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Space-time transformations within the path-integral approach to stochastic processes
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The use of space-time transformations within the path integral approach to quantum problems has made it
possible to solve some “complicated” problems by their mapping into some simple, solvable, ones. Here we
present a simple example on the possibility of exploiting this technique within the realm of stochastic pro-
cesses, by analyzing the case of overdamped motion in a time-dependent harmonic p¢&HiiGR-
651X(96)04406-4

PACS numbgs): 05.40:+j, 02.50.Ey

I. INTRODUCTION solution(that is reduced to quadratujesome examples, and
a final discussion.

Since the pioneering work of Feynman and Hildis,
there have been numerous results related with basic aspects
as well as applications of the path integral technique to dif- Qur starting point is to consider the following Langevin
ferent problems, but mainly in relation with quantum me-equation:
chanics[2]. However, from a historical point of view, path .
integrals were first introduced in the thirties by Wiener to x(t)=h(x,1)+£(), @
describe diffusion processes, and later used by Onsager awhereg(t), as usual, is an additivehite noisg 7]. It is well
Machlup in the description of nonequilibrium and Markovian known that in one dimension the multiplicative noise prob-
stochastic processg8]. More recently, this technique has lem can be reduced to the additive & This corresponds
been extensively exploited to discuss several aspects relatéel describing the overdamped motion of a particle in a time-
with stochastic and nonequilibrium processes and also exdependent potential. In the present case we assume that
tended to describe some non-Markovian stochastic processBéx,t) = —a(t)x. As indicated, in Ref[2(b)], the path inte-
[4]. gral representation of the transition probability associated

One aspect recently studied by several authors conceriéth this Langevin equation is given by
the application of space-time transformations, within the

Il. SPACE-TIME TRANSFORMATION

X(ty) =X
realm of path integral schemes, in order to “map” a “diffi- p(xb,tb|xa,ta)=f e bD[x(t)]
cult” (in principle unsolvablg problem into a more simple X(ta)=Xa
(solvable one[5]. One of the most outstanding examples is ty, )
the possibility of solving the Coulomb problem, within a Xex[{_ﬁ Lx(7),x(7),n)d7|. (2)

path integral framework, via the so calldduru-Kleinert
transformationg5]. However the use of these transforma- Here the stochastitagrangianor Onsager-Machlugunc-
tions within the realm of the path integral approach to sto-+tional [3] is given, in a midpoint discretizatiof2(b)], by
chastic processes is scarce or almost inexigt&nt
In this paper we want to present a simple application of $t) = i Y — 2 1 —dh(x,t)

: ) JPHLAlO L(x,X,t) [X=h(x,t)]°+ . 3
such a kind of transformations for the case of diffusion in a 2D 2 dx
time-dependent harmonic potential. It is well known that an
closed expression exists for the transition probability of sucP}:
a systen{7,8]. Also, a very thorough study of the most gen-

eplacing the actual form df(x,t), the previous expression
an be expanded to yield:

eral Gaussian path integral form can be found in Ref. . 1 ., 5, ) 1 do(t)
However, our aim is to show, through such a simple ex- L(XX.D)=5o(X*+ax"+2axx)+5a=Lo+ —5—,
ample, the possibility of exploiting these transformation (4)

techniques, within a path integral framework, in more com-

plicated cases. We will follow the procedure presented in tooalt

Felsager's book10] for the quantum case, translating it to P(O)=- EJt a(t’)dt’ + 2D X ®
the stochasti¢i.e., imaginary time case. In what follows we 2

present the procedure to be used, the way to getldssical 1 )

(or most probabletrajectories necessary to write the general LOZE[XZﬂL [a(t)—a(t)]x?]. (6)

At this point, as the Lagrangian of our problem is at the
“Permanent address: Departamento dgich| Facultad de Ing- most quadratic irx and X, we can obtain the exact result
enieria, Universidad Nacional de Buenos Aires, Buenos Aires, Arthrough the use of the usual procedure of expanding around
gentina. a reference (classical or most probablg trajectory
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[X(1)=Xxqadt) +q(t)] and, besides the problem of getting ty(s) ( )
such a trajectory, our problem reduces to evaluating the fol- (t)—f(t)f NG Todsty(t)=— 0 ) +y(t) (15
lowing expression:

(Xp tp|Xa ta) = [P =Pt g™ 9°Up ta) that can be inverted yielding
e - ti(s)
82S0(tp o)
quaa):op[q(t)]e e D y(t)zq(t)—jtaf(S)Q(S)dS (16)

Heresg'(tb,ta) is the action evaluated along the classical
or most probable trajectory,sq). The effective action to be
solved in order to perform the path integral indicated in Eq.
(7) is then:

Differentiating once more Edq15) we obtain

t f(t)y(t
aw=io [ Foess 0. @

t
(tp,ta) f[qz (2— )qz}dt. ®
2D J, dt Replacing the last result into the integrand of the exponent in

N . Eqg. (10), it can be transformed into
After partial integration, we get

1 (4 d%q da d? .
2 — 2 2 - = _
6°Sy(tp,ty)=— ﬁ {QW—<G T at gsl. (9 (dtz w(t) (q(t)={f(t)—w(t)f(t)}
Hence the path integral in E¢7) adopts the form: « JW(S) ds+ fFOy(®) +(t)
o RIC R
P(Xo  tp|Xg L) =€ (V1) P10l G ta 1) f " Do) (19
q(ty)=0
d? da Due to Eq.(12), the first term on the right-hand sidehs) of
xexp{ ZDJ Q[W— a’— at QJ Eq. (18) vanishes, reducing the effective action in E8). to
STU
_ _ _ . 6°Sat)]=— —f dt{F (O ()Y(D) +FOF (DD},
In order to evaluate this path integral we need to diagonalize
the operator (19
d? da where
g2 —
However, there is an alternative way consisting in perform- F(t)—f ds f(s (20

ing a change of variables that transforms the action in(&q.

into the one corresponding to the free diffusion problem. In

following this approach we will make use of the results in The second term on the rhs of E49) can be integrated by
Chap. 5 of Felsager’s bod0]. Let us callf(t) the solution ~ Parts leading to

of the equation

26 1 dy\? 1 I
o? F*Sa(t]= 55 f dt| 5| —5playmIE. @
gz W f(1=0, (12 :
wherew(t) =a2— da/dt, and with the conditiori(t,) #0. It Due to the boundary conditions &tt, andt=t,, the sec-
is easy to verify that ond term _of the last equation vanishgs ar_1d we finally arrive
at the action corresponding to free diffusion. The boundary
B t conditions q(t,) =q(t,) =0, when written in terms of the
=Aexp — | a(s)ds (13 new variabley(t), have the form:

is a solution of Eq(12) fulfilling the required condition. We y(s)
will now use the functionf(t) to perform the change of y(ta)=0; f d5@=0- (22
variablesq(t)=y(t) according to a

ty(s) However, the second boundary condition is a nonlocal one
q(t)= f(t)f f(_sds (14 and therefore we shall resort to a special trick in order to
handle it. Such a trick consists in using the identity
with the conditiony(t,) =0. Differentiating the previous ex- d[d(t,)]1=(27) *f” .exd —isq(tp)]ds in order to formally
pression we get introduce the integration over the final endpoint:
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a(ty)=0

)

D[qle ?Solat)]
(ta) =0

1
27 Jq(tp)=0

q(ty)arbitrary

D[q]fw dse isdtng- 5230[q(t)], (23

where the integration oves produces thes function that

takes care of the correct boundary condition. Changing the

integration variablegq(t)=y(t)] we get

i y(tb)arbitraryD ¢ © q
27 )y o [y(®1] ds
ty
xexp(—is{f(tb)f [y(s’)/f(s’)]ds’]>
ta

xex;{ . (1/2D)ftbdt(dy/dt)2 . (24)
ta

de{%

As the transformatiom(t)=y(t) is linear, the Jacobian
def 6q/8y] is independent of/(t), and the remaining inte-
gral is Gaussian. “Completing the square” we get

1 ol *° ta
:Ede{gq fﬁwds exp{ — (D/2) $?f?(ty,) ftb [dt/fz(t)]]
9(ty)arbitrary 1 [t dd 2

Xfﬁ(ta)=0 D[ﬁ(t)]ex;{—ﬁfta dt(m) }, (25
with

t da

am . (26)

ﬁ(t)=y(t)—iDsf(tb)f
t
The second integral in E@25) is equal to unity as it repre-
sents the probability for finding the free diffusive system
anywhere at timé,, . Hence, integrating the first one, we get
the simple expression:

a(tp)=0 B
f Dlqle
q 0

(ta):

dt 1/2
(27)

2 tb
Sola®]= | 27D f(t,)f(ty)

ta
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d2
W_

2

a

Xelad )= 0 (29

da

dt
fulfilling the “boundary conditions”: X..{t))=X, and
Xqadth) =Xp - The general form of such a solution is

Xclas(t):B ex[{[ - f
t

where g(t) is an independent solution of the equation of
motion that shall be obtained for eaelft). It is easy to

check that
Ta(z)dz] )
(31

+9(b), (30

a

ta(s)ds}

g(t)=exr<[—f;a(S)ds})f;drexp([ZLI

is a convenient form of the desired independent solution. The
knowledge ofx ,{t) allows us to evaluat&:®. Hence, we
have reached an expression where, given the form of the
time dependence af(t), the complete solution of the prob-
lem is reduced taqyuadratures In the next section we will
exploit this general result for a couple of analytically solv-
able examples.

Ill. ANALYTICAL SOLUTIONS

We propose here a simple method to generate a whole
family of analytical classical solutions. In order to reach this
goal we write the elastic parameter in the following form:

1b'(t)

a(t)y=b(t)+ 200

(32

This allows us to find the forms

sini B(t)]
NG

_cosr[B(t)]

Vb(t)

Xy (t)=

Xo(t) (33

Here we have used that the Jacobian is given byfor the classical solutions. The only condition in order to get

def 8q/8y]= Vf(t,)/f(ty) [10]. The final form for the tran-

sition probability is:
P(Xp by X ta) = [Pt~ Pt~ S5 ta to)

tp dt
ZWDf(ta)f(tb)J; W

-1/2

X (28

Clearly, the expression for this transition probability con-
tains the results for free diffusiopw(t)=0, f(t)=1] and
diffusion in a constant harmonic potentiglo(t)= w?
=ct., f(t)=coshw(t—t,)]}. In the general case, the function
f(t)is given by Eq.(13). It is worth remarking that the result

in Eq. (28) is in complete agreement with those obtained by

previous authors by other meatsee for instancg9]).

In order to completely solve the problem, i.e., to have the

transition probability in Eq. (28), we shall evaluate
Sty ,ta) = Sol Xead t) 1, Wherexgadt) is the solution of the
Euler-Lagrange equation

analytical trajectories is that(t) must be an integrable func-
tion as we have th%(t)=f§0b(s)ds. With this choice of

a(t), the solution of EQq.(29), with boundary conditions
Xeladta) =Xz andXgadtp) =Xy, iS given by

~ XaVb(ty)SINH B(tp) ]~ Xp\b(tp)SiNH B(t,)]
clas™ SinB(ty) — B(ta)]
><cosr[B(t)]
Vb(t)

N XpVb(tp)cosh B(t,) ] —Xavb(t,)coshB(ty)]
sini{ B(ty) —B(ta)]

><sinf{B(t)]

Vb(t)

With these results, the functioh(t) [Eqg. (5)] becomes

(34)
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B(t) 1 a(t) ) we start considering the following form for the function
P(O)=———— 7 InbO)]+ 55 x(1). (35  b(t):
Hence the final expresion for the transition probability is b(t)=%/
p(xbvtb|xavta)
\/ Jb(t)b(ty) b(t,)) /4 that yields fora(t) the form
~ V4xDsin{B(t,) —B(t,)] | b(t,)
[B(ty)—B(t @
xexp—( b)z ( a)} a(t)=1,

[ 1
2 2
xexp 55 [alty)xp—alta)x;] with a=y— L. This choice corresponds to a system that

goes asymptotically to free diffusion. With this choice we
can obtain the solution for a whole family of functions cor-
responding to different values of Replacing this form into

) ) the previous expressions yields for the solutionét) and
Herex(t,) andx(t,) are the time derivative ofy,dt) atty  x,(t):

andt,, respectively.

SR .
xXexp E[Xbx(tb)_xax(ta)]}- (36)

A. Examples Xy (H)=t"% x,(t)=tl*e,

It is clear that there are a large number of possibilities of
functional forms forb(t) leading to analytical results. Here, while for the transition probability we find

T Y
oy

p(xbytb|xa1ta)={ 27 ta

t, Y1) - 1/2 tb)(a/Z) o Xg Xg
to . N7\, 1
1 [2(2a+1)xXptte—x2[ (a+ DR+ 12% Yt 1= X2 (a+ D2+ 1297t ]
Xexg — 55 Za¥1_2aT1
2D ta _tb

Clearly, wheny=0 (correspondinglyr= — 3) we meet a kind of singular situation. This corresponds to the coalescence of
two “classical trajectories,” and its solution requires a special treatment as we cannot exploit the previous forms for the
classical solution. However, we can overcome this difficulty writing the new solutions as

X (D) =\, (39)

Xo(t) =tIn[t].

Using these forms into the previous expressions, leads us to the following form of the propagator

NG ETPRNEET 1
b b
27D \/tatbm(g) 1 (-) ex;{ﬁ

P(Xp ,tp|Xa,ta) = t t
b a

ta

2 2
Xp Xa)

Xa In[tb]>_ X In[ta])
wexd — - @(H 2 T (e %
™20 In[tp] — In[t,] NS

Xa X
1| Vo Vo | [(xplnlt]  xaln[t]
s BT AN r B r A N

(39



90

C. D. BATISTA, G. DRAZER, D. REIDEL, AND H. S. WIO

54

This corresponds to a limit case of the previous propagadependent harmonic potential. This problem has been stud-

tor that, however, cannot be obtained from E87) in a
trivial way.

ied, using standard techniques, by other auth®@}sin order
to proceed with the calculation we have profited from the

Here, and for the sake of completeness, we show a couplgsults for the quantum case as presented in Felsager's book

of final examples fob(t) that could be of some interest, but
without elaborating on the final form of the propagator.

[10], adapting it to the stochastic case.
We have shown the procedure to be used, how to get the

As the first case, we consider a case that can be reduced #assical or most probabletrajectory (needed to write the
an oscillator with a frequency that oscillates around a pregeneral solutionand also shown that in this particular case

scribed value:

b(t)=K+ a sinwt (40

1 aw coswt

=K+ asinot+ - ——.
a(t) =K+ asinot 2 K+ a sinwt

the general solution is reduced to quadratures. We have pre-
sented the solution for a whole family of analytical solutions
when we write the elastic parameter in a particular form, and
have presented a few examples correspondin@epulsive

or attractive potentials that asymptotically go over the free
diffusion case. We have particularized the case of coales-
cence of classical trajectories. Finally, we have included a

In the limit of @<K we reduce to the above indicated casecouple of other interesting examples. In most of these cases

with a(t)~K+ a sinwt.

we have obtained the expression for the final form of the

A second interesting situation is the case when the fretransition probability or propagator. All these examples indi-

guency changes from a given initial valgat t=0) to an-
other fixed valugfor t—). We can propose:

b(t) =K+ ae V" (41)

1

_ —t/7
a(t)y=K+ae "1 27 (Kt ae 77|
We see that the limit values correspond t@(0)
=K+ af{1-[1/27(K+ a)]} anda(«x)=K, respectively.

It is clear that, given the forms df(t) anda(t), it is
simply to getB(t), and replacing all these functions into
Egs. (34)—(36), we can obtain closed expresions for the
propagators.

IV. CONCLUSIONS

In this paper we have addressed, through a simple case,

the problem of exploiting space-time transformatidig

cate some of the possibilities of this approach. What still
remains open is the analysis of the same problem without
exploiting the connection between the Fokker-Planck and
Schralinger equations, but working in the original non-
Hermitian framework. Clearly, this will be a necessary step
when studying higher dimensional systems. As interesting
applications of the present results we can indicate some time-
dependent problems such as those discussed in Refs.

13].

However, the main interest will be to apply, adapt, or
extend, the more general form of space-time transformations
[5], i.e., of the Duru-Kleinert type, within the path integral
approach to stochastic processes, in order to “map” a “dif-
ficult” (in principle unsolvablgproblem into a more simple
(solvablg one. The study of the many aspects of this prob-
lem will be the subject of further work.
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