gigngtlfh?ergtg#]%ﬁ?n ;%Lé';’s ig;y'be regimes, it is sensible to define an “effective inertia” by
LT AR ) my+ dF4/dy. However, the dependen is in general

distinguished. All particles of the first ro@from below are 2 9 7Y P &e(7) 9

. . onlinear. We introduce the Legendre transformation of
Just .rollmg on the p.lane. They have the same angulgr acce ~4(7v) which allows us to part in a unique way the friction
eratlpn and all partlclg-plane qontacts are NS. We will re‘cerforce in an “effective inertia” and an “effective friction
to this n_10de of colleqt|\(e rotation as .mod_e 1. In other TOWSyo e Let us define two variablea andb by
the particles rotate still in the same direction, but the angular
acceleration decreases in absolute value along thémmae JIF
2). All lateral contacts between the particles in each row are a= Sy
sliding. Finally, in each column the particles rotate with the Y
same speed but alternatively in the positive and negative
directions ;= — ;) except for the particle in contact with b=F,—ay.
the plane(mode 3). All contacts in each column are NS 9
(except for the contacts between the first and second)rowsThen, Eq.(2.1) can be written in the following form:

The same collective modes may appear successively
along a column or a row. Figure 9 shows the steady-state N—Fe=mgy, 4.2
angular accelerations for a %@ rectangular system as a
function of the positions of particles in each row. In the firstwhereF.=b andm,=mg+a are the effective friction force
row (in contact with the plane there are four particles in and effective inertia of the system. Figure 12 shows the
mode 1, three particles in mode 2, and two particles in modwariation of the “effective coefficient of friction”
3. The particles in contact with the wall have a particularue=F./myg andm, as a function ofy. The former increases
status, since the walls cannot “rotate.” Along other rows awith the linear acceleratios. For high enough values of the
more complicated pattern is observed. However we can stilinear acceleration, the effective coefficient of friction is al-

(4.2)
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(b)

FIG. 8. Steady-state angular accelerations of parti@dgshormal contact forcef), and friction forcedc) of a rectangular array. The
whole system is moving with a constant acceleration of 0.2 g to the left with respect to the plane. The interparticle, particle-plane, and
particle-wall coefficients of friction are 0.05, 0.2, and O, respectively.

most equal to the particle-plane coefficient of friction, while acceleration the situation is reversed: Now inertial forces are
the effective inertia is equal to the mass of the system. Ommportant, so mode 3 dominates along the rows, causing
the other hand, in the limit of small accelerations, the effecfrustration of rotation. Hence the system behaves more
tive coefficient of friction is very small, while the effective “blocklike” i.e., ue= tg= particie-plane @Nd there is no ad-
inertia can be many times the real mass of the system.  ditional inertia.

The behavior of the system in the linear regimes can be
understood as follows: For low accelerations gravity plays a C. Dissipation
more important role than the inertial forces, which leads to : . ..
mode 3 dominating in each column and mode 1 along each We have stqd|ed the special case of zero accelgratmn
row. Therefore the energy given to the system is barely disgOnStant veloy?lty of the basal plgneeparately. In this case,
sipated(not at all at the planebut transformed into rota- steady state” refers to the usual sense of constangulaj

tional energy of the grains. Thus we see a low eﬁcectivevelocities. Since constant driving velocity is the limiting case

friction but a high effective mass. In the regime of high of low driving acceleration, the reached state shows columns
' in mode 3 and rows in mode 1, as described above. It is
interesting that in this case of constant velocity, the self-

organization of particle rotations and contact forces, in the

0.2
0.25
o 0.20 |
-3
01 a - S T N
0. ﬂﬂ
Y IS
1 2 3 4 5 6 7 8 9 10
column
1.00
FIG. 9. Steady-state angular accelerations of particles in the first t

four rows of a 1x 4 rectangular array as a function of the particle

positions in each row. The array is moving with a constant accel- FIG. 10. Evolution of the global coefficient of friction of a rect-
eration of 0.16 g to the left. The interparticle, particle-plane, andangular 1 2 array of particles in time starting with four different
particle-wall coefficients of friction are 0.1, 0.2, and 0, respectively.initial states. The constant driving acceleration is 0.3 g, coefficients
The accelerations are normalized with respect to the acceleration @f friction for particle particle, particle plane, and particle wall are
gravity. 0.1, 0.2, and 0, respectively.
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FIG. 11. Global coefficient of friction of a rectangular array asa ~ FIG. 13. Total dissipation rate{==;;,S;; 9j;) as a function of
function of the linear acceleration of the system expressed in théme for a rectangular array (33) driven with a constant velocity.
unit of the acceleration of gravity. The interparticle, particle-plane,All quantities are normalized with respect to the weight and radius
and particle-wall coefficients of friction are 0.05, 0.1, and 0, respecOf one particle and the acceleration of gravity.

tively. All quantities are normalized with respect to the weight and ] . o
radius of one particle and the acceleration of gravity. sense defined above, results in a very low steady-state dissi-

pation rate. This can be seen in Fig. 13 which shows the
evolution of the total dissipation rate for a rectangular array.
The steady state appears to be the least dissipative state of
the system. The fact is that, due to friction the relative ve-
locities of particles at interparticle contacts tend to decrease.
In this way, starting with sliding contacts, many contacts are
gradually trapped on the vertical branch of Coulomb’s law.
The dissipation rate decreases due to this increase of the
number of NS contacts. In the rectangular system of Fig. 13
all contacts(except the ones to the wallénally turned NS.
In a triangular system, some frustration of rotations persists,
so that the steady-state dissipation rate can be higher as com-
pared to a rectangular system with the same parameters. In
this case, the system achieves the steady state with the lowest
possible dissipation rate compatible with the frustration pat-

3 tern. The latter depends, however, on the initial sfafg.

8 ' ' ‘ ‘ D. Discussion
0.0 0.1 0.2 0.3 04 0.5 _ _ _ _
We would like to underline and generalize two main re-

sults: First, due to particle rotations, dissipation rate de-
creases dynamically to reach its minimum in the steady state
0.12 ‘ ' ‘ ' for a fixed drivingvelocity We discussed the origin of dy-
namic minimization of dissipation to be a progressive in-
crease of the number of NS contacts. In regular, but also in
dense disordered granular systems, dissipation can arise only
from the “frustration” of rotations. If the network of con-
tacts and their states did not change, like in the case of regu-
lar systems studied here, then the evolution of the system
would rapidly reduce the dissipation rate to its minimum
possible value compatible with the geometry. In some cir-
cumstances, the dissipation rate can be virtually zero in the
steady state when the driving velocity is constant, this essen-
0-000 0 0‘1 0‘2 0‘3 0‘4 0.5 tially being due to friction with the walls. In other words, the
’ ) ’ ’ ) ’ point is not that “particle rotations reduce dissipation rate in
v the system,” as is generally argued about the role of rota-
tions in granular systems. The problem has to somewhat be
FIG. 12. (a) Effective inertia and(b) effective coefficient of reversed. Particle rotations tend actually to reduce dissipa-
friction as a function of the linear acceleration for the system of Fig.tion rate down to zero. The question then is to know why
11. The total mass of the systemnig=10. thereis dissipation when a granular system is sheared. From
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the foregoing discussion, we can state that “frictional dissi- Our algorithm provides a vectorial representation of con-
pation in granular systems is a consequence of disorder.” Itact states in the system. Each contact is force-transmitting or
other words, due to disorder the network of contacts is reornontransmitting, sliding or nonsliding. Contact states are de-
ganized during deformation. These rearrangements occur $ermined in an iteration process simultaneously with contact
frequently that the system does not have enough time t@rces and accelerations. The solution in dynamics is gener-
achieve its Steady state, where the diSSipation rate is Weaka”y unique_ However, in some Circumstances’ there may ap-
Secondly, not only the global coefficient of friction, but pear indeterminate states. We have identified the origins of
also the inertia of the system can be renormalized to “effecy,cp, singularities and the degree of indeterminacy in each

tive” values which are independent of the applied force on,qe e have argued that in static equilibrium almost half of

the system for low and high values of the latter. The appearg,o contact forces inside the medium are undetermined.

ance of an effective inertia should not be specific to regular During evolution, contact states change and achieve a

arrays. Varl_at|on of the frlc_tlon force on the plane_ asa fl.m(.:'steady state, where the accelerations of particles and contact
tion of the linear acceleration of the system has its origin in

NS contacts, where no dissipation takes place. At such Cor{prces stay constant in time. The steady state is independent

tacts, the friction force is more and more mobilized as accel9f initial conditions. When the driving velocity is constant,

eration increases. Some of them reach the sliding limit an(ghe stegdy-stgte d|SS|p§1t|on IS the' mlnlmlum pOSS.Ib|e value
turn to sliding contacts. In this way, the number of NS Con_qompatlble with frustratlon' of' rotgtlorjs. Since particle rota-
tacts decreases with acceleration. We think that some pafons lead to a very low dissipation in the steady state, we
ticular features of granular media could be more convefoncluded that, in the general case of a dense disordered
niently explained in terms of an effective inertia. For System.disorder is the main reason why there is at all fric-
instance, the nonharmonicity of sound propagation in granutional dissipation in granular medialn fact, due to geo-
lar media(those aspects not resulting from Hertzian contactmetrical disorder, contacts appear and disappear during time,
law), could be an inertia effed22]. Since the effective in- So that the steady state is never reached by the system.
ertia seems to be higher in the quasistatic liffotv accel- An interesting feature of the steady state is the appearance
eration, physical consequences are expected to appear if collective rotation modes and contact states giving rise to
slow deformations of granular systems as well. Large streskength scales in between the system size and the size of the
fluctuations observed in the flow of granular materi@sar  particles. These modes and the corresponding length scales
the orifice of a hopper, for exampleould result from im-  are closely related to the progressive mobilization of friction
pulsions generated by the high effective inertia of the meforces inside the medium at nonsliding contacts.
dium. These features are quite generic and are only quanti- In the steady state, the global friction force at the system-
tatively influenced by the parameters. For instance, thelane interface increases with the linear acceleration of the
effective inertia increases with the particle-plane coefficienssystem. We have introduced a Legendre transformation on
of friction, while the effective friction decreases at the samethe friction force which allows for the definition of an effec-
time. The interparticle coefficient of friction has an oppositetive inertia and an effective coefficient of friction. The effec-
effect. The coefficient of friction with each wall has only a tive inertia can be much higher than the total mass of the
limited effect on the rotation mode of the particle just in system in particular in the limit of weak acceleration. We
contact with it. argued that this property might be an important point to take
into account for analyzing fluctuations observed in the

V. CONCLUSION granular flow.

This work is an investigation of the influence of the non-
smoothness of contact laws on the global behavior of regular
arrays of rigid particles. Its main objective is to make appear
explicitly those features of granular systems which are diffi- It is a pleasure to acknowledge many fruitful discussions
cult to observe or to identify in the context of geometrical with D. Wolf at HLRZ. This work has been supported by the
disorder. European program of Human Capital and Mobility.
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